Skip to main content

Salts and Brines

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

Cyanobacteria form a major component of the biota of hypersaline environments including salt lakes, solar salterns, hypersaline lagoons, and hypersaline sulphur springs. Cyanobacteria are often found in evaporite crusts of gypsum and even halite. A wide range of species were reported to live at high salinities. In many hypersaline environments cyanobacteria are exposed to high sulphide concentrations. Certain species are able to use sulphide as an electron donor in an anoxygenic type of photosynthesis through a process which involves photosystem I only. To be able to withstand the high osmotic pressure caused by the salt concentrations in their surrounding medium, cyanobacteria living at high salinities possess mechanisms to maintain osmotic equilibrium and cell turgor. Ions can temporarily enter the cells to counteract rapid increases in medium salinity. For long-term osmotic stabilization organic solutes are accumulated: the disaccharides sucrose and trehalose, glucosylglycerol, and glycine betaine. Molecular analysis of glucosylglycerol metabolism in Synechocystis PCC 6803 has greatly increased our insight into osmoregulatory mechanisms. Understanding the molecular mechanisms of osmotic adaptation in cyanobacteria has led to the exploration of a number of interesting biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Garcia-Pichel F, Hernández-Mariné M (2002) Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of Halomicronema excentricum gen. nov., sp. nov. Arch Microbiol 177:361–370

    Article  PubMed  CAS  Google Scholar 

  • Abed RMM, Polerecky L, Al Najjar M, de Beer D (2006) Effect of temperature on photosynthesis, oxygen consumption and sulfide production in an extremely hypersaline cyanobacterial mat. Aquat Microb Ecol 44:21–30

    Article  Google Scholar 

  • Abed RMM, Kohls K, Schoon R, Scherf A-K, Schacht M, Palinska KA, Al-Hassani H, Hamza RJ, Golubic S (2008) Lipid biomarkers, pigments and cyanobacterial diversity of microbial mats across intertidal flats of the arid coast of the Arabian Gulf (Abu Dhabi, UAE). FEMS Microbiol Ecol 65:449–462

    Article  PubMed  CAS  Google Scholar 

  • Ali GH (1999) Phytoplankton activities in hypersaline, anoxic conditions. I. Dynamics of phytoplankton succession in the Solar Lake (Taba, Egypt). Water Sci Technol 40(7):117–125

    Article  CAS  Google Scholar 

  • Anderson GC (1958) Some limnological features of a shallow saline meromictic lake. Limnol Oceanogr 3:259–270

    Article  Google Scholar 

  • Arieli B, Binder B, Shahak Y, Padan E (1989) Sulfide induction of synthesis of a periplasmic protein in the cyanobacterium Oscillatoria limnetica. J Bacteriol 171:699–702

    PubMed  CAS  Google Scholar 

  • Arieli B, Padan E, Shahak Y (1991) Sulfide-induced sulfide-quinone reductase activity in thylakoids of Oscillatoria limnetica. J Biol Chem 266:104–111

    PubMed  CAS  Google Scholar 

  • Arieli B, Shahak Y, Taglicht D, Hauska G, Padan E (1994) Purification and characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. J Biol Chem 269:5705–5711

    PubMed  CAS  Google Scholar 

  • Asami S, Takabe T, Akazawa T, Codd GA (1983) Ribulose 1,5-bisphosphate carboxylase from the halophilic cyanobacterium Aphanothece halophytica. Arch Biochem Biophys 225:713–721

    Article  PubMed  CAS  Google Scholar 

  • Batterton JC, Van Baalen C (1971) Growth responses of blue-green algae to sodium chloride concentration. Arch Mikrobiol 76:151–165

    Article  PubMed  CAS  Google Scholar 

  • Bauld J (1981) Occurrence of benthic microbial mats in saline lakes. Hydrobiologia 81:87–111

    Article  Google Scholar 

  • Bebout BM, Carpenter SP, Des Marais DJ, Discipulo M, Embaye T, Garcia-Pichel F, Hoehler TM, Hogan M, Jahnke LL, Keller RM, Miller SR, Prufert-Bebout LE, Raleigh C, Rothrock M, Turk K (2002) Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory: simulating Earth’s present and past field environments. Astrobiology 2:383–402

    Article  PubMed  CAS  Google Scholar 

  • Berland B, Le Campion T, Campos Baeta Neves MH (1989) Interaction de la salinité et de la température sur la morphologie, la croissance et la composition cellulaire d’une Cyanobactérie halotolérante (Aphanothece sp.). Bot Mar 32:317–329

    Article  CAS  Google Scholar 

  • Blumwald E, Tel-Or E (1982) Osmoregulation and cell composition in salt-adaptation of Nostoc muscorum. Arch Microbiol 132:168–172

    Article  CAS  Google Scholar 

  • Blumwald E, Mehlhorn RJ, Packer L (1983) Studies of osmoregulation in salt adaptation of cyanobacteria with ESR spin-probe techniques. Proc Natl Acad Sci USA 80:2599–2602

    Article  PubMed  CAS  Google Scholar 

  • Borowitzka LJ (1981) The microflora. Adaptations to life in extremely saline lakes. Hydrobiologia 81:33–46

    Article  Google Scholar 

  • Borowitzka LJ, Demmerle S, Mackay MA, Norton RS (1980) Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga. Science 210:650–651

    Article  PubMed  CAS  Google Scholar 

  • Braithwaite CJR, Whitton BA (1987) Gypsum and halite associated with the cyanobacterium Entophysalis. Geomicrobiol J 5:43–55

    Article  CAS  Google Scholar 

  • Brock TD (1976) Halophilic blue-green algae. Arch Microbiol 107:109–111

    Article  PubMed  CAS  Google Scholar 

  • Bronstein M, Schutz M, Hauska G, Padan E, Shashak Y (2000) Cyanobacterial sulfide-quinone reductase: cloning and heterologous expression. J Bacteriol 182:3336–3344

    Article  PubMed  CAS  Google Scholar 

  • Burke CM (1995) Benthic microbial production of oxygen supersaturates the bottom water of a stratified hypersaline lake. Microb Ecol 29:163–171

    Article  CAS  Google Scholar 

  • Camacho A, de Wit R (2003) Effect of nitrogen and phosphorus additions on a benthic microbial mat from a hypersaline lake. Aquat Microb Ecol 32:261–273

    Article  Google Scholar 

  • Campbell SE, Golubic S (1985) Benthic cyanophytes (cyanobacteria) of Solar Lake (Sinai). Arch Hydrobiol 38/39(Suppl 71):311–329

    Google Scholar 

  • Canfield DE, Des Marais DJ (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in microbial mat. Geochim Cosmochim Acta 57:3971–3984

    Article  PubMed  CAS  Google Scholar 

  • Canfield DE, Sørensen KB, Oren A (2004) Biogeochemistry of a gypsum-encrusted microbial ecosystem. Geobiology 2:133–150

    Article  CAS  Google Scholar 

  • Casillas-Martinez L, Gonzalez ML, Fuentes-Figueroa Z, Castro CM, Nieves-Mendez D, Hernandez C, Ramirez W, Systsma RE, Perez-Jimenez J, Visscher PT (2005) Community structure, geochemical characteristics and mineralogy of a hypersaline microbial mat, Cabo Rojo, PR. Geomicrobiol J 22:269–281

    Article  CAS  Google Scholar 

  • Caumette P, Matheron R, Raymond N, Relexans J-C (1994) Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol Ecol 13:273–286

    Article  CAS  Google Scholar 

  • Cohen Y (1984a) The Solar Lake cyanobacterial mats: strategies of photosynthetic life under sulfide. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: stromatolites. Alan R Liss, New York, pp 133–148, 498 pp

    Google Scholar 

  • Cohen Y (1984b) Oxygenic photosynthesis, anoxygenic photosynthesis, and sulfate reduction in cyanobacterial mats. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 435–441, 494 pp

    Google Scholar 

  • Cohen Y, Krumbein WE, Shilo M (1975a) The Solar Lake: limnology and microbiology of a hypersaline, monomictic heliothermal heated sea-marginal pond (Gulf of Aqaba, Sinaï). Rapp Comm Int Mer Médit 23:105–107

    Google Scholar 

  • Cohen Y, Padan E, Shilo M (1975b) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123:855–861

    PubMed  CAS  Google Scholar 

  • Cohen Y, Jørgensen BB, Padan E, Shilo M (1975c) Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257:489–492

    Article  CAS  Google Scholar 

  • Cohen Y, Krumbein WE, Goldberg M, Shilo M (1977a) Solar Lake (Sinai). 1. Physical and chemical limnology. Limnol Oceanogr 22:597–608

    Article  CAS  Google Scholar 

  • Cohen Y, Krumbein WE, Shilo M (1977b) Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol Oceanogr 22:609–620

    Article  CAS  Google Scholar 

  • Cohen Y, Jørgensen BB, Revsbech NP, Poplawski R (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51:398–407

    PubMed  CAS  Google Scholar 

  • Coleman MU, White MA (1993) The role of biological disturbances in the production of solar salt. In: Seventh symposium on salt, vol 1. Elsevier Science Publishers, Amsterdam, pp 623–631

    Google Scholar 

  • Cornée A, Dickman M, Busson G (1992) Laminated cyanobacterial mats in sediments of solar salt works: some sedimentological implications. Sedimentology 39:599–612

    Article  Google Scholar 

  • D’Antoni D’Amelio E, Cohen Y, Des Marais DJ (1987) Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats. Arch Microbiol 147:213–220

    Article  Google Scholar 

  • D’Antoni D’Amelio E, Cohen Y, Des Marais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 97–113, 494 pp

    Google Scholar 

  • Davis JS (1974) Importance of micro-organisms in solar salt production. In: Fourth symposium on salt, vol 1. Northern Ohio Geological Society, Cleveland, pp 369–372

    Google Scholar 

  • Davis JS (1978) Biological communities in a nutrient enriched salina. Aquat Bot 4:23–42

    Article  Google Scholar 

  • Davis JS (1993) Biological management for problem solving and biological concepts for a new generation of solar saltworks. In: Kakihana H, Hardy HR Jr, Hoshi T, Toyokura K (eds) Proceedings of the seventh symposium on salt, vol 1. Elsevier Science Publishers, Amsterdam, pp 611–616

    Google Scholar 

  • Davis JS, Giordano M (1996) Biological and physical events involved in the origin, effects, and control of organic matter in solar saltworks. Int J Salt Lake Res 4:335–347

    Article  Google Scholar 

  • De Medeiros Rocha R, Camara MR (1993) Prediction, monitoring and management of detrimental algal blooms on solar salt production in north-east Brazil. In: Seventh symposium on salt, vol 1. Elsevier Science Publishers, Amsterdam, pp 657–660

    Google Scholar 

  • De Philippis R, Margheri MC, Pelosi E, Ventura S (1993) Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. J Appl Phycol 5:387–394

    Article  Google Scholar 

  • De Philippis R, Margheri MC, Materassi R, Vincenzini M (1998) Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Appl Environ Microbiol 64:1130–1132

    PubMed  Google Scholar 

  • de Wit R, van Boekel WHM, van Gemerden H (1988) Growth of the cyanobacterium Microcoleus chthonoplastes on sulfide. FEMS Microbiol Ecol 53:203–209

    Article  Google Scholar 

  • de Wit R, Falcón LI, Carpy-Roubaud C (2005) Heterotrophic dinitrogen fixation (acetylene reduction) in phosphate-fertilised Microcoleus chthonoplastes microbial mat from the hypersaline inland lake ‘la Salada de Chiprana’ (NE Spain). Hydrobiologia 534:245–253

    Article  CAS  Google Scholar 

  • Des Marais DJ (1995) The biogeochemistry of hypersaline microbial mats. In: Jones JG (ed) Advances in microbial ecology, vol 14. Plenum Press, New York, pp 251–274, 416 pp

    Chapter  Google Scholar 

  • Dor I, Hornoff M (1985) Studies on Aphanothece halophytica Frémy from a solar pond: comparison of two isolates on the basis of cell polymorphism and growth response to salinity, temperature and light conditions. Bot Mar 28:389–398

    Article  Google Scholar 

  • Dubinin AV, Gerasimenko LM (1993) Dark anaerobic metabolism of halophilic cyanobacterium Microcoleus chthonoplastes. Mikrobiologiya (English translation) 62:391–394

    Google Scholar 

  • Dubinin AV, Gerasimenko LM, Gusev MV (1992a) Physiological features of a strain of Microcoleus chthonoplastes from a hypersaline reservoir. Mikrobiologiya (English translation) 61:47–51

    Google Scholar 

  • Dubinin AV, Zastrizhnaya OM, Gusev MV (1992b) Hydrogen peroxide production by the halophilic cyanobacterium Microcoleus chthonoplastes. Mikrobiologiya (English translation) 61:261–266

    Google Scholar 

  • Ehrlich A, Dor I (1985) Photosynthetic microorganisms of the Gavish sabkha. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems. The Gavish Sabkha. Springer, New York, pp 296–321, 484 pp

    Chapter  Google Scholar 

  • Erdmann N, Fulda S, Hagemann M (1992) Glucosylglycerol accumulation during salt acclimation of two unicellular cyanobacteria. J Gen Microbiol 138:363–368

    Article  CAS  Google Scholar 

  • Estrada M, Henriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49:281–293

    Article  PubMed  CAS  Google Scholar 

  • Felix EA, Rushforth SR (1979) The algal flora of the Great Salt Lake, Utah, U.S.A. Nova Hedwig 31:163–195

    Google Scholar 

  • Fourçans A, Solé A, Dienstra E, Ranchou-Peyruse A, Esteve I, Caumette P, Duran R (2006) Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France). FEMS Microbiol Ecol 57:367–377

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Hagemann M, Libbert E (1990) Release of glucosylglycerol from the cyanobacterium Synechocystis spec. SAG 92.79 by hypoosmotic shock. Arch Microbiol 153:405–408

    Article  CAS  Google Scholar 

  • Fulda S, Mikkat S, Schröder W, Hagemann M (1999) Isolation of salt-induced periplasmic proteins from Synechocystis sp. strain PCC 6803. Arch Microbiol 171:214–217

    Article  PubMed  CAS  Google Scholar 

  • Gabbay-Azaria R, Tel-Or E (1991) Regulation of intracellular Na+ content during NaCl upshock in the marine cyanobacterium Spirulina subsalsa cells. Biores Technol 38:215–220

    Article  CAS  Google Scholar 

  • Gabbay-Azaria R, Tel-Or E (1993) Mechanisms of salt tolerance in cyanobacteria. In: Gresshoff PM (ed) Plant responses to the environment. CRC Press, Boca Raton, pp 123–132, 208 pp

    Google Scholar 

  • Gabbay-Azaria R, Tel-Or E, Schonfeld M (1988) Glycinebetaine as an osmoregulant and compatible solute in the marine cyanobacterium Spirulina subsalsa. Arch Biochem Biophys 264:333–339

    Article  PubMed  CAS  Google Scholar 

  • Gabbay-Azaria R, Schonfeld M, Tel-Or S, Messinger R, Tel-Or E (1992) Respiratory activity in the marine cyanobacterium Spirulina subsalsa and its role in salt tolerance. Arch Microbiol 157:183–190

    CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169

    PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Prufert-Bebout L, Muyzer G (1996) Phenotypic and phylogenetic analysis show Microcoleus chthonoplastes to be a cosmopolitic cyanobacterium. Appl Environ Microbiol 62:3284–3291

    PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Nübel U, Muyzer G (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol 169:469–482

    Article  PubMed  CAS  Google Scholar 

  • Garlick S, Oren A, Padan E (1977) Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J Bacteriol 129:623–629

    PubMed  CAS  Google Scholar 

  • Gerasimenko LM, Mityushina LL, Namsaraev BB (2003) Microcoleus mats from alkaliphilic and halophilic communities. Mikrobiologiya (English translation) 72:71–79

    CAS  Google Scholar 

  • Gerdes G, Krumbein WE, Holtkamp S (1985) Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish sabkha. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems. The Gavish Sabkha. Springer, New York, pp 169–183, 484 pp

    Google Scholar 

  • Giani D, Seeler J, Giani L, Krumbein WE (1989) Microbial mats and physicochemistry in a saltern in the Bretagne (France) and in a laboratory scale saltern model. FEMS Microbiol Ecol 62:151–162

    Article  CAS  Google Scholar 

  • Giri BJ, Bano N, Hollibaugh JT (2004) Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California. Appl Environ Microbiol 70:3443–3448

    Article  PubMed  CAS  Google Scholar 

  • Goldman CR, Mason DT, Hobbie JE Jr (1967) Two Antarctic desert lakes. Limnol Oceanogr 12:295–310

    Article  Google Scholar 

  • Golubic S (1980) Halophily and halotolerance in cyanophytes. Orig Life 10:169–183

    Article  CAS  Google Scholar 

  • Green SJ, Blackford C, Bucki P, Jahnke LL (2008) A salinity and sulfate manipulation of hypersaline microbial mats reveals stasis in the cyanobacterial community structure. ISME J 2:457–470

    Article  PubMed  CAS  Google Scholar 

  • Grimalt JO, de Wit R, Teixidor P, Albaiges J (1992) Lipid biogeochemistry of Phormidium and Microcoleus mats. Org Geochem 19:509–530

    Article  CAS  Google Scholar 

  • Hagemann M (2010) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35(1):87–123. doi:10.1111/j.1574-6976.2010.000234.x

    Article  CAS  Google Scholar 

  • Hagemann M, Erdmann N (1994) Activation and pathway of glucosylglycerol synthesis in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 140:1427–1431

    Article  CAS  Google Scholar 

  • Hagemann M, Zuther E (1992) Selection and characterization of mutants of the cyanobacterium Synechocystis sp. PCC 6803 unable to tolerate high salt concentrations. Arch Microbiol 158:429–434

    Article  CAS  Google Scholar 

  • Hagemann M, Wölfel L, Krüger B (1990) Alterations of protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803 after a salt shock. J Gen Microbiol 136:1393–1399

    Article  CAS  Google Scholar 

  • Hagemann M, Techel D, Rensing L (1991) Comparison of salt- and heat-induced alterations of protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 155:587–592

    Article  CAS  Google Scholar 

  • Hagemann M, Fulda S, Schubert H (1994) DNA, RNA, and protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803 adapted to different salt concentrations. Curr Microbiol 28:201–207

    Article  CAS  Google Scholar 

  • Hagemann M, Richter S, Zuther E, Schoor A (1996) Characterization of a glucosylglycerol-phosphate-accumulating, salt sensitive mutant of the cyanobacterium Synechocystis sp. strain PCC 6803. Arch Microbiol 166:83–91

    Article  PubMed  CAS  Google Scholar 

  • Hagemann M, Richter S, Mikkat (1997a) The ggtA gene encodes a subunit of the transport system for the osmoprotective compound glucosylglycerol in Synechocystis sp. strain PCC 6803. Arch Microbiol 166:83–91

    Article  Google Scholar 

  • Hagemann M, Schoor A, Jeanjean R, Zuther E, Joset F (1997b) The stpA gene from Synechocystis sp. strain PCC 6803 encodes the glucosylglycerol-phosphate phosphatase involved in cyanobacterial osmotic response to salt shock. J Bacteriol 179:1727–1733

    PubMed  CAS  Google Scholar 

  • Hagemann M, Schoor A, Mikkat S, Effmert U, Zuther E, Marin K, Fulda S, Vinnemeyer J, Kunert A, Milkowski C, Probst C, Erdmann N (1998) The biochemistry and genetics of the synthesis of osmoprotective compounds in cyanobacteria. In: Oren A (ed) Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton, pp 177–186, 359 pp

    Google Scholar 

  • Hagemann M, Schoor A, Effmert U, Zuther E, Marin K, Erdmann N (1999) The biochemistry and genetics of the glucosylglycerol synthesis in Synechocystis sp. PCC 6803. In: Peschek GA, Löffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Kluwer Academic/Plenum Publishers, New York, pp 583–587, 836 pp

    Chapter  Google Scholar 

  • Hof T, Frémy P (1933) On Myxophyceae living in strong brines. Rec Trav Bot Néerl 30:140–162

    Google Scholar 

  • Imhoff JF, Sahl HG, Soliman GSH, Trüper HG (1979) The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1:219–234

    Article  CAS  Google Scholar 

  • Incharoensakdi A, Karnchanatat A (2003) Salt stress enhances choline uptake in the halotolerant cyanobacterium Aphanothece halophy­tica. Biochim Biophys Acta 1621:102–109

    Article  PubMed  CAS  Google Scholar 

  • Incharoensakdi A, Kitjaharn P (2002) Zinc biosorption from aqueous solution by a halotolerant cyanobacterium Aphanothece halophy­tica. Curr Microbiol 45:261–264

    Article  PubMed  CAS  Google Scholar 

  • Incharoensakdi A, Laloknam S (2005) Nitrate uptake in the halotolerant cyanobacterium Aphanothece halophytica is energy-dependent driven by ΔpH. J Biochem Mol Biol 38:468–473

    Article  PubMed  CAS  Google Scholar 

  • Incharoensakdi A, Takabe T (1988) Determination of intracellular chloride ion concentration in a halotolerant cyanobacterium Aphanothece halophytica. Plant Cell Physiol 29:1073–1075

    CAS  Google Scholar 

  • Incharoensakdi A, Waditee R (2000) Degradation of glycinebetaine by betaine-homocysteine methyltransferase in Aphanothece halophy­tica: effect of salt downshock and starvation. Curr Microbiol 41:227–231

    Article  PubMed  CAS  Google Scholar 

  • Incharoensakdi A, Takabe T, Akazawa T (1986) Effect of betaine on enzyme activity and subunit interaction of ribulose-1,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica. Plant Physiol 81:1044–1049

    Article  PubMed  CAS  Google Scholar 

  • Ionescu D, Lipski A, Altendorf K, Oren A (2007) Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis. Hydrobiologia 576:15–26

    Article  CAS  Google Scholar 

  • Ishitani M, Takabe T, Kojima K, Takabe T (1993) Regulation of glycinebetaine accumulation in the halotolerant cyanobacterium Aphanothece halophytica. Aust J Plant Physiol 20:693–703

    Article  CAS  Google Scholar 

  • Jahnke LL, Lee B, Sweeney MJ, Klein HP (1989) Anaerobic biosynthesis of unsaturated fatty acids in the cyanobacterium, Oscillatoria limnetica. Arch Microbiol 152:215–217

    Article  PubMed  CAS  Google Scholar 

  • Javor B (1989) Hypersaline environments. Microbiology and biogeochemistry. Springer, Berlin, p 328

    Google Scholar 

  • Javor BJ (2002) Industrial microbiology of solar salt production. J Ind Microbiol Biotechnol 28:42–47

    PubMed  CAS  Google Scholar 

  • Jones JH, Yopp JH (1979) Cell wall constituents of Aphanothece halophytica (Cyanophyta). J Phycol 15:62–66

    Article  CAS  Google Scholar 

  • Jones AG, Ewing CM, Melvin MV (1981) Biotechnology of solar saltfields. Hydrobiologia 82:391–406

    Article  Google Scholar 

  • Jonkers HM, Ludwig R, de Wit R, Pringault O, Muyzer G, Niemann H, Finke N, de Beer D (2003) Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’ (NE Spain). FEMS Microbiol Ecol 44:175–189

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen BB, Kuenen JG, Cohen Y (1979) Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol Oceanogr 24:799–822

    Article  Google Scholar 

  • Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnol Oceanogr 28:1075–1093

    Article  Google Scholar 

  • Jørgensen BB, Cohen Y, Revsbech NP (1986) Transition from anoxygenic to oxygenic photosynthesis in a Microcoleus chthonoplastes cyanobacterial mat. Appl Environ Microbiol 51:408–417

    PubMed  Google Scholar 

  • Joset P, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering of molecular events. Physiol Plant 96:738–744

    Article  CAS  Google Scholar 

  • Kao OHW, Berns DS, Town WR (1973) The characterization of C-phycocyanin from an extremely halo-tolerant blue-green alga, Coccochloris elabens. Biochem J 131:39–50

    PubMed  CAS  Google Scholar 

  • Karsten U (1996) Growth and organic osmolytes of geographically different isolates of Microcoleus chthonoplastes (Cyanobacteria) from benthic microbial mats: response to salinity change. Phycology 32:501–506

    Article  CAS  Google Scholar 

  • Karsten U, Garcia-Pichel F (1996) Carotenoids and mycosporine-like amino acid compounds in members of the genus Microcoleus (Cyanobacteria): a chemosystematic study. Syst Appl Microbiol 19:285–294

    Article  Google Scholar 

  • Kedar L, Kashman Y, Oren A (2002) Mycosporine-2-glycine is the major mycosporine-like amino acid in a unicellular cyanobacterium (Euhalothece sp.) isolated from a gypsum crust in a hypersaline saltern pond. FEMS Microbiol Lett 208:233–237

    Article  PubMed  CAS  Google Scholar 

  • Kevbrin VV, Dubinin AV, Osipov GA (1991) Osmoregulation in the marine cyanobacterium Microcoleus chthonoplastes. Mikrobiologiya (English translation) 60:407–410

    Google Scholar 

  • Kirkwood AE, Buchheim JA, Buchheim MA, Henley WJ (2008) Cyanobacterial diversity and halotolerance in a variable hypersaline environment. Microb Ecol 55:453–465

    Article  PubMed  Google Scholar 

  • Kohls K, Abed RMM, Polerecky L, Weber M, de Beer D (2010) Halotaxis of cyanobacteria in an intertidal hypersaline microbial mat. Environ Microbiol 12:567–575

    Article  PubMed  CAS  Google Scholar 

  • Komárek J (1976) The taxonomic review of the genera Synechocystis Sauv. 1892, Synechococcus Näg. 1849, and Cyanothece gen. nov. (Cyanophyceae). Arch Protistenkd 118:119–179

    Google Scholar 

  • Komárek J, Anagnostidis K (1995) Nomenclatural novelties in chroococcalean cyanoprokaryotes. Preslia 67:15–23

    Google Scholar 

  • Komárek J, Cepák V (1998) Cytomorphological characters supporting the taxonomic validity of Cyanothece (Cyanoprokaryota). Plant Syst Evol 210:25–39

    Article  Google Scholar 

  • Komárek J, Cepák V, KaÅ¡tovský J, Sulek J (2004) What are the cyanobacterial genera Cyanothece and Cyanobacterium? Contribution to the combined molecular and phenotype taxonomic evaluation of cyanobacterial diversity. Arch Hydrobiol Suppl 153:1–36

    Google Scholar 

  • Krumbein WE, Cohen Y, Shilo M (1977) Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnol Oceanogr 22:635–656

    Article  CAS  Google Scholar 

  • Laloknam S, Tanaka K, Buaboocha T, Waditee R, Incharoensakdi A, Hibino T, Tanaka Y, Takabe T (2006) Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity. Appl Environ Microbiol 72:6018–6026

    Article  PubMed  CAS  Google Scholar 

  • Lee BH, Hibino T, Jo J, Viale AM, Takabe T (1997) Isolation and characterization of a dnaK genomic locus in a halotolerant cyanobacterium Aphanothece halophytica. Plant Mol Biol 35:763–775

    Article  PubMed  CAS  Google Scholar 

  • Li P, Liu Z, Xu R (2001) Chemical characterization of the released polysaccharide from the cyanobacterium Aphanothece halophytica. J Appl Phycol 13:71–77

    Article  Google Scholar 

  • Lu W-D, Chi Z-M, Su C-D (2006) Identification of glycine betaine as compatible solute in Synechococcus sp. WH8102 and characterization of its N-methyltransferase genes involved in betaine synthesis. Arch Microbiol 186:495–506

    Article  PubMed  CAS  Google Scholar 

  • Mackay MA, Norton RS (1987) 13C nuclear magnetic resonance study of biosynthesis of glucosylglycerol by a cyanobacterium under osmotic stress. J Gen Microbiol 133:1535–1542

    CAS  Google Scholar 

  • Mackay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191

    CAS  Google Scholar 

  • Mancinelli RL, White MR, Rothschild LJ (1998) Biopan-survival I: exposure of the osmophiles Synechococcus sp. (Nägeli) and Haloarcula sp. to the space environment. Adv Space Res 22:327–334

    Article  CAS  Google Scholar 

  • Marcarelli AM, Wurtsbaugh WA, Griset O (2006) Salinity controls phytoplankton response to nutrient enrichment in the Great Salt Lake, Utah, USA. Can J Fish Aquat Sci 63:2236–2248

    Article  CAS  Google Scholar 

  • Margheri MC, Tredici MR, Barsanti L, Balloni W (1987) The photosynthetic community of the Trapani saline lagoons: an alternative option for the exploitation of an extreme environment. Ann Microbiol 37:203–215

    CAS  Google Scholar 

  • Margheri MC, Bosco M, Giovannetti L, Ventura S (1999) Assessment of the genetic diversity of halotolerant coccoid cyanobacteria using amplified 16S rDNA restriction analysis. FEMS Microbiol Lett 173:9–16

    Article  CAS  Google Scholar 

  • Margheri MC, Ventura S, KaÅ¡tovský J, Komárek J (2008) The taxonomic validation of the cyanobacterial genus Halothece. Phycologia 47:477–486

    Article  Google Scholar 

  • Matsunaga T, Sudo H, Takemasa H, Wachi Y, Nakamura N (1996) Sulfated extracellular polysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytica immobilized on light-diffusing optical fibers. Appl Microbiol Biotechnol 45:24–27

    Article  CAS  Google Scholar 

  • Mikhoudyuk OS, Zavarzin GA, Ivanovsky RN (2008) Transport systems for carbonate in the extremely natronophilic cyanobacterium Euhalothece sp. Mikrobiologiya (English translation) 77:412–418

    Google Scholar 

  • Mikkat S, Hagemann M, Schoor A (1996) Active transport of glucosylglycerol is involved in salt adaptation of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology 142:1725–1732

    Article  PubMed  CAS  Google Scholar 

  • Mikkat S, Effmert U, Hagemann M (1997) Uptake and use of the osmoprotective compounds trehalose, glucosylglycerol, and sucrose by the cyanobacterium Synechococcus sp. PCC 6803. Arch Microbiol 167:112–118

    Article  CAS  Google Scholar 

  • Miller DM, Jones JH, Yopp JH, Tindall RD, Schmid WE (1976) Ion metabolism in a halophilic blue-green alga, Aphanothece halophytica. Arch Microbiol 111:145–149

    Article  PubMed  CAS  Google Scholar 

  • Moezelaar R, Bijvank SM, Stal LJ (1996) Fermentation and sulfur reduction in the mat building cyanobacterium Microcoleus chthonoplastes. Appl Environ Microbiol 62:1752–1758

    PubMed  CAS  Google Scholar 

  • Mohammad FAA, Reed RH, Stewart WDP (1983) The halophilic cyanobacterium Synechocystis DUN52 and its osmotic responses. FEMS Microbiol Lett 16:287–290

    Article  CAS  Google Scholar 

  • Moore DJ, Reed RH, Stewart WDP (1987) A glycine betaine transport system in Aphanothece halophytica and other glycine betaine-synthesising cyanobacteria. Arch Microbiol 147:399–405

    Article  CAS  Google Scholar 

  • Morris GA, Li P, Puaud M, Liu Z, Mitchell JR, Harding SE (2001) Hydrodynamic characterization of the exopolysaccharide from the halophilic cyanobacterium Aphanothece halophytica GR02: a comparison with xanthan. Carbohydr Res 44:261–268

    CAS  Google Scholar 

  • Nagasathya A, Thajuddin N (2008) Cyanobacterial diversity in the hypersaline environment of the saltpans of southeastern coast of India. Asian J Plant Sci 7:473–478

    Article  Google Scholar 

  • Nübel U, Garcia-Pichel F, Kühl M, Muyzer G (1999) Spatial scale and the diversity of benthic cyanobacteria and diatoms in a salina. Hydrobiologia 401:199–206

    Article  Google Scholar 

  • Nübel U, Garcia-Pichel F, Clavero E, Muyzer G (2000a) Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ Microbiol 2:217–226

    Article  PubMed  Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (2000b) The halotolerance and phylogeny of cyanobacteria with tightly coiled trichomes (Spirulina Turpin) and the description of Halospirulina tapeticola gen. nov., sp. nov. Int J Syst Evol Microbiol 50:1265–1277

    Article  PubMed  Google Scholar 

  • Ono K, Hibino T, Kohinata T, Suzuki S, Tanaka Y, Nakamura T, Takabe T, Takabe T (2001) Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperature tolerance of tobacco during germination and early growth. Plant Sci 160:455–461

    Article  PubMed  CAS  Google Scholar 

  • Oren A (1988) The microbial ecology of the Dead Sea. In: Marshall KC (ed) Advances in microbial ecology, vol 10. Plenum Press, New York, pp 193–229, 447 pp

    Chapter  Google Scholar 

  • Oren A (1989) Photosynthetic and heterotrophic benthic bacterial communities of a hypersaline sulfur spring on the shore of the Dead Sea (Hamei Mazor). In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 64–76, 499 pp

    Google Scholar 

  • Oren A (1997) Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol J 14:233–242

    Article  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Springer, Dordrecht, p 575

    Book  Google Scholar 

  • Oren A (2005) Microscopic examination of microbial communities along a salinity gradient in saltern evaporation ponds: a ‘halophilic safari’. In: Gunde-Cimerman N, Oren A, PlemenitaÅ¡ A (eds) Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Dordrecht, pp 41–57, 573 pp

    Chapter  Google Scholar 

  • Oren A (2006) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 2. Springer, New York, pp 263–282, 1107 pp

    Google Scholar 

  • Oren A (2007) Diversity of organic osmotic compounds and osmotic adaptation in cyanobacteria and algae. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 641–655, 811 pp

    Google Scholar 

  • Oren A (2009a) Problems associated with the taxonomic validation of the cyanobacterial genus Halothece (Margheri et al 2008, Phycologia 47:477–486). Phycologia 48:313–314

    Google Scholar 

  • Oren A (2009b) Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquat Microb Ecol 56:193–204

    Article  Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Padan E (1978) Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica. J Bacteriol 133:558–563

    PubMed  CAS  Google Scholar 

  • Oren A, Seckbach J (2001) Oxygenic photosynthetic microorganisms in extreme environments. In: Elster J, Seckbach J, Vincent W, Lhotsky O (eds) Algae and extreme environments – ecology and physiology. Nova Hedwigia Beih 123:13–31

    Google Scholar 

  • Oren A, Shilo M (1979) Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Arch Microbiol 122:77–84

    Article  CAS  Google Scholar 

  • Oren A, Tindall BJ (2005) Nomenclature of the cyanophyta/cyanobacteria/cyanoprokaryotes under the International Code of Nomenclature of Prokaryotes. Algol Stud 117; Arch Hydrobiol Suppl 159:39–52

    Google Scholar 

  • Oren A, Padan E, Avron M (1977) Quantum yields for oxygenic and anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Proc Natl Acad Sci USA 74:2152–2156

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Padan E, Malkin S (1979) Sulfide inhibition of photosystem I in cyanobacteria (blue-green algae) and tobacco chloroplasts. Biochim Biophys Acta 546:270–279

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Fattom A, Padan E, Tietz A (1985) Unsaturated fatty acid composition and biosynthesis in Oscillatoria limnetica and other cyanobacteria. Arch Microbiol 141:138–142

    Article  CAS  Google Scholar 

  • Oren A, Fischel U, Aizenshtat Z, Krein EB, Reed RH (1994) Osmotic adaptation of microbial communities in hypersaline mats. In: Stal LJ, Caumette P (eds) Microbial mats structure, development and environmental significance. Springer, Berlin, pp 125–130, 463 pp

    Google Scholar 

  • Oren A, Kühl M, Karsten U (1995) An endevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar Ecol Prog Ser 128:151–159

    Article  Google Scholar 

  • Oren A, Sørensen KB, Canfield DE, Teske AP, Ionescu D, Lipski A, Altendorf K (2009) Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626:15–26

    Article  CAS  Google Scholar 

  • Ortí Cabo F, Pueyo Mur JJ, Truc G (1984) Las salinas marítimas de Santa Pola (Alicante, España). Breve introducción al studio de un medio natural controlado de sedimentación evaporítica somera. Rev Inv Geol 38(39):9–29

    Google Scholar 

  • Padan E (1979a) Facultative anoxygenic photosynthesis in cyanobacteria. Annu Rev Plant Physiol 30:27–40

    Article  CAS  Google Scholar 

  • Padan E (1979b) Impact of facultatively anaerobic photoautotrophic metabolism on ecology of cyanobacteria (blue-green algae). In: Alexander M (ed) Advances in microbial ecology, vol 3. Plenum Publishing Corporation, New York, pp 1–48, 225 pp

    Chapter  Google Scholar 

  • Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2:11–26

    Article  PubMed  CAS  Google Scholar 

  • Paerl HW, Steppe TF, Buchan KC, Potts M (2003) Hypersaline cyanobacterial mats as indicators of elevated tropical hurricane activity and associated climate change. Ambio 32:87–90

    PubMed  Google Scholar 

  • Pinckney JL, Paerl HW (1997) Anoxygenic photosynthesis and nitrogen fixation by a microbial mat in a Bahamian hypersaline lagoon. Appl Environ Microbiol 63:420–426

    PubMed  CAS  Google Scholar 

  • Post FJ (1977) The microbial ecology of the Great Salt Lake. Microb Ecol 3:143–165

    Article  CAS  Google Scholar 

  • Post FJ (1981) Microbiology of the Great Salt Lake north arm. Hydrobiologia 81:59–69

    Article  Google Scholar 

  • Potts M (1980) Blue-green algae (Cyanophyta) in marine coastal environments of the Sinai Peninsula; distribution, zonation, stratification and taxonomic diversity. Phycologia 19:60–73

    Article  Google Scholar 

  • Prášil O, Bina D, Medová H, Řeháková K, ZapomÄ›lová E, Veselá J, Oren A (2009) Emission spectroscopy and kinetic fluorimetry studies of the phototrophic microbial communities along the salinity gradient in the solar saltern evaporation ponds of Eilat, Israel. Aquat Microb Ecol 56:285–296

    Article  Google Scholar 

  • Rahaman AA, Ambikadevi M, Sosamma-Esso (1993) Biological management of Indian solar saltworks. In: Kakihana H, Hardy HR Jr, Hoshi T, Toyokura K (eds) Proceedings of the seventh symposium on salt, vol 1. Elsevier Science Publishers, Amsterdam, pp 633–643

    Google Scholar 

  • Reed RH, Chudek JA, Foster R, Stewart WDP (1984a) Osmotic adjustment in cyanobacteria from hypersaline environments. Arch Microbiol 138:333–337

    Article  CAS  Google Scholar 

  • Reed RH, Richardson DL, Warr SRC, Stewart WDP (1984b) Carbohydrate accumulation and osmotic stress in cyanobacteria. J Gen Microbiol 130:1–4

    CAS  Google Scholar 

  • Reed RH, Warr SRC, Richardson DL, Moore DJ, Stewart WDP (1985) Multiphasic osmotic adjustment in a euryhaline cyanobacterium. FEMS Microbiol Lett 28:225–229

    Article  CAS  Google Scholar 

  • Reed RH, Warr SRC, Kerby NW, Stewart WDP (1986) Osmotic shock-induced release of low molecular weight metabolites from free-living and immobilised cyanobacteria. Enzyme Microb Technol 8:101–104

    Article  CAS  Google Scholar 

  • Revsbech NP, Jørgensen BB, Blackburn TH, Cohen Y (1985) Microelectrode studies of photosynthesis and O2, H2S, and pH profiles of a microbial mat. Limnol Oceanogr 28:1062–1074

    Article  Google Scholar 

  • Richardson DL, Reed RH, Stewart WDP (1983) Synechocystis PCC6803: a euryhaline cyanobacterium. FEMS Microbiol Lett 18:99–102

    Article  CAS  Google Scholar 

  • Ritter D, Yopp JH (1993) Plasma membrane lipid composition of the halophilic cyanobacterium Aphanothece halophytica. Arch Microbiol 159:435–439

    Article  CAS  Google Scholar 

  • Roney HC, Booth GM, Cox PA (2009) Competitive exclusion of cyanobacterial species in the Great Salt Lake. Extremophiles 13:355–361

    Article  PubMed  Google Scholar 

  • Rontani J-F, Volkman JK (2005) Lipid characterization of coastal hypersaline cyanobacterial mats from the Camargue (France). Org Geochem 36:251–272

    Article  CAS  Google Scholar 

  • Rothschild LJ, Giver LJ, White MR, Mancinelli RL (1994) Metabolic activity of microorganisms in evaporites. J Phycol 30:431–438

    Article  PubMed  CAS  Google Scholar 

  • Roussomoustakaki M, Anagnostidis K (1991) Cyanothece halobia, a new planktic chroococcalean cyanophyta from hellenic heliothermal saltworks. Arch Hydrobiol 64:71–95

    Google Scholar 

  • Roux JM (1996) Production of polysaccharide slime by microbial mats in the hypersaline environment of a Western Australian solar saltfield. Int J Salt Lake Res 5:103–130

    Article  Google Scholar 

  • Rushforth SR, Felix EA (1982) Biotic adjustments to changing salinities in the Great Salt Lake, Utah, USA. Microb Ecol 8:157–161

    Article  Google Scholar 

  • Sammy N (1983) Biological systems in north-western Australian solar saltfields. In: Sixth international symposium on salt, vol 1. The Salt Institute, Alexandria, pp 207–215

    Google Scholar 

  • Schneider J, Herrmann AG (1980) Saltworks – natural laboratories for microbiological and geochemical investigations during the evaporation of seawater. In: Fifth international symposium on salt. Northern Ohio Geological Society, Cleveland, pp 371–381

    Google Scholar 

  • Schoor A, Hagemann M, Erdmann N (1996) Non-radiometric assay for glucosylglycerol-synthesizing enzymes involved in the cyanobacterial salt adaptation. J Microbiol Method 27:139–145

    Article  CAS  Google Scholar 

  • Schoor A, Hagemann M, Erdmann N (1999) Glucosylglycerol-phosphate synthase: target for ion-mediated regulation of osmolyte synthesis in the cyanobacterium Synechocystis sp. strain PCC 6803. Arch Microbiol 171:101–106

    Article  PubMed  CAS  Google Scholar 

  • Seckbach J, Oren A (2007) Oxygenic photosynthetic microorganisms in extreme environments. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 2–25, 811 pp

    Chapter  Google Scholar 

  • Shabana EF, Ali GH (1999) Phytoplankton activities in hypersaline, anoxic conditions II Photosynthetic activity of some sulphide-adapted cyanobacterial strains isolated from Solar Lake, Taba, Egypt. Water Sci Technol 40(7):127–132

    Article  CAS  Google Scholar 

  • Shahak Y, Arieli B, Binder B, Padan E (1987) Sulfide-dependent photosynthetic electron flow to proton translocation in thylakoids of the cyanobacterium Oscillatoria limnetica. Arch Biochem Biophys 259:605–615

    Article  PubMed  CAS  Google Scholar 

  • Siegel BZ, McMurty G, Siegel SM, Chen J, LaRock P (1979) Life in the calcium chloride environment of Don Juan Pond, Antarctica. Nature 280:828–829

    Article  Google Scholar 

  • Siegesmund MA, Johansen JR, Karsten U, Friedl T (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585

    Article  Google Scholar 

  • Simon RD (1981) Gliding motility in Aphanothece halophytica: analysis of wall proteins in mot mutants. J Bacteriol 148:315–321

    PubMed  CAS  Google Scholar 

  • Sørensen KB, Canfield DE, Oren A (2004) Salt responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl Environ Microbiol 70:1608–1616

    Article  PubMed  CAS  Google Scholar 

  • Sørensen K, Řeháková K, ZapomÄ›lová E, Oren A (2009) Distribution of benthic phototrophs, sulfate reducers, and methanogens in two adjacent salt ponds in Eilat, Israel. Aquat Microb Ecol 56:275–284

    Article  Google Scholar 

  • Steppe TF, Olson JB, Paerl HW, Litaker RW, Belnap J (1996) Consortial N2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiol Ecol 21:149–156

    Article  CAS  Google Scholar 

  • Stolz JF (1990) Distribution of phototrophic microbes in the flat laminated microbial mat at Laguna Figueroa, Baja California, Mexico. Biosystems 23:345–357

    Article  PubMed  CAS  Google Scholar 

  • Sudo H, Burgess JG, Takemasa H, Nakamura N, Matsunaga T (1995) Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytica. Curr Microbiol 30:219–222

    Article  CAS  Google Scholar 

  • Sugino M, Hibino T, Tanaka Y, Nii N, Takabe T, Takabe T (1999) Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants. Plant Sci 137:81–88

    Article  Google Scholar 

  • Taher AG, Abd el Wahab S, Philip G, Krumbein WE, Wali AM (1995) Evaporitic sedimentation and microbial mats in a salina system (Port Fouad, Egypt). Int J Salt Lake Res 4:95–116

    Article  Google Scholar 

  • Takabe T, Incharoensakdi A, Arakawa K, Yokota S (1988) CO2 fixation rate and RuBisCO content increase in the halotolerant cyanobacterium, Aphanothece halophytica, grown in high salinities. Plant Physiol 88:1120–1124

    Article  PubMed  CAS  Google Scholar 

  • Takabe T, Uchida F, Shinagawa F, Terada Y, Kajita H, Tanaka Y, Takabe T, Hayashi T, Kawai T, Takabe T (2008) Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances growth rate as well as abiotic stress tolerance of poplar plants. Plant Growth Regul 56:265–273

    Article  CAS  Google Scholar 

  • Tel-Or E, Spath S, Packer L, Mehlhorn RJ (1986) Carbon-13 NMR studies of salt shock induced carbohydrate turnover in the marine cyanobacterium Agmenellum quadruplicatum. Plant Physiol 82:646–652

    Article  PubMed  CAS  Google Scholar 

  • Thomas J-C (1984) Formations benthiques à Cyanobactéries des salins de Santa Pola (Espagne): composition spécifique, morphologie et caractéristiques biologiques des principaux peuplements. Rev Inv Geol 38(39):139–158

    Google Scholar 

  • Tindall DR, Yopp JH, Miller DM, Schmid WE (1978) Physico-chemical parameters governing the growth of Aphanothece halophytica (Chroococcales) in hypersaline media. Phycologia 17:179–185

    Article  CAS  Google Scholar 

  • Uchida A, Hibino T, Shimada T, Saigusa M, Takabe T, Araki E, Kajita H, Takabe T (2008) Overexpression of DnaK chaperone from a halotolerant cyanobacterium Aphanothece halophytica increases seed yield in rice and tobacco. Plant Biotechnol 25:141–150

    Article  CAS  Google Scholar 

  • van Rijn J, Cohen Y (1983) Ecophysiology of the cyanobacterium Dactylococcopsis salina: effect of light intensity, sulphide and temperature. J Gen Microbiol 129:1849–1856

    Google Scholar 

  • Volcani, BE (1944) The microorganisms of the Dead Sea. In: Papers collected to commemorate the 70th anniversary of Dr. Chaim Weizmann. Collective volume. Daniel Sieff Research Institute, Rehovoth, pp 71–85

    Google Scholar 

  • Volkmann M, Gorbushina AA, Kedar L, Oren A (2006) The structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, from a halophilic cyanobacterium (Euhalothece sp.). FEMS Microbiol Lett 258:50–54

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Incharoensakdi A (2001) Purification and kinetic properties of betaine-homocysteine methyltransferase from Aphanothece halophytica. Curr Microbiol 43:107–111

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Takabe T (2001) Halotolerant cyanobacterium Aphanothece halophytica contains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J Biol Chem 276:36931–36938

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Tanaka Y, Aoki K, Hibino T, Jikuya H, Tanano J, Takabe T, Takabe T (2003) Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J Biol Chem 278:4932–4942

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Bhuiyan NH, Hirata E, Hibino T, Tanaka Y, Shikata M, Takabe T (2007) Metabolic engineering for betaine accumulation in microbes and plants. J Biol Chem 282:34185–34193

    Article  PubMed  CAS  Google Scholar 

  • Walsby AE, van Rijn J, Cohen Y (1983) The biology of a new gas-vacuolate cyanobacterium, Dactylococcopsis salina sp. nov., in Solar Lake. Proc R Soc Lond B 217:417–447

    Article  Google Scholar 

  • Warr SRC, Reed RH, Stewart WDP (1984) Osmotic adjustment of cyanobacteria: the effects of NaCl, KCl, sucrose and glycine betaine on glutamine synthetase activity in a marine and a halotolerant strain. J Gen Microbiol 130:2169–2175

    CAS  Google Scholar 

  • Warr SRC, Reed RH, Chudek JA, Foster R, Stewart WDP (1985) Osmotic adjustment in Spirulina platensis. Planta 163:424–429

    Article  CAS  Google Scholar 

  • Wharton RA Jr, Parker BC, Simmons GM Jr (1983) Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22:355–365

    Article  Google Scholar 

  • Whitehead PR, Brown NL (1982) AhaIII: a restriction endonuclease with a recognition sequence coding only A:T basepairs. FEBS Lett 143:296–300

    Article  PubMed  CAS  Google Scholar 

  • Whitehead PR, Brown NL (1985) A simple and rapid method for screening bacteria for type II restriction endonucleases – enzymes in Aphanothece halophytica. Arch Microbiol 141:70–74

    Article  PubMed  CAS  Google Scholar 

  • Wiangnon K, Raksajit W, Incharoensakdi A (2007) Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica. FEMS Microbiol Lett 270:139–145

    Article  PubMed  CAS  Google Scholar 

  • Wieland A, Kühl M (2000) Short-term temperature effects on oxygen and sulfide cycling in a hypersaline cyanobacterial mat (Solar Lake, Egypt). Mar Ecol Prog Ser 196:87–102

    Article  CAS  Google Scholar 

  • Wieland A, Kühl M (2006) Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity. FEMS Microbiol Ecol 55:195–210

    Article  PubMed  CAS  Google Scholar 

  • Woelfel J, Sørensen K, Warkentin M, Forster S, Oren A, Schumann R (2009) Oxygen evolution in a hypersaline crust: photosynthesis quantification by in situ microelectrode profiling and planar optodes in incubation chambers. Aquat Microb Ecol 56:263–273

    Article  Google Scholar 

  • Wright SW, Burton HR (1981) The biology of Antarctic saline lakes. Hydrobiologia 82:319–338

    Article  Google Scholar 

  • Wutipraditkul N, Waditee R, Incharoensakdi A, Hibino T, Tanaka Y, Nakamura T, Shikata M, Takabe T, Takabe Y (2005) Halotolerant cyanobacterium Aphanothece halophytica contains NapA-type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH. Appl Environ Microbiol 71:4176–4184

    Article  PubMed  CAS  Google Scholar 

  • Yannarell AC, Steppe TF, Paerl HW (2000) Genetic variance in the composition of two functional groups (diazotrophs and cyanobacteria) from a hypersaline microbial mat. Appl Environ Microbiol 72:1207–1217

    Article  CAS  Google Scholar 

  • Yopp JH, Tindall DR, Miller DM, Schmid WE (1978a) Isolation, purification and evidence for a halophilic nature of the blue-green alga Aphanothece halophytica Frémy (Chroococcales). Phycologia 17:172–178

    Article  CAS  Google Scholar 

  • Yopp JH, Miller DM, Tindall DR (1978b) Regulation of intracellular water potential in the halophilic blue-green alga Aphanothece halophytica (Chroococcales). In: Caplan SR, Ginzburg M (eds) Energetics and structure of halophilic microorganisms. Elsevier/North Holland, Amsterdam, pp 619–624, 672 pp

    Google Scholar 

  • Yopp JH, Albright G, Miller DM (1979) Effects of antibiotics and ultraviolet radiation on the halophilic blue-green alga, Aphanothece halophytica. Bot Mar 22:267–272

    Article  CAS  Google Scholar 

  • Zavarzin GA, Gerasimenko LM, Zhilina TN (1993) Cyanobacterial communities in hypersaline lagoons of Lake Sivash. Mikrobiologiya (English translation) 62:645–652

    Google Scholar 

  • Zheng W, Chen C, Cheng Q, Wang Y, Chu C (2006) Oral administration of exopolysaccharide from Aphanothece halophytica (Chroococcales) significantly inhibits influenza virus (H1N1)-induced pneumonia in mice. Int Immunopharmacol 6:1093–1099

    Article  PubMed  CAS  Google Scholar 

  • Zvyagintseva IS, Gerasimenko LM, Kostrikina NA, Bulygina ES, Zavarzin GA (1995) Interaction of halobacteria and cyanobacteria in a halophilic cyanobacterial community. Mikrobiologiya (English translation) 64:252–258

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Israel Science Foundation (grant no. 1103/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Oren, A. (2012). Salts and Brines. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_15

Download citation

Publish with us

Policies and ethics