Skip to main content

Cell Internalizing Anti-mortalin Antibody as a Nanocarrier

  • Chapter
  • First Online:
Mortalin Biology: Life, Stress and Death
  • 637 Accesses

Abstract

Nanocarriers are the small molecules with capability of adhering to or pass through the cell membrane and deliver the genes, peptides, growth factors or toxins to living cells. They form an extremely important part of gene delivery and molecular therapeutics. Besides the viral modes of gene delivery, cationic carrier molecules (e.g., liposome and polymers) that form non-covalent complexes with DNA constitute a major class of nanocarriers. Although relatively less efficient than viral systems, cationic carrier molecules have inherent advantage of flexibility and safety. Their derivatives in conjugation with functional molecules such as, peptides, proteins, growth factors and antibodies have been in focus to generate nanocarriers with low toxicity, high stability, high efficiency and cell-specific targeting features. In this chapter, we discuss the use of cell internalizing antibodies against mortalin protein as nanocarriers. Internalizing anti-mortalin antibodies was employed for (i) internalization of nanoparticles (quantum dots, QD) to generate illuminating cells and (ii) gene delivery. Furthermore, cationic polymer polyethylenimine (PEI) and internalizing anti-mortalin antibody complex was shown to enhance the gene delivery specifically to cancer cells and thus enabling the latter to serve as a novel cancer-targeting nanocarrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    Article  PubMed  CAS  Google Scholar 

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763

    Article  PubMed  CAS  Google Scholar 

  • Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC (2005) Quantum dots in bio-imaging: Revolution by the small. Biochem Biophys Res Commun 329:1173–1177

    Article  PubMed  CAS  Google Scholar 

  • Bakalova R, Zhelev Z, Ohba H, Baba Y (2005) Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins. J Am Chem Soc 127:9328–9329

    Article  PubMed  CAS  Google Scholar 

  • Ballou B, Ernst LA, Waggoner AS (2005) Fluorescence imaging of tumors in vivo. Curr Med Chem 12:795–805

    Article  PubMed  CAS  Google Scholar 

  • Bentzen EL, Tomlinson ID, Mason J, Gresch P, Warnement MR, Wright D, Sanders-Bush E, Blakely R, Rosenthal SJ (2005) Surface modification to reduce nonspecific binding of quantum dots in live cell assays. Bioconjug Chem 16:1488–1494

    Article  PubMed  CAS  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301

    Article  PubMed  CAS  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    Article  PubMed  CAS  Google Scholar 

  • Chiu SJ, Ueno NT, Lee RJ (2004) Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, Herceptin) conjugated polyethylenimine. J Control Release 97:357–369

    Article  PubMed  CAS  Google Scholar 

  • Cussac D, Pichereaux C, Colomba A, Capilla F, Pont F, Gaits-Iacovoni F, Lamant L, Espinos E, Burlet-Schiltz O, Monsarrat B et al (2006) Proteomic analysis of anaplastic lymphoma cell lines: identification of potential tumour markers. Proteomics 6:3210–3222

    Article  PubMed  CAS  Google Scholar 

  • Densmore CL, Kleinerman ES, Gautam A, Jia SF, Xu B, Worth LL, Waldrep JC, Fung YK, T’Ang A, Knight V (2001) Growth suppression of established human osteosarcoma lung metastases in mice by aerosol gene therapy with PEI-p53 complexes. Cancer Gene Ther 8:619–627

    Article  PubMed  CAS  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  • Duan Y, Guan X, Ge J, Quan D, Zhuo Y, Ye H, Shao T (2008) Cationic nano-copolymers mediated IKKbeta targeting siRNA inhibit the proliferation of human Tenon’s capsule fibroblasts in vitro. Mol Vis 14:2616–2628

    PubMed  CAS  Google Scholar 

  • Dundas SR, Lawrie LC, Rooney PH, Murray GI (2004) Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J Pathol 205:74–81

    Article  Google Scholar 

  • Fan H, Leve EW, Scullin C, Gabaldon J, Tallant D, Bunge S, Boyle T, Wilson MC, Brinker CJ (2005) Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett 5:645–648

    Article  PubMed  CAS  Google Scholar 

  • Fu A, Gu W, Larabell C, Alivisatos AP (2005) Semiconductor nanocrystals for biological imaging. Curr Opin Neurobiol 15:568–575

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Li B, Li H, Zhang X, Zhang D, Zhao L, Wang C, Fang C, Qian W, Hou S et al (2009) Development and characterization of a fully functional small anti-HER2 antibody. BMB Rep 42:636–641

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Pellegrino T, Parak WJ, Boudreau R, Le Gros MA, Gerion D, Alivisatos AP, Larabell CA (2005) Quantum-dot-based cell motility assay. Sci STKE 2005:l5

    Google Scholar 

  • Guillem VM, Tormo M, Revert F, Benet I, Garcia-Conde J, Crespo A, Alino SF (2002) Polyethyleneimine-based immunopolyplex for targeted gene transfer in human lymphoma cell lines. J Gene Med 4:170–182

    Article  PubMed  Google Scholar 

  • Guo W, Lee RL (1999) Receptor-targeted gene delivery via folate-conjugated polyethylenimine. AAPS PharmSci 1:E19

    Google Scholar 

  • Hanifi A, Fathi MH, Sadeghi HM, Varshosaz J (2010) Mg2  +substituted calcium phosphate nano particles synthesis for non viral gene delivery application. J Mater Sci Mater Med 21:2393–2401

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa U, Nomura SM, Kaul SC, Hirano T, Akiyoshi K (2005) Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochem Biophys Res Commun 331:917–921

    Article  PubMed  CAS  Google Scholar 

  • Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem Biophys Res Commun 314:46–53

    Article  PubMed  CAS  Google Scholar 

  • Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ (2005) Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res 65:8984–8992

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal JK, Simon SM (2007) Optical monitoring of single cells using quantum dots. Methods Mol Biol 374:93–104

    PubMed  Google Scholar 

  • Kaul Z, Yaguchi T, Kaul SC, Hirano T, Wadhwa R, Taira K (2003) Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res 13:503–507

    Article  PubMed  Google Scholar 

  • Kaul SC, Aida S, Yaguchi T, Kaur K, Wadhwa R (2005) Activation of wild type p53 function by its mortalin-binding, cytoplasmically localizing carboxyl terminus peptides. J Biol Chem. 280:39373–39379

    Article  PubMed  CAS  Google Scholar 

  • Kaul SC, Deocaris CC, Wadhwa R (2007a) Three faces of mortalin: A housekeeper, guardian and killer. Exp Gerontol 42:263–274

    Article  CAS  Google Scholar 

  • Kaul Z, Yaguchi T, Harada JI, Ikeda Y, Hirano T, Chiura HX, Kaul SC, Wadhwa R (2007b) An antibody-conjugated internalizing quantum dot suitable for long-term live imaging of cells. Biochem Cell Biol 85:133–140

    Article  CAS  Google Scholar 

  • Kunath K, Merdan T, Hegener O, Haberlein H, Kissel T (2003) Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. J Gene Med 5:588–599

    Article  PubMed  CAS  Google Scholar 

  • Lopes de Menezes DE, Pilarski LM, Allen TM (1998) In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res 58:3320–3330

    Google Scholar 

  • Lu WJ, Lee NP, Kaul SC, Lan F, Poon RT, Wadhwa R, Luk JM (2011) Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ 18:1046–1056

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Izumi H, Kanai M, Kabuyama Y, Ahn NG, Fukasawa K (2006) Mortalin controls centrosome duplication via modulating centrosomal localization of p53. Oncogene. 25:5377–5390

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Takahashi N, Tagawa T, Nagaike K, Iwatsuru M (1997) Immunoliposomes bearing polyethyleneglycol-coupled Fab’ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett 413:177–180

    Article  PubMed  CAS  Google Scholar 

  • Mason JN, Tomlinson ID, Rosenthal SJ, Blakely RD (2005) Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates. Methods Mol Biol 303:35–50

    PubMed  CAS  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  PubMed  CAS  Google Scholar 

  • Merdan T, Callahan J, Petersen H, Kunath K, Bakowsky U, Kopeckova P, Kissel T, Kopecek J (2003) Pegylated polyethylenimine-Fab’ antibody fragment conjugates for targeted gene delivery to human ovarian carcinoma cells. Bioconjug Chem 14:989–996

    Article  PubMed  CAS  Google Scholar 

  • Moffatt S, Cristiano RJ (2006) PEGylated J591 mAb loaded in PLGA-PEG-PLGA tri-block copolymer for targeted delivery: in vitro evaluation in human prostate cancer cells. Int J Pharm 317:10–13

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, Shao Y, Nielsen UB, Marks JD, Moore D, et al (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8:1172–1181

    PubMed  CAS  Google Scholar 

  • Park JS, Na K, Woo DG, Yang HN, Kim JM, Kim JH, Chung HM, Park KH (2009) Non-viral gene delivery of DNA polyplexed with nanoparticles transfected into human mesenchymal stem cells. Biomaterials 31:124–132

    Article  PubMed  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  PubMed  CAS  Google Scholar 

  • Pilzer D, Saar M, Koya K, Fishelson Z (2010) Mortalin inhibitors sensitize K562 leukemia cells to complement-dependent cytotoxicity. Int J Cancer 126:1428–1435

    PubMed  CAS  Google Scholar 

  • Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, Iyer G, Weiss S (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27:1679–1687

    Article  PubMed  CAS  Google Scholar 

  • Santra S, Dutta D, Walter GA, Moudgil BM (2005) Fluorescent nanoparticle probes for cancer imaging. Technol Cancer Res Treat 4:593–602

    PubMed  CAS  Google Scholar 

  • Sapra P, Allen TM (2002) Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res 62:7190–7194

    PubMed  CAS  Google Scholar 

  • Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, Zhao R, Puravs E, Tra J, Michael CW et al (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616

    Article  PubMed  CAS  Google Scholar 

  • Shiota M, Ikeda Y, Kaul Z, Itadani J, Kaul SC, Wadhwa R (2007) Internalizing antibody-based targeted gene delivery for human cancer cells. Hum Gene Ther 18:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Silver J, Ou W (2005) Photoactivation of quantum dot fluorescence following endocytosis. Nano Lett 5:1445–1449

    Article  PubMed  CAS  Google Scholar 

  • Strehblow C, Schuster M, Moritz T, Kirch HC, Opalka B, Petri JB (2005) Monoclonal antibody-polyethyleneimine conjugates targeting Her-2/neu or CD90 allow cell type-specific nonviral gene delivery. J Control Release 102:737–747

    Article  PubMed  CAS  Google Scholar 

  • Sugano M, Egilmez NK, Yokota SJ, Chen FA, Harding J, Huang SK, Bankert RB (2000) Antibody targeting of doxorubicin-loaded liposomes suppresses the growth and metastatic spread of established human lung tumor xenografts in severe combined immunodeficient mice. Cancer Res 60:6942–6949

    PubMed  CAS  Google Scholar 

  • Tomlinson ID, Mason JN, Blakely RD, Rosenthal SJ (2005) Peptide-conjugated quantum dots: imaging the angiotensin type 1 receptor in living cells. Methods Mol Biol 303:51–60

    PubMed  CAS  Google Scholar 

  • Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998

    Article  PubMed  CAS  Google Scholar 

  • Vu TQ, Maddipati R, Blute TA, Nehilla BJ, Nusblat L, Desai TA (2005) Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano Lett 5:603–607

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa R, Kaul SC, Ikawa Y, Sugimoto Y (1993a) Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype. J Biol Chem 268:6615–6621

    CAS  Google Scholar 

  • Wadhwa R, Kaul SC, Mitsui Y, Sugimoto Y (1993b) Differential subcellular distribution of mortalin in mortal and immortal mouse and human fibroblasts. Exp Cell Res 207:442–448

    Article  CAS  Google Scholar 

  • Wadhwa R, Sugihara T, Yoshida A, Nomura H, Reddel RR, Simpson R, Maruta H, Kaul SC (2000) Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res 60:6818–6821

    PubMed  CAS  Google Scholar 

  • Wadhwa R, Ando H, Kawasaki H, Taira K, Kaul SC (2003) Targeting mortalin using conventional and RNA-helicase-coupled hammerhead ribozymes. EMBO Rep 4:595–601

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa R, Takano S, Taira K, Kaul SC (2004) Reduction in mortalin level by its antisense expression causes senescence-like growth arrest in human immortalized cells. J Gene Med 6:439–444

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa R, Takano S, Kaur K, Aida S, Yaguchi T, Kaul Z, Hirano T, Taira K, Kaul SC (2005) Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochem J 391:185–190

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa R, Takano S, Kaur K, Deocaris CC, Pereira-Smith OM, Reddel RR, Kaul SC (2006) Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer 118:2973–2980

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Qiu J, Wang R, Krause A, Boyer JL, Hackett NR, Crystal RG (2010) Persistent expression of biologically active anti-HER2 antibody by AAVrh.10-mediated gene transfer. Cancer Gene Ther 17:559–570

    Article  PubMed  CAS  Google Scholar 

  • Young SH, Rozengurt E (2006) Qdot nanocrystal conjugates conjugated to bombesin or ANG II label the cognate G protein-coupled receptor in living cells. Am J Physiol Cell Physiol 290:C728–732

    Article  PubMed  CAS  Google Scholar 

  • Zanta MA, Boussif O, Adib A, Behr JP (1997) In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug Chem 8:839–844

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil C. Kaul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kaul, Z., Yaguchi, T., Wadhwa, R., Kaul, S.C. (2012). Cell Internalizing Anti-mortalin Antibody as a Nanocarrier. In: Kaul, S., Wadhwa, R. (eds) Mortalin Biology: Life, Stress and Death. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3027-4_21

Download citation

Publish with us

Policies and ethics