Skip to main content

Mortalin in Invertebrates and The Induction of Apoptosis by Wild-Type p53 Following Defeat of Mortalin-Based Cytoplasmic Sequestration in Cancerous Clam Hemocytes

  • Chapter
  • First Online:
Mortalin Biology: Life, Stress and Death

Abstract

In this chapter we demonstrate the remarkable sequence homology between mortalin proteins from a broad array of invertebrate taxa, including the few species for which functional analyses have been conducted. We also discuss expression and functional data for full-length and truncated clam homologs for human mortalin and their function in cytoplasmic sequestration in cancerous clam hemocytes. Both clam proteins have N-terminal mitochondrial targeting and p53 binding domains, though the truncated variant is missing exon 3 containing the N-terminal ATP/ADP binding and ATPase domains. Both variants are over-expressed and complexed with p53 and both may be responsible for cytoplasmic sequestration of p53 in cancerous clam hemocytes. Clam hemocyte cancer is the only animal model thus far investigated where cytoplasmically sequestered wild-type p53 can be reactivated both in vitro and in vivo using both genotoxic and non-genotoxic therapies. Our results suggest that mortalin-based cytoplasmic sequestration of wild-type p53 in cancerous clam hemocytes can be reversed by treatment with antineoplastic drugs also employed against similar human diseases and will result either in transcription-based apoptosis when the nucleus is accessible or non-transcription-based apoptosis when nuclear access is blocked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn BY, Trinh DL, Zajchowski LD, Lee B, Elwi AN, Kim SW (2010) Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer. Oncogene 29:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11(8):545–555

    Article  PubMed  CAS  Google Scholar 

  • Alvares K, Dixit SN, Lux E, Barss J, Veis A (2007) The proteome of the developing tooth of the sea urchin, Lytechinus variegatus: mortalin is a constituent of the developing cell syncytium. J Exp Zool B Mol Dev Evol 308:357–370

    Article  Google Scholar 

  • Barber B (1996) Effects of gonadal neoplasms on oogenesis in softshell clams, Mya arenaria. J Invert Pathol 67:161–168

    Article  CAS  Google Scholar 

  • Becker K, Marchenko ND, Maurice M, Moll UM (2007) Hyperubiquitylation of wild-type p53 contributes to cytoplasmic sequestration in neuroblastoma. Cell Death Differ 14:1350–1360

    Article  PubMed  CAS  Google Scholar 

  • Becker K, Marchenko ND, Palacios G, Moll UM (2008) A role of HAUSP in tumor suppression in a human colon carcinoma xenograft model. Cell Cycle 7:1205–1213

    Article  PubMed  CAS  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  PubMed  CAS  Google Scholar 

  • Böttger S, Jerszyk E, Low B, Walker C (2008) Genotoxic stress-induced expression of p53 and apoptosis in leukemic clam hemocytes with cytoplasmically sequestered p53. Cancer Res 68:777–782

    Article  PubMed  Google Scholar 

  • Böttger SA, Taraska N, Lock N, Walker CW (In prep.). Frequencies of neoplasia in Mya arenaria along the East Coast of North America. Diseases of Aquatic Organisms.

    Google Scholar 

  • Conte M, Deri P, Isolani ME, Mannini L, Batistoni R (2009) A mortalin-like gene is crucial for planarian stem cell viability. Dev Biol 334:109–118

    Article  PubMed  CAS  Google Scholar 

  • Deng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A (2007) BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12:171–185

    Article  PubMed  CAS  Google Scholar 

  • Deocaris CC, Kaul SC, Wadhwa R (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60.Cell Stress Chaperones 11:116 –128

    Article  PubMed  CAS  Google Scholar 

  • Dundas SR, Lawrie LC, Rooney PH, Murray GI (2005) Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J Pathol 205:74–81

    Article  PubMed  CAS  Google Scholar 

  • Galigniana MD, Harrell JM, O’Hagen HM, Ljungman M, Pratt WB (2004) Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus. J Biol Chem 279:22483–22489

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS, Ramachandra NB, Bowes T, Singh B (2008) Unusual cellular disposition of the mitochondrial molecular chaperones Hsp60, Hsp70 and Hsp10. Novartis Found Symp 291:59–68

    Article  PubMed  CAS  Google Scholar 

  • He S, Yang L, Lv Z, Hu W, Cao J, Wei J, Sun X, Yang J, Zheng H, Wu Z (2010) Molecular and functional characterization of a mortalin-like protein from Schistosoma japonicum (SjMLP/hsp70) as a member of the HSP70 family. Parasitol Res 107:955–966

    Article  PubMed  Google Scholar 

  • Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    Article  PubMed  CAS  Google Scholar 

  • Kaul SC, Deocaris CC, Wadhwa R (2007) Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 42:263–274

    Article  PubMed  CAS  Google Scholar 

  • Kelley ML, Winge P, Heaney JD, Stephens RE, Farell JH, Van Beneden RJ, Reinisch CL, Lesser MP, Walker CW (2001) Expression of homologues for p53 and p73 in the softshell clam (Mya arenaria), a naturally-occurring model for human cancer. Oncogene 20:748–758

    Article  PubMed  CAS  Google Scholar 

  • Marchenko ND, Wolff S, Erster S, Becker K, Moll UM (2007) Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26:923–934

    Article  PubMed  CAS  Google Scholar 

  • Mashanov VS, Zueva OR, Rojas-Catagena C, Garcia-Arraras JE (2010) Visceral regeneration in a sea cucumber involves extensive expression of survivin and mortalin homologs in the mesothelium. BMC Dev Biol 10:117

    Article  PubMed  CAS  Google Scholar 

  • McKay DB, Wilbanks SM, Flaherty KM, Ha JH, O’Brien MC, Shrivanee LL (1994) Stress-70 proteins and their interaction with nucleotides. In: Morimoto RI (ed) The biology of heat shock proteins and molecular chaperones. Cold Spring, Harbor, pp 153–177

    Google Scholar 

  • Moll UM, Riou G, Levine AJ (1992) Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A 89:7262–7266

    Article  PubMed  CAS  Google Scholar 

  • Moll UM, LaQuaglia M, Benard J, Riou G (1995) Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci U S A 92:4407–4411

    Article  PubMed  CAS  Google Scholar 

  • Moll UM, Ostermeyer AG, Haladay R, Winkfield B, Frazier M, Zambetti G (1996) Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol 16:1126–1137

    PubMed  CAS  Google Scholar 

  • Morano KA (2007) New tricks for an old dog: the evolving world of Hsp70. Ann N Y Acad Sci 1113:1–14

    Article  PubMed  CAS  Google Scholar 

  • Nagpal J, Jamoona A, Gulati ND, Mohan A, Braun A, Murali R, Jhanwar-Uniyal M (2006) Revisiting the role of p53 in primary and secondary glioblastomas. Anticancer Res 26:4633–4639

    Google Scholar 

  • Nikolaev AY, Li M, Puskas N, Qin J, Gu W (2003) Parc: a cytoplasmic anchor for p53. Cell 112:29–40

    Article  PubMed  CAS  Google Scholar 

  • Talos F, Petrenko O, Mena P, Moll UM (2005) Mitochondrially targeted p53 has tumor suppressor activities in vivo. Cancer Res 65:9971–9981

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa R, Kaul SC, Mitsui Y, Sugimoto Y (1993a) Differential subcellular distribution of mortalin in mortal and immortal mouse and human fibroblasts. Exp Cell Res 207:442–448

    Article  CAS  Google Scholar 

  • Wadhwa R, Kaul SC, Ikawa Y, Sugimoto Y (1993b) Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype. J Biol Chem 268:6615–6621

    CAS  Google Scholar 

  • Wadhwa R, Takano S, Kaur K, Deocaris CC, Pereira-Smith OM, Reddel RR, Kaul SC (2006) Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer 118:2973–2980

    Article  PubMed  CAS  Google Scholar 

  • Walker CW, Böttger SA (2008) A naturally occurring cancer with molecular connectivity to human diseases. Cell Cycle 7:2286–2289

    PubMed  CAS  Google Scholar 

  • Walker C, Böttger S, Low B (2006) Mortalin-based cytoplasmic sequestration of p53 in a nonmammalian cancer model. Am J Pathol 168:1526–1530

    Article  PubMed  CAS  Google Scholar 

  • Walker C, Böttger SA, Mulkern J, Jerszyk E, Litvaitis M, Lesser M (2009) Mass culture and characterization of tumor cells from a naturally occurring invertebrate cancer model: Applications for human and animal disease and environmental health. Biol Bull 216:23–39

    PubMed  Google Scholar 

  • Yee KS, Vousden KH (2005) Complicating the complexity of p53. Carcinogenesis 26:1317–1322

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama K, Fukumoto K, Murakami T, Harada S, Hosono R, Wadhwa R, Mitsui Y, Ohkuma S (2002) Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett 516:53–57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Cancer Institute grants (CA71008-01 and CA104112-01), UNH Sea Grant (R/FMD-166) and UNH Hatch Grant (353) to CWW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Walker, C.W., Low, B., Böttger, S. (2012). Mortalin in Invertebrates and The Induction of Apoptosis by Wild-Type p53 Following Defeat of Mortalin-Based Cytoplasmic Sequestration in Cancerous Clam Hemocytes. In: Kaul, S., Wadhwa, R. (eds) Mortalin Biology: Life, Stress and Death. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3027-4_6

Download citation

Publish with us

Policies and ethics