Skip to main content

Catecholamine Regulated Protein (CRP40), A Splice Variant of Mortalin-2: Functional Role in CNS Disorders

  • Chapter
  • First Online:
  • 641 Accesses

Abstract

Heat shock proteins are constitutively expressed, but are also induced by heat and other environmental stressors. These proteins play an important role in maintaining correct folding of cellular proteins; protecting the cell from deleterious stresses by inhibiting the aggregation of partially denatured proteins and refolding them to correct confirmations. The Catecholamine Regulated Protein of size 40-kDa (CRP40) is a heat shock-like splice variant of Mortalin-2; its peptide sequence is identical to the carboxyl terminal of Mortalin-2. This protein is found co-localized with tyrosine hydroxylase in the dopaminergic pathways of the midbrain. CRP40 is differentially expressed by dopamine D1 and D2 receptor antagonists; when dopamine concentrations increase, CRP40 is upregulated. Since this increased CRP40 protein expression at high levels of DA is inhibited by treatment of cells with antioxidants, and since the natural oxidation of excess dopamine forms a potent toxic species of oxidant, CRP40 is implicated in the response pathways associated with oxidative stress. Oxidative stress and mitochondrial dysfunction have been implicated in dopaminergic disorders of the brain. CRP40 and Mortalin-2, therefore, are of particularly interest when conducting novel research in the realm of Parkinson’s disease and Schizophrenia. Further, as a splice variant of Mortalin-2, CRP40 could play a central role in research involving other Mortalin-related diseases such as stroke and ischemia, carcinogenesis, Alzheimer’s disease, and Huntington’s disease. With so many unexplored avenues, CRP40 could boast an exciting future in health research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL, Gorman JM, Laruelle M (2000) From the cover: increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A 97:8104–8109

    Article  PubMed  CAS  Google Scholar 

  • Abraham WC, Logan B, Thompson VL, Williams JM, Tate WP (1997) Sequence-independent effects of phosphorothiolated oligonucleotides on synaptic transmission and excitability in the hippocampus in vivo. Neuropharmacol 36:345–352

    Article  CAS  Google Scholar 

  • Ashok BT, Kim E, Mittelman A, Tiwari RK (2001) Proteasome inhibitors differentially affect heat shock protein response in cancer cells. Int J Mol Med 8:385–390

    PubMed  CAS  Google Scholar 

  • Beaudet A, Descarries L (1984) Fine structures of monoamine axon terminals in cerebral cortex. Neurol Neurobiol 10:77–93

    Google Scholar 

  • Beere HM (2001) Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE 2001:re1

    Article  PubMed  CAS  Google Scholar 

  • Berman SB, Hastings TG (1997) Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species. J Neurochem 69:1185–1195

    Article  PubMed  CAS  Google Scholar 

  • Berman SB, Zigmond MJ, Hastings TG (1996) Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J Neurochem 67:593–600

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  PubMed  CAS  Google Scholar 

  • Borer RA, Lehner CF, Eppenberger HM, Nigg EA (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56:379–390

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Article  PubMed  CAS  Google Scholar 

  • Cato AC, Mink S (2001) BAG-1 family of cochaperones in the modulation of nuclear receptor action. J Steroid Biochem Mol Biol 78:379–388

    Article  PubMed  CAS  Google Scholar 

  • Chiueh CC, Rauhala P (1998) Free radicals and MPTP-induced selective destruction of substantia nigra compacta neurons. Adv Pharmacol 42:796–800

    Article  PubMed  CAS  Google Scholar 

  • Cohen G (2000) Oxidative stress, mitochondrial respiration, and Parkinson’s disease. Ann N Y Acad Sci 899:112–120

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9:92–97

    Article  PubMed  CAS  Google Scholar 

  • Dittmar KD, Pratt WB (1997) Folding of the glucocorticoid receptor by the reconstituted Hsp90-based chaperone machinery. The initial hsp90.p60.hsp70-dependent step is sufficient for creating the steroid binding conformation. J Biol Chem 272:13047–13054

    Article  PubMed  CAS  Google Scholar 

  • Friedman A, Galazka-Friedman J (2001) The current state of free radicals in Parkinson’s disease. Nigral iron as a trigger of oxidative stress. Adv Neurol 86:137–142

    PubMed  CAS  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    Article  PubMed  CAS  Google Scholar 

  • Gabriele J, Culver K, Sharma S, Zhang B, Szechtman H, Mishra R (2003) Asymmetric modulation of a catecholamine-regulated protein in the rat brain, following quinpirole administration. Synapse 49:261–269

    Article  PubMed  CAS  Google Scholar 

  • Gabriele J, Rajaram M, Zhang BJ, Sharma S, Mishra RK (2002) Modulation of a 40-kDa catecholamine-regulated protein following D-amphetamine treatment in discrete brain regions. Eur J Pharmacol 453:13–19

    Article  PubMed  CAS  Google Scholar 

  • Gabriele JP, Chong VZ, Pontoriero GF, Mishra RK (2005) Decreased expression of a 40-kDa catecholamine-regulated protein in the ventral striatum of schizophrenic brain specimens from the Stanley Foundation Neuropathology Consortium. Schizophr Res 74:111–119

    Article  PubMed  Google Scholar 

  • Gabriele JP, Pontoriero GF, Thomas N, Ferro MA, Mahadevan G, MacCrimmon DJ, Pristupa ZB, Mishra RK (2010a) Antipsychotic drug use is correlated with CRP40/mortalin mRNA expression in the dorsolateral prefrontal cortex of human postmortem brain specimens. Schizophr Res 119:228–231

    Article  Google Scholar 

  • Gabriele N, Pontoriero GF, Thomas N, Shethwala SK, Pristupa ZB, Gabriele JP (2010b) Knockdown of mortalin within the medial prefrontal cortex impairs normal sensorimotor gating. Synapse 64:808–813

    Article  CAS  Google Scholar 

  • Goto A, Doering L, Nair VD, Mishra RK (2001) Immunohistochemical localization of a 40-kDa catecholamine regulated protein in the nigrostriatal pathway. Brain Res 900:314–319

    Article  PubMed  CAS  Google Scholar 

  • Hastings TG, Lewis DA, Zigmond MJ (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci U S A 93:1956–1961

    Article  PubMed  CAS  Google Scholar 

  • Hingorani K, Szebeni A, Olson MO (2000) Mapping the functional domains of nucleolar protein B23. J Biol Chem 275:24451–24457

    Article  PubMed  CAS  Google Scholar 

  • Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274:6875–6881

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci U S A 94:7531–7536

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (1994) Oxidative damage in neurodegenerative disease. Lancet 344:796–798

    Article  PubMed  CAS  Google Scholar 

  • Jonnson G (1971) Quantitation of fluorescence of biogenic monoamines. Prog Histochem Cytochem 2:299–344

    Google Scholar 

  • Kalivendi SV, Kotamraju S, Zhao H, Joseph J, Kalyanaraman B (2001) Doxorubicin-induced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase. Effect of antiapoptotic antioxidants and calcium. J Biol Chem 276:47266–47276

    Article  PubMed  CAS  Google Scholar 

  • Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183–201

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, Nunomura A, Castellani RJ, Perry G, Smith MA, Itoyama Y (2002) Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 9:244–248

    Article  PubMed  CAS  Google Scholar 

  • Lal S, de la Vega CE (1975) Apomorphine and psychopathology. J Neurol Neurosurg Psychiatry 38:722–726

    Article  PubMed  CAS  Google Scholar 

  • Lang AE, Lozano AM (1998) Parkinson’s disease. First of two parts. N Engl J Med 339:1044–1053

    Article  PubMed  CAS  Google Scholar 

  • Liu PC, Thiele DJ (1999) Modulation of human heat shock factor trimerization by the linker domain. J Biol Chem 274:17219–17225

    Article  PubMed  CAS  Google Scholar 

  • Migliore L, Petrozzi L, Lucetti C, Gambaccini G, Bernardini S, Scarpato R, Trippi F, Barale R, Frenzilli G, Rodilla V, Bonuccelli U (2002) Oxidative damage and cytogenetic analysis in leukocytes of Parkinson’s disease patients. Neurology 58:1809–1815

    Article  PubMed  CAS  Google Scholar 

  • Modi PI, Kashyap A, Nair VD, Ross GM, Fu M, Savelli JE, Marcotte ER, Barlas C, Mishra RK (1996) Modulation of brain catecholamine absorbing proteins by dopaminergic agents. Eur J Pharmacol 299:213–220

    Article  PubMed  CAS  Google Scholar 

  • Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  PubMed  CAS  Google Scholar 

  • Mouradian MM (2002) Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology 58:179–185

    Article  PubMed  Google Scholar 

  • Nair VD, Mishra RK (2001) Molecular cloning, localization and characterization of a 40-kDa catecholamine-regulated protein. J Neurochem 76:1142–1152

    Article  PubMed  CAS  Google Scholar 

  • Nanasi PP, Jednakovits A (2001) Multilateral in vivo and in vitro protective effects of the novel heat shock protein coinducer, bimoclomol: results of preclinical studies. Cardiovasc Drug Rev 19:133–151

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW (1992) An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol 32(Suppl):S2–S9

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW (1993) A radical hypothesis for neurodegeneration. Trends Neurosci 16:439–444

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB, Silverstein AM, Galigniana MD (1999) A model for the cytoplasmic trafficking of signalling proteins involving the hsp90-binding immunophilins and p50cdc37. Cell Signal 11:839–851

    Article  PubMed  CAS  Google Scholar 

  • Prutz WA, Butler J, Land EJ (1983) Phenol coupling initiated by one-electron oxidation of tyrosine units in peptides and histone. Int J Radiat Biol Relat Stud Phys Chem Med 44:183–196

    Article  PubMed  CAS  Google Scholar 

  • Rajput AH, Rozdilsky B, Rajput A (1991) Accuracy of Clinical-Diagnosis in Parkinsonism—A Prospective-Study. Can J Neurol Sci 18:275–278

    PubMed  CAS  Google Scholar 

  • Ross GM, McCarry BE, Thakur S, Mishra RK (1993) Identification of novel catecholamine absorbing proteins in the central nervous system. J Mol Neurosci 4:141–148

    Article  PubMed  CAS  Google Scholar 

  • Ross GM, McCarry BE, Mishra RK (1995) Covalent affinity labeling of brain catecholamine-absorbing proteins using a high-specific-activity substituted tetrahydronaphthalene. J Neurochem 65:2783–2789

    Article  PubMed  CAS  Google Scholar 

  • Rotman A, Daly JW, Creveling CR (1976) Oxygen-dependent reaction of 6-hydroxydopamine, 5,6-dihydroxytryptamine, and related compounds with proteins in vitro: a model for cytotoxicity. Mol Pharmacol 12:887–899

    PubMed  CAS  Google Scholar 

  • Saner A, Thoenen H (1971) Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol Pharmacol 7:147–154

    PubMed  CAS  Google Scholar 

  • Scheulen M, Wollenberg P, Bolt HM, Kappus H, Remmer H (1975) Irreversible binding of DOPA and dopamine metabolites to protein by rat liver microsomes. Biochem Biophys Res Commun 66:1396–1400

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Kapur S (2000) Schizophrenia: more dopamine, more D2 receptors. Proc Natl Acad Sci U S A 97:7673–7675

    Article  PubMed  CAS  Google Scholar 

  • Serra JA, Dominguez RO, de Lustig ES, Guareschi EM, Famulari AL, Bartolome EL, Marschoff ER (2001) Parkinson’s disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson’s, Alzheimer’s and vascular dementia patients. J Neural Transm 108:1135–1148

    Article  PubMed  CAS  Google Scholar 

  • Sharan N, Chong VZ, Nair VD, Mishra RK, Hayes RJ, Gardner EL (2003) Cocaine treatment increases expression of a 40 kDa catecholamine-regulated protein in discrete brain regions. Synapse 47:33–44

    Article  PubMed  CAS  Google Scholar 

  • Sheth K, De A, Nolan B, Friel J, Duffy A, Ricciardi R, Miller-Graziano C, Bankey P (2001) Heat shock protein 27 inhibits apoptosis in human neutrophils. J Surg Res 99:129–133

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65:363–366

    Article  PubMed  CAS  Google Scholar 

  • Stern MB (1997) Contemporary approaches to the pharmacotherapeutic management of Parkinson’s disease: an overview. Neurology 49:S2–S9

    Article  PubMed  CAS  Google Scholar 

  • Szebeni A, Olson MO (1999) Nucleolar protein B23 has molecular chaperone activities. Protein Sci 8: 905–912

    Article  PubMed  CAS  Google Scholar 

  • Terland O, Flatmark T, Tangeras A, Gronberg M (1997) Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species. J Mol Cell Cardiol 29:1731–1738

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa R, Takano S, Robert M, Yoshida A, Nomura H, Reddel RR, Mitsui Y, Kaul SC (1998) Inactivation of tumor suppressor p53 by Mot-2, a hsp70 family member. J Biol Chem 273:29586–29591

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB (1988) Iron in the brain: implications for Parkinson’s and Alzheimer’s diseases. Mt Sinai J Med 55:97–101

    PubMed  CAS  Google Scholar 

  • Zigmond MJ, Hastings TG (1998) Neurochemical responses to lesions of dopaminergic neurons: implications for compensation and neuropathology. Adv Pharmacol 42:788–792

    Article  PubMed  CAS  Google Scholar 

  • Zinsmaier KE, Bronk P (2001) Molecular chaperones and the regulation of neurotransmitter exocytosis. Biochem Pharmacol 62:1–11

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Gabriele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gabriele, J.P., Groleau, S.E., Daya, R.P., Pristupa, Z.B., Mishra, R.K. (2012). Catecholamine Regulated Protein (CRP40), A Splice Variant of Mortalin-2: Functional Role in CNS Disorders. In: Kaul, S., Wadhwa, R. (eds) Mortalin Biology: Life, Stress and Death. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3027-4_12

Download citation

Publish with us

Policies and ethics