The Fossil Record of Cyanobacteria

  • J. William SchopfEmail author


Fossil evidence of cyanobacteria, represented in the geological record by microbially laminated stromatolites, cyanobacterial and cyanobacterium-like microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends back to ∼3,500 million years ago. The most abundant and best-documented fossil cyanobacteria, known from thousands of specimens preserved in several hundred geological units, belong to five taxonomic families: the Oscillatoriaceae, Nostocaceae, Chroococcaceae, Entophysalidaceae and Pleurocapsaceae. As documented by the essentially identical morphologies, life cycles, and ecologic settings of such fossils and their modern counterparts, members of these families have exhibited extreme evolutionary stasis over enormous segments of geological time. Because of the incompleteness of the fossil record, however, such data do not resolve the time of origin of O2-producing cyanobacteria from their anoxygenic, bacterial, evolutionary precursors. Though it is well established that Earth’s ecosystem has included autotrophs since its very early stages, available data indicate only that O2-producing photoautotrophic cyanobacteria originated earlier than the Great Oxidation Event at ∼2,450 million years ago; that such microbes were evidently extant by ∼2,700 million years ago; and that the origin of oxygenic photosynthesis may date from as early as, or even earlier than, 3,500 million years ago.


Fossil Record Carbon Isotopic Composition Oxygenic Photosynthesis Carbonaceous Matter Rock Record 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



banded iron-formation


confocal laser scanning microscopy


Grand Oxidation Event


million years


solid-state 13C nuclear magnetic resonance


Raman Index of Preservation


ribulose bisphospate carboxylase/oxygenase


X-ray absorption near-edge spectroscopy



Based in part on Schopf (2009), preparation of this article has been supported by the Center for the Study of Evolution and the Origin of Life at UCLA. I thank J. Shen-Miller for a helpful review of the manuscript.


  1. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718PubMedCrossRefGoogle Scholar
  2. Altermann W, Schopf JW (1995) Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Res 75:65–90PubMedCrossRefGoogle Scholar
  3. Barghoorn ES, Schopf JW (1965) Microorganisms from the late Precambrian of central Australia. Science 150:337–339PubMedCrossRefGoogle Scholar
  4. Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint chert. Science 147:563–577PubMedCrossRefGoogle Scholar
  5. Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111PubMedCrossRefGoogle Scholar
  6. Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97PubMedCrossRefGoogle Scholar
  7. Bloeser B (1985) Melanocyrillium, a new genus of structurally complex late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona. J Paleontol 59:741–765Google Scholar
  8. Bloeser B, Schopf JW, Horodyski RJ, Breed WJ (1977) Chitinozoans from the late Precambrian Chuar Group of the Grand Canyon, Arizona. Science 195:676–679PubMedCrossRefGoogle Scholar
  9. Brasier MD, Green OR, Jephcoat AP, Kleppe AK, VanKranendonk AJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence of Earth’s oldest fossils. Nature 416:76–81PubMedCrossRefGoogle Scholar
  10. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036PubMedCrossRefGoogle Scholar
  11. Butterfield NJ (2009) Modes of pre-Ediacaran multicellularity. Precambrian Res 173:201–211CrossRefGoogle Scholar
  12. Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36CrossRefGoogle Scholar
  13. Chen JY, Schopf JW, Bottjer DJ, Zhang C-Y, Kudryavtsev AB, Tripathi AB, Wang X-Q, Yang Y-H, Gao X, Yang Y (2007) Raman spectra of a ctenophore embryo from southwestern Shaanxi, China. Proc Natl Acad Sci USA 104:6289–6292PubMedCrossRefGoogle Scholar
  14. Cloud PE (1965) Significance of the Gunflint (Precambrian) microflora. Science 148:27–45PubMedCrossRefGoogle Scholar
  15. Darwin CR (1859) On the origin of species by means of natural selection. John Murray, London, 490 ppGoogle Scholar
  16. DeGregorio BT, Sharp TG, Flynn GJ, Wirick S, Hervig RL (2009) Biogenic origin for Earth’s oldest putative fossils. Geology 37:631–634CrossRefGoogle Scholar
  17. Derenne S, Robert F, Skrzypczak-Bonduelle A, Gourier D, Binet L, Rouzaud J-N (2008) Molecular evidence for life in the 3.5 billion year old Warrawoona chert. Earth Planet Sci Lett 272:476–480CrossRefGoogle Scholar
  18. Drews G (1973) Fine structure and chemical composition of the cell envelopes. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell Scientific Publications/University of California Press, Oxford/Berkeley, pp 99–116, 676 ppGoogle Scholar
  19. Eigenbrode JL, Freeman KH, Summons RE (2008) Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis. Earth Planet Sci Lett 273:323–331CrossRefGoogle Scholar
  20. Fairchild TR (1975) The geologic setting and paleobiology of a Late Precambrian stromatolitic microflora from South Australia. Dissertation, University of California, Los Angeles, 272 ppGoogle Scholar
  21. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–759PubMedCrossRefGoogle Scholar
  22. Farquhar J, Peterson M, Johnson DT, Strauss H, Masterson A, Weichert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulfur chemistry. Nature 449:706–709PubMedCrossRefGoogle Scholar
  23. Frank H, Lefort M, Martin HH (1971) Elektronenoptische und chemische Untersuchungen an Zellwäden der Blaualgen, Phormidium unicinatum. Z Natur B 17:262–268Google Scholar
  24. Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. Norton, New York, 397 ppGoogle Scholar
  25. Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationship among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592PubMedGoogle Scholar
  26. Golubić S, Hofmann HJ (1976) Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic mats: cell division and degradation. J Paleontol 50:1074–1082Google Scholar
  27. Golubić S, Sergeev VN, Knoll AH (1995) Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. Lethaia 28:285–298PubMedCrossRefGoogle Scholar
  28. Green JW, Knoll AH, Golubić S, Swett K (1987) Paleobiology of distinctive benthic microfossils from the Upper Proterozoic Limestone-Dolomite “Series,” central East Greenland. Am J Bot 74:928–940PubMedCrossRefGoogle Scholar
  29. Green JW, Knoll AH, Swett K (1988) Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, central East Greenland. J Paleontol 62:835–852PubMedGoogle Scholar
  30. Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358PubMedCrossRefGoogle Scholar
  31. Halfen LN, Castenholz RW (1971) Gliding motility in the blue-green alga, Oscillatoria princeps. J Phycol 7:133–145Google Scholar
  32. Hayes JM (1983) Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In: Schopf JW (ed) Earth’s earliest biosphere, its origin and evolution. Princeton University Press, Princeton, pp 291–301, 543 ppGoogle Scholar
  33. Hayes JM, Kaplan IR, Wedeking KM (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere, its origin and evolution. Princeton University Press, Princeton, pp 93–134, 543 ppGoogle Scholar
  34. Hayes JM, DesMarais DJ, Lambert IA, Strauss H, Summons RE (1992) Proterozoic biogeochemistry. In: Schopf JW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, New York, pp 81–134, 1348 ppCrossRefGoogle Scholar
  35. Herdman M, Janvier M, Rippka R, Stanier RY (1979a) Genome size of cyanobacteria. J Gen Microbiol 111:73–85CrossRefGoogle Scholar
  36. Herdman M, Janvier M, Waterbury JB, Rippka R, Stanier RY, Mandel M (1979b) Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol 111:63–71CrossRefGoogle Scholar
  37. Hoering TC (1967) The organic geochemistry of Precambrian rocks. In: Abelson PH (ed) Researches in geochemistry, vol 2. Wiley, New York, pp 87–111, 663 ppGoogle Scholar
  38. Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Paleontol 50:1040–1073Google Scholar
  39. Hofmann HJ (2000) Archean stromatolites as microbial archives. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin/Heidelberg/New York, pp 315–327, 331 ppGoogle Scholar
  40. Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol Soc Am Bull 111:1256–1262CrossRefGoogle Scholar
  41. Holland HD (2002) Volcanic gases, black smokers, and the Great Oxidation Event. Geochim Cosmochim Acta 66:3811–3826CrossRefGoogle Scholar
  42. Horodyski RJ, Donaldson JA (1980) Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Res 11:125–159CrossRefGoogle Scholar
  43. House CH, Schopf JW, McKeegan KD, Coath CD, Harrison TM, Stetter KO (2000) Carbon isotopic composition of individual Precambrian microfossils. Geology 28:707–710PubMedCrossRefGoogle Scholar
  44. House CH, Schopf JW, Stetter KO (2003) Carbon isotopic signatures of biochemistry: fractionation by archaeans and other thermophilic prokaryotes. Org Geochem 34:345–356CrossRefGoogle Scholar
  45. Igisu M, Ueno Y, Shimojima M, Nakashima S, Awramik SM, Ohta H, Maryuama S (2009) Micro-FTIR spectroscopic signatures of bacterial lipids in Proterozoic microfossils. Precambrian Res 173:19–26CrossRefGoogle Scholar
  46. Kidston R, Lang WH (1922) On Old Red Sandstone plants showing structure from the Rhynie chert bed, Aberdeenshire, part V. Trans R Soc Edinb 52:885–902Google Scholar
  47. Knoll AH, Barghoorn ES, Golubić S (1975) Palaeopleurocapsa wopfnerii gen. et sp nov., a late-Precambrian blue-green alga and its modern counterpart. Proc Natl Acad Sci USA 72:2488–2492PubMedCrossRefGoogle Scholar
  48. Knoll AH, Golubić S, Green J, Swett K (1986) Organically preserved microbial endoliths from the late Proterozoic of East Greenland. Nature 321:856–857PubMedCrossRefGoogle Scholar
  49. McKeegan KD, Kudryavtsev AB, Schopf JW (2007) Raman and ion microscopic imagery of graphite inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, west Greenland. Geology 35:591–594CrossRefGoogle Scholar
  50. Mojzsis S, Arrenhius G, McKeegan KD, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59PubMedCrossRefGoogle Scholar
  51. Oparin AI (1938) The origin of life. McMillian, New York, 270 ppGoogle Scholar
  52. Pankratz HS, Bowen CC (1963) Cytology of blue-green algae. I. The cells of Symploca muscorum. Am J Bot 50:387–399CrossRefGoogle Scholar
  53. Park R, Epstein S (1963) Carbon isotopic fractionation during photosynthesis. Geochim Cosmochim Acta 21:110–115CrossRefGoogle Scholar
  54. Porter SM, Knoll AH (2000) Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26:360–385CrossRefGoogle Scholar
  55. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104PubMedCrossRefGoogle Scholar
  56. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61CrossRefGoogle Scholar
  57. Schopf JW (1968) Microflora of the bitter springs formation, late Precambrian, central Australia. J Paleontol 42:651–688Google Scholar
  58. Schopf JW (1977) Biostratigraphic usefulness of stromatolitic Precam­brian microbiotas: a preliminary analysis. Precambrian Res 5:143–173CrossRefGoogle Scholar
  59. Schopf JW (1978) The evolution of the earliest cells. Sci Am 239:110–138PubMedCrossRefGoogle Scholar
  60. Schopf JW (1992a) Paleobiology of the Archean. In: Schopf JW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, New York, pp 25–39, 1348 ppCrossRefGoogle Scholar
  61. Schopf JW (1992b) Proterozoic prokaryotes: affinities, geologic distribution, and evolutionary trends. In: Schopf JW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, New York, pp 195–218, 1348 ppCrossRefGoogle Scholar
  62. Schopf JW (1992c) Evolution of the Proterozoic biosphere: benchmarks, tempo, and mode. In: Schopf JW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, New York, pp 583–600, 1348 ppCrossRefGoogle Scholar
  63. Schopf JW (1993) Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646PubMedCrossRefGoogle Scholar
  64. Schopf JW (1994a) Disparate rates, differing fates: the rules of evolution changed from the Precambrian to the Phanerozoic. Proc Natl Acad Sci USA 91:6735–6742PubMedCrossRefGoogle Scholar
  65. Schopf JW (1994b) The oldest known records of life: stromatolites, microfossils, and organic matter from the Early Archean of South Africa and Western Australia. In: Bengtson S (ed) Early life on earth. Columbia University Press, New York, pp 193–206, 656 ppGoogle Scholar
  66. Schopf JW (1996) Metabolic memories of Earth’s earliest biosphere. In: Marshall CR, Schopf JW (eds) Evolution and the molecular revolution. Jones and Bartlett, Boston, pp 73–105Google Scholar
  67. Schopf JW (1999) Cradle of life, the discovery of earth’s earliest fossils. Princeton University Press, Princeton, 367 ppGoogle Scholar
  68. Schopf JW (2004) Geochemical and submicron-scale morphologic analyses of individual Precambrian microorganisms. In: Hill JR, Aizenshtat Z, Baedecker MJ, Claypool G, Eganhouse R, Goldhaber M, Leventhal J, Peters K (eds) Geochemical investigation in Earth and Space Science: a tribute to Isaac R. Kaplan. The Geochemical Society, St. Louis, pp. 365–375, 466 ppGoogle Scholar
  69. Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc B 361:869–885CrossRefGoogle Scholar
  70. Schopf JW (2009) Paleontology, microbial. In: Lederberg J, Schaechter M (eds) Encyclopedia of microbiology, 3rd edn. Elsevier, Amsterdam, pp 390–400, 4600 ppCrossRefGoogle Scholar
  71. Schopf JW, Bottjer DJ (2009) Preface: world summit on ancient microscopic fossils. Precambrian Res 173:1–3CrossRefGoogle Scholar
  72. Schopf JW, Kudryavtsev AB (2005) Three-dimensional Raman imagery of Precambrian microscopic organisms. Geobiology 3:1–12CrossRefGoogle Scholar
  73. Schopf JW, Kudryavtsev AB (2009) Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils. Precambrian Res 173:9–49Google Scholar
  74. Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76PubMedCrossRefGoogle Scholar
  75. Schopf JW, Kudryavtsev AB, Agresti DG, Czaja AD, Wdowiak TJ (2005) Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology 5:333–371PubMedCrossRefGoogle Scholar
  76. Schopf JW, Tripathi AB, Kudryavtsev AB (2006) Three-dimensional optical confocal imagery of Precambrian microscopic organisms. Astrobiology 1:1–16CrossRefGoogle Scholar
  77. Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of Archean life: stromatolites and microfossils. Precambrian Res 158:141–155CrossRefGoogle Scholar
  78. Schopf JW, Tewari VC, Kudryavtsev AB (2008) Discovery of a new chert-permineralized microbiota of the Proterozoic Buxa Formation of the Ranjit Window, Sikkim, N.E. India, and its astrobiological implications. Astrobiology 8:735–746PubMedCrossRefGoogle Scholar
  79. Schopf JW, Kudryavtsev AB, Sergeev VN (2010) Confocal laser scanning microscopy and Raman imagery of the Late Neoproterozoic Chichkan microbiota of South Kazakhstan. J Paleontol 84:402–416CrossRefGoogle Scholar
  80. Strauss H, Moore TB (1992) Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples. In: SchopfJW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, New York, pp 709–798, 1348 ppCrossRefGoogle Scholar
  81. Summons RE (1992) Abundance and composition of extractable organic matter. In: Schopf JW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, New York, pp 101–115, 1348 ppGoogle Scholar
  82. Summons RE, Bradley AS, Janke LL, Waldbauer JR (2006) Steroids, triterpenoids and molecular oxygen. Philos Trans R Soc B 361:951–968CrossRefGoogle Scholar
  83. Waldbauer JR, Sherman LS, Sumner DY, Summons RE (2009) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47CrossRefGoogle Scholar
  84. Zehr JP, Mellon TM, Hiorns WH (1997) Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages. Microbiology 143:1443–1450PubMedCrossRefGoogle Scholar
  85. Zhang Y, Golubić S (1987) Endolithic microfossils (Cyanophyta) from Early Proterozoic stromatolites, Hebei, China. Acta Micropaleontol Sin 4:1–12Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Earth and Space Sciences, Center for the Study of Evolution and the Origin of Life, Institute of Geophysics and Planetary Physics, Molecular Biology InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations