Semi-arid Regions and Deserts

  • Chunxiang HuEmail author
  • Kunshan Gao
  • Brian A. Whitton


Phototrophic microorganisms are mostly endolithic or hypolithic in the more extreme arid environments and are here restricted to situations where sufficient moisture is retained for occasional growth to occur. Slightly less extreme environments frequently have biological soil crusts. In both cases cyanobacteria are the phototrophs most likely to be found and in some cases the only ones. In most cases of crust development Microcoleus vaginatus is one of the first cyanobacteria to occur. The crusts play an important role in maintaining soil and sand surfaces in arid regions, so it is important to understand how environmental factors influence communities at a site. In addition to light, water, temperature, salinity, nutrients, and carbon dioxide, these include wind action and physical and chemical features of the underlying substratum. Experimental studies have confirmed that some species, such as the semi-desert Nostoc flagelliforme, are extremely resistant to damage by high light and UV levels. N. flagelliforme and at least some other species require a regular cycle of hydration and dehydration. Cyanobacterial extracellular polysaccharide not only helps cells to withstand desiccation, but aids the development of crust and soil structure. Understanding of crust structure and succession has proved important in planning reclamation programmes in semi-arid regions of China using cyanobacterial inocula. Details of the procedure are described, which sometimes includes techniques to minimize the effects of wind, such as the use a checker-board arrangement of protective straw to prevent the inocula from being blown away. Reclamation of semi-arid regions in other parts of the world will require similar understanding of the ecology of the cyanobacteria involved.


Terminal Restriction Fragment Length Polymorphism Soil Crust Biological Soil Crust Tengger Desert Algal Crust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acea MJ, Prieto-Fernández A, Diz-Cid N (2003) Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biol Biochem 35:513–524CrossRefGoogle Scholar
  2. Agrawal SC, Pal U (2003) Viability of dried vegetative cells or filaments, survivability and/or reproduction under water and light stress, and following heat and UV exposure in some blue-green and green algae. Folia Microbiol 48:501–509CrossRefGoogle Scholar
  3. Agrawal SC, Singh V (2000) Vegetative survival, akinete formation and germination in three blue-green algae and one green alga in relation to light intensity, temperature, heat shock and UV exposure. Folia Microbiol 45:439–446CrossRefGoogle Scholar
  4. Aranibar JN, Anderson IC, Ringrose S, Macko SA (2003) Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies. J Arid Environ 54(2):345–358CrossRefGoogle Scholar
  5. Arnold RJ, Convey P, Hughes KA, Wynn-Williams DD (2003) Seasonal periodicity of physical factors, inorganic nutrients and microalgae in Antarctic fellfields. Polar Biol 26(6):396–403Google Scholar
  6. Bahl J, Lau MCY, Smith DLD, Vijaykrishna D, Cary SC, Kumberley D, Warren-Rhodes AW, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163. doi: 10.1038/ncomms1167 PubMedCrossRefGoogle Scholar
  7. Balskus EP, Walsh CT (2008) Investigating the initial steps in the biosynthesis of cyanobacterial sunscreen scytonemin. J Am Chem Soc 130:15260–15261CrossRefGoogle Scholar
  8. Bamforth SS (2008) Protozoa of biological soil crusts of a cool desert in Utah. J Arid Environ 72(5):722–729CrossRefGoogle Scholar
  9. Banerjee M, Whitton BA, Wynn-Williams DD (2000a) Surface phosphomonoesterase activity of a natural immobilized system: Chroococcidiopsis in an Antarctic desert rock. J Appl Phycol 12:549–552CrossRefGoogle Scholar
  10. Banerjee M, Whitton BA, Wynn-Williams DD (2000b) Phosphatase activities of endolithic communities in rocks of the Antarctic Dry Valleys. Microb Ecol 39:80–91PubMedCrossRefGoogle Scholar
  11. Becerra-Absalon I, Tavera R (2009) Life cycle of Nostoc sphaericum (Nostocales, Cyanoprokaryota) in tropical wetlands. Nova Hedwig 88(1–2):117–128CrossRefGoogle Scholar
  12. Belnap J (1993) Recovery rates of cryptobiotic crusts: inoculant use and assessment methods. Gt Basin Nat 53:89–95Google Scholar
  13. Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181–189CrossRefGoogle Scholar
  14. Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Gt Basin Nat 53:40–47Google Scholar
  15. Belnap J, Gillette.DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 39:133–142CrossRefGoogle Scholar
  16. Belnap J, Lange OL (eds) (2001) Biological soil crusts: structure, function, management. Springer, Berlin, 503 ppGoogle Scholar
  17. Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, management. Springer, Berlin, p 1et seq, 503 ppCrossRefGoogle Scholar
  18. Belnap J, Phillips SL, Herrick JE, Johansen JR (2007) Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: implications for land management. Earth Surf Process Landf 32:75–84CrossRefGoogle Scholar
  19. Belnap J, Phillips SL, Witwicki DL, Miller ME (2008) Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. J Arid Environ 72:1257–1264CrossRefGoogle Scholar
  20. Beraldi H, Farmer JD (2010) Evidence of subaerial environments in the Mesoproterozoic Dripping Spring Quartzite, Apache Group, Arizona. Geol Soc Am Abstr Program 42(5):430Google Scholar
  21. Berard A, Dorigo U, Humbert JF, Martin-Laurent F (2005) Microalgae community structure analysis based on 18S rDNA amplification from DNA extracted directly from soil as a potential soil bioindicator. Agron Sustain Dev 25:285–291CrossRefGoogle Scholar
  22. Bhatnagar A, Bhatnagar M (2005) Microbial diversity in desert eco­systems. Curr Sci 89:91–100Google Scholar
  23. Bhatnagar A, Makandar MB, Garg MK, Bhatnagar M (2008) Community structure and diversity of cyanobacteria and green algae in the soils of Thar Desert (India). J Arid Environ 72:73–83CrossRefGoogle Scholar
  24. Billi D (2009) Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles 13(1):49–57PubMedCrossRefGoogle Scholar
  25. Billi D, Friedmann EI, Hofer K, Grilli-Caiola M, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyano­bacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492PubMedCrossRefGoogle Scholar
  26. Billi D, Wilmotte A, McKay CP (2010) Desert strains of Chroo­coccidiopsis: a platform to investigate genetic diversity in extreme environments and explore survival potential beyond Earth. European Planetary Science Congress 5: EPSC2010-267, Rome, 2 ppGoogle Scholar
  27. Boison G, Mergel A, Jolkver H, Bothe H (2004) Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol 70:7070–7077PubMedCrossRefGoogle Scholar
  28. Booth WE (1941) Regeneration of abandoned fields in Kansas and Oklahoma. Am J Bot 28:415–422CrossRefGoogle Scholar
  29. Bowker MA (2007) Biological soil crust rehabilitation in theory and practice: an underexploited opportunity. Restor Ecol 15:13–23CrossRefGoogle Scholar
  30. Bowker MA, Reed SC, Belnap J, Phillips SL (2002) Temporal variation in community composition, pigmentation, and Fv/Fm of desert of cyanobacterial soil crusts. Microb Ecol 43:13–25PubMedCrossRefGoogle Scholar
  31. Boye-Petersen J (1923) The freshwater Cyanophyceae of Iceland. In: Rosenvinge LK, Arming EW (eds) Arb Bot Kobenhavn (The Botany of Iceland 2) 101(7):251–324CrossRefGoogle Scholar
  32. Boyer SL, Johansen JR, Flechtner VR, Howard GL (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16s rRNA gene and associated 16S-23S ITS region. J Phycol 38:1222–1235CrossRefGoogle Scholar
  33. Branco LHZ, Hoffmann L, Teixeira JP, Ferreira V, de Morais JC (2009) Aerophytic cyanoprokaryotes from the Atlantic rainforest region of Sao Paulo State, Brazil: Chroococcales and Oscillatoriales. Cryptogam Algol 30(2):135–152Google Scholar
  34. Broady PA (2005) The distribution of terrestrial and hydro-terrestrial algal associations at three contrasting locations in southern Victoria Land, Antarctica. Algol Stud 118:95–112CrossRefGoogle Scholar
  35. Büdel B (2005) Microorganisms of biological crusts on soil surfaces. Soil Biol 3(V):307–323CrossRefGoogle Scholar
  36. Büdel B, Veste M (2008) Arid zone ecosystems. Ecol Stud 208B:149–155CrossRefGoogle Scholar
  37. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247PubMedCrossRefGoogle Scholar
  38. Chen LZ, Liu YD, Song LR (2002) The function of exopolysaccharides of Microcoleus in the formation of desert soil. Acta Hydrobiol Sin 26(2):155–159Google Scholar
  39. Chen LZ, Li DH, Liu YD (2003a) Salt tolerance of Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crust, was enhanced by exogenous carbohydrates. J Arid Environ 55:645–656CrossRefGoogle Scholar
  40. Chen LZ, Liu YD, Li DH (2003b) Effect of salt stress on physiological and biochemical characteristics of Scytonema javanicum. J Desert Res 23:285–288Google Scholar
  41. Chen LZ, Xie ZM, Hu CX, Li YD, Wang GH, Liu YD (2006a) Man-made desert algal crusts as affected by environmental factors in Inner Mongolia. China J Arid Environ 67:521–527CrossRefGoogle Scholar
  42. Chen LZ, Li DH, Song LR, Hu CX, Wang GH, Liu YD (2006b) Effects of salt stress on carbohydrate metabolism in desert soil alga Microcoleus vaginatus. J Integr Plant Biol 48(8):1–5CrossRefGoogle Scholar
  43. Chen LZ, Xie ZM, Li DH, Liu YD, Wang GH (2006c) Recovery of photosynthetic activity of Microcoleus vaginatus after water loss and rehydration. Acta Hydrobiol Sin 30(4):404–407Google Scholar
  44. Chen LZ, Wang GH, Hong S, Liu A, Li C, Lui Y-D (2009a) UV-B induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. J Integr Plant Biol 51(2):194–200PubMedCrossRefGoogle Scholar
  45. Chen XF, Jia SR, Yue SJ, Wang N, Li CT, Wang Y (2009b) Effect of solid bed-materials on growth of vegetative cells of Nostoc flagelliforme. J Appl Phycol 22:341–347CrossRefGoogle Scholar
  46. Chen XF, Jia SR, Yue SJ, Wang Y, Wang N (2011) Biological crust of Nostoc flagelliforme (cyanobacteria) on sand bed materials. J Appl Phycol 23:67–71CrossRefGoogle Scholar
  47. Cockell CS (2010) Geomicrobiology beyond Earth: microbe-mineral interactions in space exploration and settlement. Trends Microbiol 18(7):308–314PubMedCrossRefGoogle Scholar
  48. Cockell CS, Schuerger AC, Billi D, Friedmann EI, Panitz C (2005) Effects of a simulated Martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology 5:127–140PubMedCrossRefGoogle Scholar
  49. Cox PA, Richer R, Metcalf JS, Banack SA, Codd GA, Bradley WG (2009) Cyanobacteria and BMAA Exposure from desert dust: a possible link to sporadic ALS among Gulf War veterans. Amyotroph Lateral Scler 10(Suppl 2):109–117PubMedCrossRefGoogle Scholar
  50. Dana ED, Mota JF (2006) Vegetation and soil recovery on gypsum outcrops in semi-arid Spain. J Arid Environ 65(3):444–459CrossRefGoogle Scholar
  51. Darby BJ, Housman DC, Zaki AM, Shamout Y, Adl S, Belnap J, Neher DA (2006) Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts. J Euk Microb 53:207–514CrossRefGoogle Scholar
  52. Darby BJ, Neher DA, Belnap J (2007) Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts. Appl Soil Ecol 35:203–212CrossRefGoogle Scholar
  53. Davey MC, Clarke KJ (1992) Fine structure of a terrestrial cyanobacterial mat from Antarctica. J Phycol 28:199–202CrossRefGoogle Scholar
  54. De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299CrossRefGoogle Scholar
  55. De Philippis R, Paperi R, Sili C, Vincenzini M (2003) Assessment of the metal removal capability of two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936. J Appl Phycol 15:155–161CrossRefGoogle Scholar
  56. De Philippis R, Paperi R, Sili C (2007) Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria. Biodegradation 18:181–187PubMedCrossRefGoogle Scholar
  57. Dhar DW, Prasanna R, Singh BV (2007) Comparative performance of three carrier based blue green algal biofertilizers for sustainable rice cultivation. J Sustain Agric 30(2):41–50CrossRefGoogle Scholar
  58. Drouet F (1981) Summary of the classification of blue-green algae. Beih Nova Hedwig 66:133–209Google Scholar
  59. Eldridge DJ, Leys JF (2003) Exploring some relationships between biological soil crusts, soil aggregation and wind erosion. J Arid Environ 53:457–466CrossRefGoogle Scholar
  60. Flechtner VR (2007) North American microbiotic soil crust communities: diversity despite challenge. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Berlin, pp 537–551, 811 ppCrossRefGoogle Scholar
  61. Flechtner VR, Boyer SL, Johansen JR, DeNoble ML (2002) Spirirestis rafaelensis gen. et sp. nov (Cyanophyceae), a new cyanobacterial genus from arid soils. Nova Hedwig 74(1–2):1–24CrossRefGoogle Scholar
  62. Flechtner VR, Johansen JR, Belnap J (2008) The biological soil crusts of the San Nicolas Island: enigmatic algae from a geographically isolated ecosystem. West N Am Nat 68(4):405–436CrossRefGoogle Scholar
  63. Fleming ED, Castenholz RW (2007) Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ Microbiol 9(6):1448–1455PubMedCrossRefGoogle Scholar
  64. Fleming ED, Bebout BM, Castenholz RW (2007) Effects of salinity and light intensity on the resumption of photosynthesis in rehydrated cyanobacterial mats from Baja California Sur, Mexico. J Phycol 43:15–24CrossRefGoogle Scholar
  65. Fleming ED, Castenholz RW (2008) Effects of nitrogen source on the synthesis of the UV-screening compound, scytonema, in the cyanobacterium Nostoc punctiforme PCC 73102. FEMS Microb Ecol 63(3):301–308CrossRefGoogle Scholar
  66. Freeman KR, Pescador MY, Reed SC, Robeson SC, Schmidt SK, Townsend AR (2009) Soil CO2 flux and photoautotrophic community composition in high-elevation, ‘barren’ soil. Environ Microbiol 11(3):674–686PubMedCrossRefGoogle Scholar
  67. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053PubMedCrossRefGoogle Scholar
  68. Friedmann EI, Kibler AP (1980) Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb Ecol 6:95–108CrossRefGoogle Scholar
  69. Friedmann EI, Ocampo-Friedmann R (1984) Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic microbial habitat. In: Klug MJ, Reddy CA (eds) Current perspectives in microbiology. American Society for Microbiology, Washington, DC, pp 177–185Google Scholar
  70. Friedmann EI, Ocampo-Friedmann R (1995) A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Adv Space Res 15:143–246Google Scholar
  71. Friedmann EI, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–196CrossRefGoogle Scholar
  72. Fujita Y, Nakahara H (2006) Variations in the microalgal structure in paddy soil in Osaka, Japan: comparison between surface and subsurface soils. Limnology 7(2):83–91CrossRefGoogle Scholar
  73. Fukuda S, Yamakawa R, Hirai M, KashinoY KH, Satoh K (2008) Mechanisms to avoid photoinhibition in a desiccation-tolerant cyanobacterium, Nostoc commune. Plant Cell Physiol 49(3):488–492PubMedCrossRefGoogle Scholar
  74. Gao KS (1998) Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review. J Appl Phycol 10:37–49CrossRefGoogle Scholar
  75. Gao KS, Ye CP (2003) Culture of the terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae), under aquatic conditions. J Phycol 39:617–623CrossRefGoogle Scholar
  76. Gao KS, Ye CP (2007) Photosynthetic insensitivity of the terrestrial cyanobacterium Nostoc flagelliforme to solar UV radiation while rehydrated or desiccated. J Phycol 43:628–635CrossRefGoogle Scholar
  77. Gao KS, Yu AJ (2000) Influence of CO2, light and watering on growth of Nostoc flagelliforme. J Appl Phycol 12:185–189CrossRefGoogle Scholar
  78. Gao KS, Qiu BS, Xia JR, Yu AJ, Li YG (1998) Effect of wind speed on loss of water from Nostoc flagelliforme colonies. J Appl Phycol 10:55–58CrossRefGoogle Scholar
  79. Gao S, Ye X, Chu Y, Dong M (2010) Effects of biological crusts on profile distribution of soil water, organic carbon and total nitrogen in Mu Us Sandland, China. Plant Ecol 3(4):279–284CrossRefGoogle Scholar
  80. Garbacki N, Gloaguen V, Damas J, Hoffmann L, Tits M, Angenot L (2000) Inhibition of croton oil-induced oedema in mice ear skin by capsular polysaccharides from cyanobacteria. Naunyn Schmiedebergs Arch Pharmacol 361(4):460–464PubMedCrossRefGoogle Scholar
  81. Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782CrossRefGoogle Scholar
  82. Garcia-Pichel F, Pringault O (2001) Cyanobacteria track water in desert soils. Nature 413:380–381PubMedCrossRefGoogle Scholar
  83. Garcia-Pichel F, Lopez-Cortes A, Nubel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67(4):1902–1910PubMedCrossRefGoogle Scholar
  84. Geitler L (1932) Cyanophyceae. In: Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz 14. Akademische Verlagsgesellschaft, Leipzig, 1356 ppGoogle Scholar
  85. George DB, Roundy BA, St Clair LL, Johansen JR, Schaalje GB, Webb BL (2003) The effects of microbiotic soil crusts on soil water loss. Arid Land Res Manage 17:113–125CrossRefGoogle Scholar
  86. Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357PubMedCrossRefGoogle Scholar
  87. Guo YR, Zhao HL, Zuo XA, Sam D, Zhao XY (2008) Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environ Geol 54(3):653–662CrossRefGoogle Scholar
  88. Gupta S, Agrawal SC (2006) Survival of blue-green and green algae under stress conditions. Folia Microbiol 51(2):121–128CrossRefGoogle Scholar
  89. Gupta S, Agrawal SC (2008) Vegetative survival of some wall and soil blue-green algae under stress conditions. Folia Microbiol 53(4):343–350CrossRefGoogle Scholar
  90. Harel Y, Ohad I, Kaplan A (2004) Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological ­desert crust. Plant Physiol 136:3070–3079PubMedCrossRefGoogle Scholar
  91. Helm RF, Huang Z, Edwards D, Leeson H, Peery W, Potts M (2000) Structural characterization of the released polysaccharide of desiccation-tolerant Nostoc commune DRH-1. J Bacteriol 182:974–982PubMedCrossRefGoogle Scholar
  92. Higo A, Suzuki T, Ikeuchi M, Ohmori M (2007) Dynamic transcriptional changes in response to rehydration in Anabaena sp. PCC 7120. Microbiology 153:3685–3694PubMedCrossRefGoogle Scholar
  93. Hirai M, Yamakawa R, Nishio J, Yamaji T, Kashino Y, Koike H, Satoh K (2004) Deactivation of photosynthetic activities is triggered by loss of a small amount of water in a desiccation-tolerant cyanobacterium, Nostoc commune. Plant Cell Physiol 45(7):872–878PubMedCrossRefGoogle Scholar
  94. Hokputsa S, Hu CX, Paulsen BS, Harding SE (2003) A physico-chemical comparative study on extracellular carbohydrate polymers from five desert algae. Carbohydr Polym 54(1):27–32CrossRefGoogle Scholar
  95. Hong Y, Li YY, Ley SH (1992) Preliminary study on the blue-green algae community of arid soil in Qaidam Basin. Acta Bot Sin 34:161–168Google Scholar
  96. Housman DC, Powers HH, Collins AD, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ 66:620–634CrossRefGoogle Scholar
  97. Hu CX, Liu YD (2003a) Primary succession on algal community structure in desert soil. Acta Bot Sin 45(8):917–924Google Scholar
  98. Hu CX, Liu YD (2003b) Vertical distribution of algae in semi-desert soil of Shapotou area Ningxia Hui Autonomous Region. Acta Ecol Sin 23:38–44Google Scholar
  99. Hu CX, Liu YD (2003c) Soil algal biomass and its influential factors in desert soil crusts. Acta Ecol Sin 23(2):284–291Google Scholar
  100. Hu CX, Liu YD, Song LR (1999) Species composition and distribution of algae in Shapotou area, Ningxia Hui Autonomous region, China. Acta Hydrobiol Sin 23(5):443–448Google Scholar
  101. Hu CX, Liu YD, Song LR, Zhang DL (2002a) Effect of desert soil algae on the stabilization of fine sands. J Appl Phycol 14:281–292CrossRefGoogle Scholar
  102. Hu CX, Liu YD, Zhang DL, Huang ZB, Paulsen BS (2002b) Cementing mechanism of algal crusts from desert area. Chin Sci Bull 47:1361–1368CrossRefGoogle Scholar
  103. Hu CX, Liu YD, Paulsen BS, Petersen D, Klaveness D (2003a) Extracellular carbohydrate polymers from five species of soil algae with different cohesion in the stabilization of fine sand grains. Carbohydr Polym 54(1):33–42CrossRefGoogle Scholar
  104. Hu CX, Ma HY, Pang HL, Zhang DL (2003b) Species composition and distribution of algae in Wuquanshan of Lanzhou. Acta Bot Boreal Occident Sin 23(12):2099–2106Google Scholar
  105. Hu CX, Zhang BC, Ma HY, Liu YD, Zhang DL (2003c) Species composition and community structure of terrestrial algae in the biological crusts of Lanzhou Northern Hill. J Northwest Norm Univ 39:59–63Google Scholar
  106. Hu CX, Zhang DL, Huang ZB, Liu YD (2003d) The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil 257:91–111Google Scholar
  107. Hu CX, Zhang DL, Liu YD (2004) Research progresses on algae of the microbial crusts in arid and semiarid regions. Prog Nat Sci 14(4):289–295CrossRefGoogle Scholar
  108. Huang ZB, Liu YD, Smestad Paulsen B, Klaveness D (1998) Studies on polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies: comparison of monosaccharide compositions and viscosities of polysaccharides from field colonies and suspension cultures. J Phycol 34:962–968CrossRefGoogle Scholar
  109. Ibraheem IBM (2007) Cyanobacteria as alternative biological conditioners for bioremediation of barren soil. Egypt J Phycol 8:99–116Google Scholar
  110. Issa OM, Trichet J, Defarge C, Couté A, Valentin C (1999) Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37:175–196CrossRefGoogle Scholar
  111. Issa OM, Defarge C, Le Bissonnais Y, Marin B, Duval O, Bruand A, D’Acqui L, Nordenberg S, Annerman M (2007) Effects of the ­inoculation of cyanobacteria on the microstructure and the ­structural stability of a tropical soil. Plant Soil 290(1–2):209–219CrossRefGoogle Scholar
  112. Johnson HE, King SR, Banack SA, Webster C, Callanaupa WJ, Cox PA (2008) Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA. J Ethnopharmacol 118:159–165PubMedCrossRefGoogle Scholar
  113. Kang L (1999) Strategies for desertification control and ecological agricultural construction in Hexi Corridor. J Desert Res 19:195–198 (in Chinese)Google Scholar
  114. Khan Z, Park SD, Shin SY, Bae SG, Yeon IK, Seo YJ (2005) Management of Meloidogyne incognita on tomato root-dip treatment in culture filtrate of the blue-green alga, Microcoleus vaginatus. Bioresour Technol 96(12):1338–1341PubMedCrossRefGoogle Scholar
  115. Kirkwood AE, Henley WJ (2006) Algal community dynamics and halotolerance in a terrestrial, hypersaline environment. J Phycol 42:537–547CrossRefGoogle Scholar
  116. Kirkwood AE, Buchheim JA, Buchheim MA, Henley WJ (2008) Cyanobacterial diversity and halotolerance in a variable hypersaline environment. Microb Ecol 55:453–465PubMedCrossRefGoogle Scholar
  117. Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil/Part 2 Oscillatoriales. Spektrum. Akademischer Verlag, Heidelberg, 759 ppGoogle Scholar
  118. Kulik MM (1995) The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur J Plant Pathol 101:585–599CrossRefGoogle Scholar
  119. Lacap DC, Warren-Rhodes KA, McKay CP, Pointing SB (2011) Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15:31–38PubMedCrossRefGoogle Scholar
  120. Lalley JS, Viles HA (2005) Terricolous lichens in the northern Namib Desert of Namibia: distribution and community composition. Lichenologist 37:77–91CrossRefGoogle Scholar
  121. Lan SB, Hu CX, Rao BQ, Wu L, Zhang DL, Liu YD (2010a) Non-rainfall water sources in the topsoil and their changes during formation of man-made algal crusts at the eastern edge of Qubqi Desert, Inner Mongolia. Sci China Life Sci 53(9):1135–1141PubMedCrossRefGoogle Scholar
  122. Lan SB, Wu L, Zhang DL, Hu CX, Liu YD (2010b) Effects of drought and salt stresses on man-made cyanobacterial crusts. Eur J Soil Biol 46:381–386CrossRefGoogle Scholar
  123. Lan SB, Wu L, Zhang DL, Hu CX (2011a) Ethanol outperforms multiple solvents in the extraction of chlorophyll-a from biological soil crusts. Soil Biol Biochem 43:857–861CrossRefGoogle Scholar
  124. Lan SB, Wu L, Zhang DL, Hu CX (2011b) Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environ Earth Sci. doi: 10.1007/s1 2665 -011-1066-0
  125. Langston G, Neuman CM (2005) An experimental study on the susceptibility of crusted surfaces to wind erosion: a comparison of the strength properties of biotic and salt crusts. Geomorphology 72(1–4):40–53CrossRefGoogle Scholar
  126. Lesica P, Shelly JS (1992) Effect of cryptogamic soil crust on the population dynamics of Arabis fecunda (Brassicaceae). Am Midl Nat 128:58–60CrossRefGoogle Scholar
  127. Li XR, Wang XP, Li T, Zhang JG (2002) Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China. Biol Fertil Soils 35(3):147–154CrossRefGoogle Scholar
  128. Liu XJ, Chen F (2003) Cell differentiation and colony alteration of an edible terrestrial cyanobacterium Nostoc flagelliforme, in liquid suspension cultures. Folia Microbiol 48(5):619–626CrossRefGoogle Scholar
  129. Liu YZ, Dong GR, Li CZ (1994) A study on the factors influencing soil erosion through wind tunnel experiments. Chin J Arid Land Res 7(2):359–367Google Scholar
  130. Liu YD, Shen YW, Song LR, Zhu YZ, Zhuang HR, Qin SW (1999) Species composition of algae and the relationship with fertility of soils in the middle reach of Yellow River, China. Acta Hydrobiol Sin 23(5):434–442Google Scholar
  131. Liu YD, Song LR, Shen YW, Li DH, Hu CX, Huang ZB, Hu ZL, Zhu YZ (2001) Potential of terrestrial microalgae and cyanobacteria in environmental technology. In: Kojima H, Lee YK (eds) Photosynthetic microorganisms in environmental biotechnology. Springer, Hong Kong, pp 195–216, 310 ppGoogle Scholar
  132. Liu LC, Li SZ, Duan ZH, Li XR (2006) Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, northwest China. J Hydrol 328(1–2):331–337CrossRefGoogle Scholar
  133. Liu YD, Cockell CS, Wang GH, Hu CX, Chen LZ, De Philippis R (2008) Control of lunar and martian dust – experimental insights from artificial and natural cyanobacterial and algal crusts in the desert of Inner Mongolia, China. Astrobiology 8(1):75–86PubMedCrossRefGoogle Scholar
  134. Lukešová A (1993) Soil algae in four secondary successional stages on abandoned fields. Algol Stud 71:81–102Google Scholar
  135. Maestre FT, Martin N, Diez B, López-Poma R, Santos F, Luque I, Cortina J (2006) Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils. Microb Ecol 52:365–377PubMedCrossRefGoogle Scholar
  136. Mager DM, Thomas AD (2010) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ 72(2):91–97Google Scholar
  137. Malliga P, Subramanian G (2002) Cyanobacterial biofertilizer for ­sustainable agriculture. In: Reddy SM, Reddy R, Sindarachary S, Girishnan S (eds) Proceedings of national symposium on bio­inoculants for sustainable agriculture and forestry. Scientific publishers, Jodhpur, India, pp 99–106Google Scholar
  138. Marker AFH (1995) Chlorophyll analysis: standard methods. National Rivers Authority, BristolGoogle Scholar
  139. Marker AFH, Nusch EA, Rai H, Reimann H (1980) The measurement of photosynthetic pigments in freshwaters and standardization of methods, conclusions and recommendations. Arch Hydrobiol 14:91–106Google Scholar
  140. Mataloni G, Tell G (2002) Microalgal communities from orthnogenic soils at Cierva Point, Antarctic Peninsula. Polar Biol 25(7):488–491CrossRefGoogle Scholar
  141. Mataloni G, Tell G, Wynn-Williams DD (2000) Structure and diversity of soil algal communities from Cierva Point (Antarctic Peninsula). Polar Biol 23(3):205–211CrossRefGoogle Scholar
  142. Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21:121–130CrossRefGoogle Scholar
  143. McCay CP, Friedmann EI, Gomez-Silva B, Cacere L, Andersen D, Landheim R (2003) Temperature and moisture conditions in the extreme arid regions of the Atacama Desert: four years of observations including the El Nio of 1997–1998. Astrobiology 3:393–406CrossRefGoogle Scholar
  144. McKenna-Neuman C, Maxwell CD, Boulton JW (1996) Wind transport of sand surface crusted with photoautotrophic microorganisms. Catena 27:229–247CrossRefGoogle Scholar
  145. Metting B (1981) The systematics and ecology of soil algae. Bot Rev 47:195–312CrossRefGoogle Scholar
  146. Micheletti E, Colica G, Viti C, Tamagnini P, De Philippis R (2008) Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. J Appl Microbiol 105:88–94PubMedCrossRefGoogle Scholar
  147. Navarro-González R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthar CL, Gomez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit for microbial life. Science 302(5647):1018–1021PubMedCrossRefGoogle Scholar
  148. Nayak S, Prasanna R, Prasanna BM, Sahoo D (2009) Genotypic and phenotypic diversity of Anabaena isolates from diverse rice agro-ecologies of India. J Basic Microbiol 49(2):165–177PubMedCrossRefGoogle Scholar
  149. Nisha R, Kaushik A, Kaushik CP (2007) Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138:49–56CrossRefGoogle Scholar
  150. Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359PubMedCrossRefGoogle Scholar
  151. Novis PM, Smissen RD (2006) Two genetic and ecological groups of Nostoc commune in Victoria Land, Antarctica, revealed by AFLP analysis. Antarct Sci 18(4):573–581CrossRefGoogle Scholar
  152. Novis PM, Whitehead D, Gregorich EG, Hunt JE, Sparrow AD (2007) Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Glob Change Biol 13(6):1224–1237CrossRefGoogle Scholar
  153. Obana S, Miyamoto K, Morita S, Ohmori M (2007) Effect of Nostoc sp. on soil characteristics, plant growth and nutrient uptake. J Appl Phycol 19:641–646CrossRefGoogle Scholar
  154. Omoregie EO, Crumbliss LL, Bebout BM, Zehr JP (2004) Determination of nitrogen-fixing phylotypes in Lyngbya sp. and Microcoleus chthonoplastes cyanobacterial mats from Guerrero Negrao, Baja, California, Mexico. Appl Environ Microbiol 70(4):2119–2128PubMedCrossRefGoogle Scholar
  155. Page-Sharp M, Behm CA, Smith GD (1999) Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils. Biochim Biophys Acta 1472:519–528PubMedCrossRefGoogle Scholar
  156. Painter TJ (1993) Carbohydrate polymers in desert reclamation the potential of microalgal biofertilizers. Carbohydr Polym 20:77–86CrossRefGoogle Scholar
  157. Pandey KD, Shukla PN, Giri DD, Kashyap AK (2005) Cyanobacteria in alkaline soil and the effect of cyanobacteria inoculation with pyrite amendments on their reclamation. Biol Fertil Soil 41:451–457CrossRefGoogle Scholar
  158. Pankratova EM (2006) Functioning of cyanobacteria in soil ecosystems. Eurasia Soil Sci 39(Suppl 1):S118–S127CrossRefGoogle Scholar
  159. Pattanaik B, Roleda MY, Schumann R, Karsten U (2002) Isolate-specific effects of amino acids and scytonemin is responsible for the UV-insensitivity of photosynthesis in Nostoc flagelliforme. J Photochem Photobiol B 66(1):47–53CrossRefGoogle Scholar
  160. Pardo MT, Lopez-Fando C, Almendros G, Herrero A (2009) Laboratory assessment of Nostoc 9v (cyanobacteria) effects on N2 fixation and chemical fertility of degraded Arican soils. Commun Soil Sci Plant Anal 40(7–8):1295–1321CrossRefGoogle Scholar
  161. Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941PubMedCrossRefGoogle Scholar
  162. Pluis JLA (1994) Algal crust formation in the inland dune area Laarder Wasmeer, The Netherlands. Vegetatio 13:41–51CrossRefGoogle Scholar
  163. Pointing SB, Warren-Rhodes KA, Lacap D, Rhodes K, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424PubMedCrossRefGoogle Scholar
  164. Pointing SB, Chan Y. Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106(47):19964–19969CrossRefGoogle Scholar
  165. Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805CrossRefGoogle Scholar
  166. Potts M (1999) Minireview: mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–332CrossRefGoogle Scholar
  167. Potts M (2000) Nostoc. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 465–504, 699 ppCrossRefGoogle Scholar
  168. Potts M (2001) Desiccation tolerance: a simple process? Trends Microbiol 9:553–559PubMedCrossRefGoogle Scholar
  169. Prasanna R, Saxena AK, Jaiswal P, Nayak S (2006) Development of alternative support system for viable count of cyanobacteria by most probable number method. Folia Microbiol 51(5):455–458CrossRefGoogle Scholar
  170. Pringault O, Garcia-Pichel F (2004) Hydrotaxis of cyanobacteria in desert crusts. Microb Ecol 47:366–373PubMedCrossRefGoogle Scholar
  171. Qiu BS, Gao KS (1999) Dried field populations of Nostoc flagelliforme (Cyanophyceae) require exogenous nutrients for their photosynthetic recovery. J Appl Phycol 11:535–541CrossRefGoogle Scholar
  172. Qiu BS, Gao KS (2002) Daily production and photosynthetic characteristics of Nostoc flagelliforme grown under ambient and elevated CO2 conditions. J Appl Phycol 14:77–83CrossRefGoogle Scholar
  173. Qiu BS, Zhang AH, Liu ZL, Gao KS (2004a) Studies on the photo­synthesis of the terrestrial cyanobacterium Nostoc flagelliforme subjected to desiccation and subsequent rehydration. Phycologia 43(5):521–528CrossRefGoogle Scholar
  174. Qiu BS, Zhang AH, Zhou WB, Wei JM, Hui D (2004b) Effects of potassium on the photosynthetic recovery of the terrestrial cyano­bacterium Nostoc flagelliforme (Cyanophyceae) during rehydration. J Phycol 40:323–332CrossRefGoogle Scholar
  175. Rao BQ, Wang WB, Lan SB, Li DH, Hu CX, Liu YD (2009a) Development characteristics and distribution of microorganisms within 3-year-old artificial algal crust in Hopq Desert. Acta Hydrobiol Sin 33(5):937–944CrossRefGoogle Scholar
  176. Rao BQ, Wang WB, Li DH, Hu CX, Lan SB (2009b) Influence of dew on biomass and photosystem II activity of cyanobacterial crusts in the Hopq Desert, northwest China. Soil Biol Biochem 41(12):2387–2393CrossRefGoogle Scholar
  177. Rastogi RP, Sinha RP (2009) Biotechnological and industrial signi­ficance of cyanobacterial secondary metabolites. Biotechnol Adv 27(4):521–539PubMedCrossRefGoogle Scholar
  178. Read CF, Duncan DH, Vesk PA, Elith J (2011) Surprisingly fast recovery of biological soil crusts following livestock removal in southern Australia. J Veg Sci. doi: 10.1111/j.1654-1103.2011.01296.x
  179. Reddy PM, Roger PA, Ventura W, Watanabe I (1986) Blue-green algal treatment and inoculation had no significant effect on rice yield in an acidic wetland soil. Philipp Agric 69:629–632Google Scholar
  180. Redfield E, Barns SM, Belnap J, Daane LL, Kuske CR (2002) Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau. FEMS Microbiol Ecol 40(1):55–63PubMedCrossRefGoogle Scholar
  181. Rippka R, Waterbury JW, Herman M, Castenholz RW (2001) Form-genus 1. Chroococcidiopsis Geitler 1933, emend. Waterbury and Stanier 1978. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 528–532, 721 ppGoogle Scholar
  182. Rivera-Aguilar V, Montjano G, Rodriguez-Zaragoza S, Duran-Diaz A (2006) Distribution and composition of cyanobacetria, mosses and lichens of the biological soil crusts of the Tehuacan Valley, Puebla, Mexico. J Arid Environ 67:208–225CrossRefGoogle Scholar
  183. Roger PA, Santiago-Ardales S, Reddy PM, Watanabe I (1987) The abundance of heterocystous blue-green algae in rice soils and inocula used for application in rice fields. Biol Fertil Soils 5:98–105CrossRefGoogle Scholar
  184. Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seeding emergence, following inoculation of soil Nostoc muscorum. Biol Fertil Soils 18:209–215CrossRefGoogle Scholar
  185. Roney BR, Renhui L, Banack SA, Murch S, Honegger R, Cox PA (2009) Consumption of fa cai Nostoc soup: a potential for BMAA exoisure from Nostoc cyanobacteria in China. Amyotroph Lateral Scler 2009(Suppl 2):44–49CrossRefGoogle Scholar
  186. Rosentreter R, Belnap J (2003) Biological soil crusts of North America. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, New York, pp 31–50CrossRefGoogle Scholar
  187. Rychert RC (2002) Assessment of cryptobiotic crust recovery. West N Am Nat 62(2):223–226Google Scholar
  188. Safonova E, Reisser W (2005) Growth promoting and inhibiting effects of extracellular substances of soil microalgae and cyanobacteria on Escherichia coli and Micrococcus luteus. Phycol Res 53(3):189–193Google Scholar
  189. Schlesinger WH, Pippin J, Wallenstein M, Hofmockel K, Klepeis D, Hahall B (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology 84:3222–3231CrossRefGoogle Scholar
  190. Schwabe GH (1960) Blaualgen aus ariden Böden. Forsch Fortsch 34:194–197Google Scholar
  191. Shachak M, Steinberger Y (1980) An algae – desert snail food chain: energy flow and soil turnover. Oecol Berl 146:402–411Google Scholar
  192. Shachak M, Chapman EA, Steinberger Y (1976) Feeding, energy flow and soil turnover in the desert isopod Hemilepistus reanmuri. Oecologia 24:57–69CrossRefGoogle Scholar
  193. Shaw E, Hill DR, Brittain N, Wright DJ, Tauber U, Marand H, Helm RF, Potts M (2003) Unusual water flux in the extracellular ­polysaccharide of the cyanobacterium Nostoc commune. Appl Environ Microbiol 69(9):5679–5684PubMedCrossRefGoogle Scholar
  194. Shirkey B, Kovarcik DP, Wright DJ, Wilmoth G, Prickett TF, Helm RF, Gregory EM, Potts M (2000) Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. J Bacteriol 182(1):189–197PubMedCrossRefGoogle Scholar
  195. Shirkey B, McMaster NJ, Smith SC, Wright DJ, Rodriguez H, Jaruga P, Birincioglu M, Helm RF, Potts M (2003) Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res 31(12):2995–3005PubMedCrossRefGoogle Scholar
  196. Siegesmund MA, Johansen JR, Karsten U, Friedl T (2008) Coleo­fasciculus Gen. Nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44(6):1572–1585CrossRefGoogle Scholar
  197. Singh RN (1950) Reclamation of usar lands in India through blue-green algae. Nature 165:325–326CrossRefGoogle Scholar
  198. Soule T, Stout V, Swingley WD, Meeks JC, Garcia-Pichel F (2007) Molecular genetics and genomic analysis of scytonemin biosynthesis in Nostoc punctiforme ATCC 29133. J Bacteriol 189:4465–4472CrossRefGoogle Scholar
  199. Soule T, Palmer K, Gao Q, Potrafka RM, Stout V, Garcia-Pichel F (2009) A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria. BMC Genomics 10:336–345CrossRefGoogle Scholar
  200. Stal LJ (2000) Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 61–120, 669 ppGoogle Scholar
  201. Starkenburg SR, Reitenga KG, Freitas T, Johnson S, Chain PSG, Garcia-Pichel F, Kuske CR (2011) The genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J Bacteriol. doi: 10.1128/JB.05138-11
  202. Su YG, Li XR, Cheng YW, Tan HJ, Jia RL (2007) Effects of biological soil crusts on emergence of desert vascular plants in North China. Plant Ecol 191:11–19CrossRefGoogle Scholar
  203. Svircev Z, Cetojevic-Simin D, Simeunovic J, Karaman M, Stojanovic D (2008) Antibacterial, antifungal and cytotoxic activity of terrestrial cyanobacterial strains from Serbia. Sci China C Life Sci 51(10):941–947PubMedCrossRefGoogle Scholar
  204. Swarnalakshmi K, Dhar DW, Singh PK (2007) Evaluation of blue-green algal inoculation on specific soil parameters. Acta Agron Hung 55(3):307–313CrossRefGoogle Scholar
  205. Tang D, Shi S, Li D, Hu C, Liu Y (2007a) Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. J Arid Environ 71:312–320CrossRefGoogle Scholar
  206. Tang DS, Wang WB, Li DH, Hu CX, Liu YD (2007b) Effects of artificial algal crust on soil enzyme activities of Hobq Desert, China. Acta Hydrobiol Sin 31(3):339–344Google Scholar
  207. Tirkey J, Adhikary SP (2005) Cyanobacteria in biological soil crusts of India. Curr Sci 89(3):515–521Google Scholar
  208. Tiwari BS, Tripathi SN (1998) Effect of hydration and dehydration on initiation and dynamics of some physiological reactions in desiccation tolerant cyanobacterium Scytonema geitleri. Indian J Biochem Biophys 35(3):172–178PubMedGoogle Scholar
  209. Tripathi RD, Dwivedi S, Shukla MK, Mishra S, Srivastava S, Singh P (2008) Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere 70(10):1919–1929PubMedCrossRefGoogle Scholar
  210. Tsujimura S, Nakahara H, Kosaki T, Ishida N, Iskakov AR (1998) Distribution of soil algae in salinized irrigation land in the arid region of Central Asia – II a case study of 25-year old Bakbakty farm in the flood plain of the River Ili, Kazakstan. Soil Sci Plant Nutr 44(1):67–76CrossRefGoogle Scholar
  211. Tsujimura S, Nakahara H, Ishida N (2000) Estimation of soil algal biomass in salinized irrigation land: a comparison of culture dilution and chlorophyll a extraction methods. J Appl Phycol 12:1–8CrossRefGoogle Scholar
  212. Valentin C, Rajot JL, Mitja D (2004) Responses of soil crusting, runoff and erosion to fallowing in the sub-humid and semi-arid regions of West Africa. Agric Ecosyst Environ 104(2):287–302CrossRefGoogle Scholar
  213. Veluci RM, Neher DA, Weicht TR (2006) Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microb Ecol 51(2):189–196PubMedCrossRefGoogle Scholar
  214. Vigna MS, Alberghina J, Belmonte CF (2001) Remarks about the taxonomical position of Nodularia harveyana Thuret ex Bornet et Flahault (Cyanophya, Nostocales) growing on soil. Nova Hedwig 72(1–2):241–250Google Scholar
  215. Wang GH, Hu CX, Li DH, Zhang DL, Li XY, Chen K, Liu YD (2007a) The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants. Adv Space Res 39(6):1034–1042CrossRefGoogle Scholar
  216. Wang WB, Yang CY, Tang DS, Li DH, Liu YD, Hu CX (2007b) Effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts under experimental conditions. Sci China C Life Sci 50(4):530–534PubMedCrossRefGoogle Scholar
  217. Wang GH, Chen K, Chen LZ, Hu CX, Zhang DL, Liu YD (2008) The involvement of the antioxidant system in protection of desert cyanobacterium Nostoc sp. against UV-B radiation and the effects of exogenous antioxidants. Ecotoxicol Environ Saf 69:150–157PubMedCrossRefGoogle Scholar
  218. Wang WB, Liu YD, Li DH, Hu CX, Rao BQ (2009) Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem 41:926–929CrossRefGoogle Scholar
  219. Warren SD (2001) Biological soil crusts and hydrology in North American deserts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 327–377, 503 ppGoogle Scholar
  220. Warren-Rhodes KA, Rhodes K, Pointing S, Ewing S, Lacap D, Gómez-Silva B, Amundso R, Freidmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398PubMedCrossRefGoogle Scholar
  221. Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y, Liu S, Zhuo P, McKay CP (2007a) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482PubMedCrossRefGoogle Scholar
  222. Warren-Rhodes KA, Rhodes K, Liu S, Zhou P, McKay CP (2007b) Nanoclimate environment of cyanobacterial communities in China’s hot and cold hyperarid deserts. J Geophys Res Biogeosci 112. doi: 10.1029/2006/G000260
  223. Whitton BA (2000) Soils and rice-fields. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 233–255Google Scholar
  224. Whitton BA, Al-Shehri AH, Ellwood NTW, Turner BL (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. Commonwealth Agricultural Bureau, Wallingford, pp 205–241, 399 ppCrossRefGoogle Scholar
  225. Wierzchos J, Ascasp C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6(3):15–22CrossRefGoogle Scholar
  226. Wong FK, Lacap DC, Lau MCY, DA Aitchison C, Pointing DB (2010) Hypolithic microbial community of quarzt pavement in the high-altitude tundra of central Tibet. Microb Ecol 60:730–739PubMedCrossRefGoogle Scholar
  227. Wood SA, Rueckert A, Cowan DA, Cary SC (2008) Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J 2(3):308–320PubMedCrossRefGoogle Scholar
  228. Wright DJ, Smith SC, Joardar V, Scherer S, Jervis J, Warren A (2005) UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J Biol Chem 280(48):40271–40281PubMedCrossRefGoogle Scholar
  229. Wu L, Lan S(B), Zhang D, Hu C(X) (2011) Small-scale vertical distribution of algae and structure of lichen soil crusts. Microb Ecol. doi: 10.1007/s00248-011-9828-5
  230. Wynn-Williams DD (2000) Cyanobacteria in desert-life at the limit? In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 341–366, 669 ppGoogle Scholar
  231. Xie ZM, Liu YD, Hu CX, Chen LZ, Li DH (2007) Relationships between the biomass of algal crusts in fields and their compressive strength. Soil Biol Biochem 39:567–572CrossRefGoogle Scholar
  232. Xie ZM, Liu YD, Chen LZ, Hu CX, Li DH, Shen YW (2008) The effects of different cultivation conditions on the biomass and exopolysaccharide production by Microcoleus vaginatus Gom. Acta Hydrobiol Sin 32(2):272–275CrossRefGoogle Scholar
  233. Xu JJ, Zhang DL, Wu GQ, Wang GH, Liu YD, Hu CX (2010) The effects of wind force on the biomass and the activity of photosynthesis of Microcoleus vaginatus crust. Acta Hydrobiol Sin 34(3):575–581CrossRefGoogle Scholar
  234. Yang XH, Zhang KB, Zhao YJ (2001) Microbiotic soil crust – a research forefront in desertification prone area. Acta Ecol Sin 21(3):474–480 (in Chinese)Google Scholar
  235. Yan-Gui S, Xin-Rong L, Ying-Wu C, Zhi-Shan Z, Yan L (2011) Carbon fixation of cyanobacterial-algal crusts after desert fixation and its implication to soil organic carbon accumulation in desert. Land Degrad Dev 22. doi: 10:1002/ldr.1131
  236. Ye C, Gao K, Giordano M (2008) The odd behaviour of carbonic anhydrase in the terrestrial cyanobacterium Nostoc flagelliforme during hydration-dehydration cycles. Environ Microbiol 10(4):1018–1023PubMedCrossRefGoogle Scholar
  237. Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado plateau and Chihuahuan desert. Appl Environ Microbiol 70(2):973–983PubMedCrossRefGoogle Scholar
  238. Yoshida T, Sakamoto T (2009) Water-stress induced trehalose accumulation and control of trehalase in the cyanobacterium Nostoc punctiforme IAM M-15. J Gen Appl Microbiol 55(2):135–145PubMedCrossRefGoogle Scholar
  239. Yoshimura H, Okamoto S, Tsumuraya Y, Ohmori M (2007) Group 3 sigma factor gene, sigJ, a key regulator of desiccation tolerance, regulates the synthesis of extracellular polysaccharide in cyano­bacterium Anabaena sp strain PCC 7120. DNA Res 14(1):13–24PubMedCrossRefGoogle Scholar
  240. Zaady E, Kuhn U, Wilske B, Sandoval-Soto L, Kesselmeier J (2000) Patterns of CO2 exchange in biological soil crusts of successional age. Soil Biol Biochem 32:959–966CrossRefGoogle Scholar
  241. Zaady E, Bouskila A (2002) Lizard burrows association with successional stages of biological soil crusts in an arid sandy region. J Arid Environ 50(2):235–246CrossRefGoogle Scholar
  242. Zancan S, Trevisan R, Paoletti MG (2006) Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agric Ecosyst Environ 112(1):1–12CrossRefGoogle Scholar
  243. Zhang YM, Wang HL, Wang XQ, Yang WK, Zhang DY (2006) The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China. Geoderma 132:441–449CrossRefGoogle Scholar
  244. Zhang H, Ma HY, Zhang DL LVY, Wang GH, Chen K, Liu YD, Hu CX (2008) On apoptosis of human epidermoid carcinoma A431 cells induced by the extracellular polymeric substances of Scytonema javanicum. Acta Hydrobiol Sin 32(6):89–95Google Scholar
  245. Zhang BC, Zhang YM, Downing A, Niu Y (2011) Distribution and composition of cyanobacteria and microalgae associated with biological soil crusts in the Gurbantunggut Desert, China. Arid Land Res Dev 25(3):275–293CrossRefGoogle Scholar
  246. Zhao J, Zheng Y, Zhang B, Chen Y, Zhang Y (2009) Progress in the study of algae and mosses in biological soil crusts. Front Biol China 4(2):143–150. doi: 10.1007/(5)1515-008-0104-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanPR China
  2. 2.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenPR China
  3. 3.School of Biological and Biomedical SciencesDurham UniversityDurhamUK

Personalised recommendations