Skip to main content

Quantum Well Photodetectors

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 173))

Abstract

The progress in semiconductor optoelectronics has now reached a level where commercial systems for generation and detection of radiation over the whole infrared spectrum are available. At lower frequencies, semiconductors dominate the electronics and microwave world since ever. Semiconductors are then expected to play a fundamental role in THz science also, this spectral range being the bridge between the two worlds. The success of semiconductor infrared detectors has been made possible by the development of the quantum well, the fundamental building block of all bandgap engineered structures. Here in the first sections the fundamental physical aspects of semiconductor quantum wells and intersubband transitions are resumed, along with a discussion about how they are used in quantum well infrared and THz detectors. A review of the current progress on the subject can be found in the last sections, including a mention to quantum dot detectors, which appear to be the future of semiconductor infrared detectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Schneider, H.C. Liu, Quantum Well Infrared Photodetectors, Physics and Device Applications (Springer, Berlin, 2007)

    Google Scholar 

  2. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (les ditions de physique (Les Ulis, France, 1988)

    Google Scholar 

  3. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics (Wiley, New York, 1999)

    Google Scholar 

  4. C. Sirtori, F. Capasso, J. Faist, S. Scandolo, Nonparabolocity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells. Phys. Rev. B 50, 8663 (1994)

    Article  ADS  Google Scholar 

  5. T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  Google Scholar 

  6. T. Unuma, M. Yoshita, T. Noda, H. Sakaki, H. Akiyama, Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities. J. Appl. Phys. 93, 1586 (2003)

    Article  ADS  Google Scholar 

  7. K.M.S.V. Bandara, D.D. Coon, O. Byungsung, Y.F. Lin, M.H. Francombe, Exchange interactions in quantum well subbands. Appl. Phys. Lett. 53, 1931 (1988); erratum 55, 206 (1989)

    Google Scholar 

  8. M. Helm, The basic physics of intersubband transitions, in Intersubband Transition in Quantum Wells: Physics and Device Applications I. Semicon-ductors and Semimetals, vol. 62, Chap. 1, ed. by H.C. Liu, F. Capasso (Academic, San Diego, 2000)

    Google Scholar 

  9. F. Castellano, R.C. Iotti, F. Rossi, Sequential multiphoton strategy for semiconductor-based terahertz detectors. J. Appl. Phys. 104, 123104 (2008)

    Article  ADS  Google Scholar 

  10. F. Castellano, F. Rossi, J. Faist, E. Lhuillier, V. Berger, Modeling of dark current in midinfrared quantum well infrared photodetectors. Phys. Rev. B 79, 205304 (2009)

    Article  ADS  Google Scholar 

  11. E. Lhuillier, I. Ribet-Mohamed, A. Nedelcu, V. Berger, E. Rosencher, Quantum transport in weakly coupled superlattices at low temperature. Phys. Rev. B 81, 155305 (2010)

    Article  ADS  Google Scholar 

  12. E. Lhuillier, E. Rosencher, I. Ribet-Mohamed, A. Nedelcu, L. Doyennette, V. Berger, Quantum scattering engineering of quantum well infrared photodetectors in the tunneling regime. J. Appl. Phys. 108, 113707 (2010)

    Article  ADS  Google Scholar 

  13. J.Y. Andersson, L. Lundqvist, Grating coupled quantum well infrared detectors, in Long Wavelength Infrared Detectors, Chap. 4, ed. by M. Razeghi (Gordon and Breach, Amsterdam, 1996)

    Google Scholar 

  14. S.S. Li, Metal grating coupled bound-to-miniband transition III-V quantum well infrared photodetectors, in Long Wavelength Infrared Detectors, Chap. 3, ed. by M. Razeghi (Gordon and Breach, Amsterdam, 1996)

    Google Scholar 

  15. S. Kalchmair, H. Detz, G.D. Cole, A.M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, G. Strasser, Photonic crystal slab quantum well infrared photodetector Appl. Phys. Lett. 98, 011105 (2011)

    Google Scholar 

  16. S.D. Gunapala, S.V. Bandara, J.K. Liu, J.M. Mumolo, D.Z. Ting, C.J. Hill, J. Nguyen, First demonstration of megapixel dual-band QWIP focal plane array, in Proceedings of Sensors, 2009 IEEE, 2009, pp. 1609–1612

    Google Scholar 

  17. H.C. Liu, C.Y. Song, A.J. SpringThorpe, J.C. Cao, Terahertz quantum-well photodetector. Appl. Phys. Lett. 84, 4068 (2004)

    Article  ADS  Google Scholar 

  18. H. Luo, H.C. Liu, C.Y. Song, Z.R. Wasilewski, Background-limited terahertz quantum-well photodetector. Appl. Phys. Lett. 86, 231103 (2005)

    Google Scholar 

  19. F. Castellano, R.C. Iotti, F. Rossi, Improving the operation temperature of semiconductor-based terahertz photodetectors: a multiphoton design. Appl. Phys. Lett. 92, 091108 (2008)

    Article  ADS  Google Scholar 

  20. H. Schneider, H.C. Liu, S. Winnerl, C.Y. Song, M. Walther, M. Helm, Terahertz two-photon quantum well infrared photodetector. Opt. Express 17, 12279–12284 (2009)

    Article  ADS  Google Scholar 

  21. C.H. Yu, B. Zhang, W. Lu, S.C. Shen, H.C. Liu, Y.-Y. Fang, J.N. Dai, C.Q. Chen, Strong enhancement of terahertz response in GaAs/AlGaAs quantum well photodetector by magnetic field. Appl. Phys. Lett. 97, 022102 (2010)

    Article  ADS  Google Scholar 

  22. X.G. Guo, R. Zhang, H.C. Liu, A.J. SpringThorpe, J.C. Cao, Photocurrent spectra of heavily doped terahertz quantum well photodetectors. Appl. Phys. Lett. 97, 021114 (2010)

    Article  ADS  Google Scholar 

  23. X.G. Guo, Z.Y. Tan, J.C. Cao, H.C. Liu, Many-body effects on terahertz quantum well detectors. Appl. Phys. Lett. 94, 201101 (2009)

    Article  ADS  Google Scholar 

  24. M. Patrashin, I. Hosako, K. Akahane, Type-II InAs/GaInSb superlattices for terahertz range photodetectors. Proc. SPIE 8188, 81880G (2011)

    Article  ADS  Google Scholar 

  25. H. Machhadani, Y. Kotsar, S. Sakr, M. Tchernycheva, R. Colombelli, J. Mangeney, E. Bellet-Amalric, E. Sarigiannidou, E. Monroy, F.H. Julien, Terahertz intersubband absorption in GaN/AlGaN step quantum wells. Appl. Phys. Lett. 97, 191101 (2010)

    Article  ADS  Google Scholar 

  26. L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, V. Berger, Quantum cascade photodetector. Appl. Phys. Lett. 85, 2824 (2004)

    Article  ADS  Google Scholar 

  27. F.R. Giorgetta, E. Baumann, D. Hofstetter, C. Manz, Q. Yang, K. Köhler, M. Graf, InGaAs/AlAsSb quantum cascade detectors operating in the near infrared. Appl. Phys. Lett. 91, 111115 (2007)

    Google Scholar 

  28. M. Tchernycheva, L. Nevou, L. Doyennette, F.H. Julien, E. Warde, F. Guillot, E. Monroy, E. Bellet-Amalric, T. Remmele, M. Albrecht, Systematic experimental and theoretical investigation of intersubband absorption in GaN?AlN quantum wells. Phys. Rev. B 73, 125347 (2006)

    Article  ADS  Google Scholar 

  29. A. Vardi, G. Bahir, F. Guillot, C. Bougerol, E. Monroy, S.E. Schacham, M. Tchernycheva, F.H. Julien, Near infrared quantum cascade detector in GaN/AlGaN/AlN heterostructures. Appl. Phys. Lett. 92, 011112 (2008)

    Article  ADS  Google Scholar 

  30. F.R. Giorgetta, E. Baumann, R. Théron, M.L. Pellaton, D. Hofstetter, M. Fischer, J. Faist, Short wavelength (4 \(\mu \)m) quantum cascade detector based on strain compensated InGaAs/InAlAs. Appl. Phys. Lett. 92, 121101 (2008)

    Article  ADS  Google Scholar 

  31. D. Hofstetter, F.R. Giorgetta, E. Baumann, Q. Yang, C. Manz, K. Köhler, Midinfrared quantum cascade detector with a spectrally broad response. Appl. Phys. Lett. 93, 221106 (2008)

    Article  ADS  Google Scholar 

  32. L. Gendron, C. Koeniguer, V. Berger, High resistance narrow band quantum cascade photodetectors. Appl. Phys. Lett. 86, 121116 (2005)

    Article  ADS  Google Scholar 

  33. M. Graf, N. Hoyler, M. Giovannini, J. Faist, D. Hofstetter, InP-based quantum cascade detectors in the mid-infrared. Appl. Phys. Lett. 88, 241118 (2006)

    Article  ADS  Google Scholar 

  34. F.R. Giorgetta, E. Baumann, M. Graf, L. Ajili, N. Hoyler, M. Giovannini, J. Faist, D. Hofstetter, P. Krötz, G. Sonnabend, 16.5 \(\mu \)m quantum cascade detector using miniband transport. Appl. Phys. Lett. 90, 231111 (2007)

    Google Scholar 

  35. A. Buffaz, M. Carras, L. Doyennette, A. Nedelcu, X. Marcadet, V. Berger, Quantum cascade detectors for very long wave infrared detection. Appl. Phys. Lett. 96, 172101 (2010)

    Article  ADS  Google Scholar 

  36. A. Nedelcu, V. Guriaux, A. Bazin, L. Dua, A. Berurier, E. Costard, P. Bois, X. Marcadet, Enhanced quantum well infrared photodetector focal plane arrays for space applications. Infrared Phys. Technol. 52, 412 (2009)

    Google Scholar 

  37. M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, Terahertz range quantum well infrared photodetector. Appl. Phys. Lett. 84, 475–477 (2004)

    Article  ADS  Google Scholar 

  38. E. Lhuillier, I. Ribet-Mohamed, E. Rosencher, G. Patriarche, A. Buffaz, V. Berger, M. Carras, Interface roughness transport in terahertz quantum cascade detectors. Appl. Phys. Lett. 96, 061111 (2010)

    Article  ADS  Google Scholar 

  39. P. Michler, Single Quantum dots:? Fundamentals, Applications and New Concepts (Springer, Berlin, 2003)

    Google Scholar 

  40. O. Stier, M. Grundmann, D. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band k\(\cdot \)p theory. Phys. Rev. B 59, 5688 (1999)

    Article  ADS  Google Scholar 

  41. D. Leonard, M. Krishnamurthy, C.M. Reaves, S.P. Denbaars, P.M. Petroff, Appl. Phys. Lett. 63, 3203 (1993)

    Article  ADS  Google Scholar 

  42. P. Atkinson, M.B. Ward, S.P. Bremner, D. Anderson, T. Farrow, G.A.C. Jones, A.J. Shields, D.A. Ritchie, Site-control of InAs quantum dots using ex-situ electron-beam lithographic patterning of GaAs substrates. Jpn. J. Appl. Phys. 45, 2519 (2006)

    Article  ADS  Google Scholar 

  43. A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, E. Kapon, Record-Low inhomogeneous broadening of site-controlled quantum dots for nanophotonics. Small 6, 1268 (2010)

    Google Scholar 

  44. J. Shao, T.E. Vandervelde, A. Barve, W.-Y. Jang, A. Stintz, S. Krishna, Enhanced normal incidence photocurrent in quantum dot infrared photodetectors. J. Vac. Sci. Technol. B 29, 03C123 (2011)

    Google Scholar 

  45. K.W. Berryman, S.A. Lyon, M. Segev, Mid-infrared photoconductivity in InAs quantum dots. Appl. Phys. Lett. 70, 1861 (1997)

    Article  ADS  Google Scholar 

  46. S. Maimon, E. Finkman, G. Bahir, S.E. Schacham, J.M. Garcia, P.M. Petroff, Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors. Appl. Phys. Lett. 73, 2003 (1998)

    Article  ADS  Google Scholar 

  47. J. Phillips, K. Kamath, P. Bhattacharya, Characteristics of InGaAs quantum dot infrared photodetectors. Appl. Phys. Lett. 72, 2020 (1998)

    Article  ADS  Google Scholar 

  48. J. Urayama, T.B. Norris, J. Singh, P. Bhattacharya, Observation of phonon Bottleneck in quantum dot electronic relaxation. Phys. Rev. Lett. 86, 4930 (2001)

    Article  ADS  Google Scholar 

  49. A.V. Barve, S.J. Lee, S.K. Noh, S. Krishna, Review of current progress in quantum dot infrared photodetectors. Laser Photon Rev. 4, 738 (2010)

    Article  Google Scholar 

  50. R.V. Shenoi, R.S. Attaluri, A. Siroya, J. Shao, Y.D. Sarma, A. Stintz, T.E. Vandervelde, S. Krishna, Low-strain InAs/InGaAs/GaAs quantum dots-in-a-well infrared photodetector. AVS J. 26, 1136 (2008)

    Google Scholar 

  51. L. Nevou, V. Liverini, F. Castellano, A. Bismuto, J. Faist, Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetectors. Appl. Phys. Lett. 97, 023505 (2010)

    Article  ADS  Google Scholar 

  52. S. Krishna, Quantum dots-in-a-well infrared photodetectors. J. Phys. D: Appl. Phys. 38, 2142 (2005)

    Google Scholar 

  53. E.-T. Kim, Z. Chen, A. Madhukar, Tailoring mid- and long-wavelength dual response of InAs quantum-dot infrared photodetectors using In\(_x\)Ga\(_{1-x}\)As capping layers. Appl. Phys. Lett. 79, 3341 (2001)

    Article  ADS  Google Scholar 

  54. G. Jolley, L. Fu, H.H. Tan, C. Jagadish, Effects of well thickness on the spectral properties of In\(_{0.5}\)Ga\(_{0.5}\)As/GaAs/Al\(_{0.2}\)Ga\(_{0.8}\)As quantum dots-in-a-well infrared photodetectors. Appl. Phys. Lett. 91, 193507 (2008)

    Article  ADS  Google Scholar 

  55. S. Krishna, S. Gunapala, S. Bandara, C. Hill, D. Ting, Quantum Dot Based Infrared Focal Plane Arrays. Proc. IEEE 95, 1838 (2007)

    Article  Google Scholar 

  56. H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, M. Razeghi, Gain and recombination dynamics of quantum-dot infrared photodetectors. Phys. Rev. B 74, 205321 (2006)

    Article  ADS  Google Scholar 

  57. N. Vukmirovic, Z. Ikonic, I. Savic, D. Indjin, P. Harrison, A microscopic model of electron transport in quantum dot infrared photodetectors. J. Appl. Phys. 100, 074502 (2006)

    Article  ADS  Google Scholar 

  58. G. Huang, J. Yang, P. Bhattacharya, G. Ariyawansa, A.G.U. Perera, A multicolor quantum dot intersublevel detector with photoresponse in the terahertz range. Appl. Phys. Lett. 92, 011117 (2008)

    Article  ADS  Google Scholar 

  59. A. Lorke, R.J. Luyken, J.M. Garcia, P.M. Petroff, Growth and electronic properties of self-organized quantum rings. Jpn. J. Appl. Phys. 40, 1857 (2001)

    Article  ADS  Google Scholar 

  60. G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, A.G.U. Perera, A quantum ring terahertz detector with resonant tunnel barriers. Appl. Phys. Lett. 94, 101115 (2009)

    Article  ADS  Google Scholar 

  61. S. Bhowmick, G. Huang, W. Guo, C.S. Lee, P. Bhattacharya, G. Ariyawansa, A.G.U. Perera, High-performance quantum ring detector for the 1–3 terahertz range. Appl. Phys. Lett. 96, 231103 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Castellano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Castellano, F. (2014). Quantum Well Photodetectors. In: Perenzoni, M., Paul, D. (eds) Physics and Applications of Terahertz Radiation. Springer Series in Optical Sciences, vol 173. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3837-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-3837-9_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-3836-2

  • Online ISBN: 978-94-007-3837-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics