Skip to main content

A Review of the Food Safety of Bt Crops

  • Chapter
  • First Online:

Abstract

There is a 50-year history of safe use and consumption of agricultural food crops sprayed with commercial Bt (Bacillus thuringiensis) microbial pesticides and a 14 year history of safe consumption of food and feed derived from Bt crops. This review summarizes the published literature addressing the safety of Cry insect control proteins found in both Bt microbial pesticides and those introduced into Bt agricultural crops. A discussion on the species-specific mode of action of Cry proteins to control target insect pests is presented. This information provides the scientific basis for the absence of toxicity of Cry proteins towards non-target organisms that has been confirmed in numerous mammalian toxicology studies. A human dietary exposure assessment for Cry proteins has also been provided which includes information that food processing of Bt crops such as maize leads to loss of functionally active Cry proteins in processed food products. Lastly the food and feed safety benefits of Bt crops are briefly summarized including lower insecticide use and reduction in fumonisin mycotoxin contamination of grain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    100 µg Cry1Ac/25 gm mouse ~ 4000 µg/kg body weight; human intake of Cry1Ab protein from consumption of MON 810 maize (YIELDGARD Corn Borer®) was estimated to be 0.008 µg/kg body weight (Hammond and Jez 2011).

    ® Maalox—registered trademark of Novartis.

    ® YIELDGARD Corn Borer—registered trademark of Monsanto Technology, LLC.

References

  • Adel-Patient K, Guimaraes VD, Paris A, Drumare MF, Ah-Leung S, Lamourette P, Nevers MC, Canlet C, Molina J, Bernard H, Créminon C, Wal JM (2010) Immunological and metabolomic impacts of administration of Cry1Ab protein and MON 810 maize in mouse. PLoS One 6(1):e16346. doi:10.1371/journal.pone.0016346

    Article  Google Scholar 

  • Appenzeller LM, Malley LA, MacKenzie SA, Everds N, Hoban D, Delaney B (2009) Subchronic feeding study with genetically modified stacked trait lepidopteran and coleopteran resistant (DAS Ø15Ø7 1 x DAS-59122-7) maize grain in Sprague-Dawley rats. Food Chem Toxicol 47:1512–1520

    Article  CAS  Google Scholar 

  • Aris A, Leblanc S (2011) Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Reprod Toxicol 31:528–533

    Article  CAS  Google Scholar 

  • Berk Z (1992) Technology of production of edible flours and protein products from soybeans. FAO Agricultural Services Bulletin No. 97

    Google Scholar 

  • Betz FS, Hammond BG, Fuchs RL (2000) Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul Toxicol Pharmacol 32:156–173

    Article  CAS  Google Scholar 

  • Bogani P, Minunni M, Spiriti M, Zavaglia M, Tombelli S (2008) Transgenes monitoring in an industrial soybean processing chain by DNA-based conventional approaches and biosensors. Food Chem 113:658–664

    Article  Google Scholar 

  • Bondzio A, Stumpff F, Schön J, Martens H, Einspanier R (2008) Impact of Bacillus thuringiensis toxin Cry1Ab on rumen epithelial cells (REC)—A new in vitro model for safety assessment of recombinant food compounds. Food Chem Toxicol 46:1976–1984

    Article  CAS  Google Scholar 

  • Branden C, Tooze J (2001) Introduction to protein structure. Garland Publishing, New York

    Google Scholar 

  • Brake J, Faust MA, Stein J (2003) Evaluation of transgenic event Bt 11 hybrid maize in broiler chickens. Poult Sci 82:551–559

    CAS  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435

    Article  CAS  Google Scholar 

  • Cao S, He X, Xu W, Ran W, Liang L, Luo Y, Yuan Y, Zhang N, Zhou X, Huang K (2010) Safety assessment of Cry1C protein from genetically modified rice according to the national standards of PR China for a new food source. Regul Toxicol Pharmacol 58(3):474–481

    Article  CAS  Google Scholar 

  • CAST (2003) Mycotoxins. Risks in plant, animal, and human systems. Council for Agricultural Science and Technology. Task Force Report No. 139

    Google Scholar 

  • Chowdhury EH, Kuribara H, Hino A, Sultana P, Mikami O, Shimada N, Guruge NS, Saito M, Nakajima Y (2003a) Detection of maize intrinsic and recombinant DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified maize Bt11. J Anim Sci 81:2546–2551

    CAS  Google Scholar 

  • Chowdhury EH, Shimada N, Murata H, Mikami O, Sultana P, Miyazaki S, Yoshioka M, Yamanaka N, Hirai N, Nakajima Y (2003b) Detection of Cry1Ab protein in the gastrointestinal contents but not in the visceral organs of genetically modified Bt11-fed calves. Vet Hum Toxicol 45:72–75

    CAS  Google Scholar 

  • Codex (2009) WHO/FAO. Foods derived from modern biotechnology, 2nd edn. Rome

    Google Scholar 

  • Codex (2010) Committee on Sampling and Detection Methods (CCMAS). Proposed draft guidelines on performance criteria and validation of methods for detection, identification, and quantification of specific DNA sequences and specific proteins in food (At step 5/8 of the procedure). ALINORM 10/33/23. Appendix III, pp 47–68

    Google Scholar 

  • Creighton TE (1993) Proteins: structures and molecular properties. W.H. Freeman and Company, New York

    Google Scholar 

  • Delaney B, Astwood JD, Cunny H, Eichen Coon R, Herouet-Guicheney C, MacIntosh S, Meyer LS, Privalle L, Gao Y, Mattsson J, Levine M (2008) Evaluation of protein safety in the context of agricultural biotechnology. Food Chem Toxicol 46:S71–S97

    CAS  Google Scholar 

  • de Luis R, Lavilla M, Sánchez L, Calvo MD, Pérez M (2009) Immunochemical detection of Cry1A(b) protein in model processed foods made with transgenic maize. Eur Food Res Technol 229:15–19

    Article  CAS  Google Scholar 

  • Dryzga MD, Yano BL, Andrus AK, Mattsson JL (2007) Evaluation of the safety and nutritional equivalence of a genetically modified cottonseed meal in a 90 day dietary toxicity study in rats. Food Chem Toxicol 45:1994–2004

    Article  CAS  Google Scholar 

  • Duensing WJ, Roskens AB, Alexander RJ (2003) Chapter 11. Maize dry milling: processes, products, and applications. In: White P, Johnson L (eds) Maize chemistry and technology, 2nd edn. AAOCS, St Paul

    Google Scholar 

  • EFSA (2005a) Opinion of the Scientific Panel on Genetically Modified Organisms on an application (Reference EFSA GMO UK 2004 01) for the placing on the market of glyphosate tolerant and insect-resistant genetically modified maize NK603 × MON810, for food and feed uses, and import and processing under Regulation (EC) No 1829/2003 from Monsanto (Question No EFSA Q-2004-086). EFSA J 309:1–22

    Google Scholar 

  • EFSA (2005b) Opinion of the Scientific Panel on Genetically Modified Organisms on an application (Reference EFSA GMO UK 2004 06) for the placing on the market of insect-protected glyphosate tolerant genetically modified maize MON863 × NK603, for food and feed uses, and import and processing under Regulation (EC) No 1829/2003 from Monsanto (Question No EFSA Q 2004 154). EFSA J 255:1–21

    Google Scholar 

  • EFSA (2005c) Opinion of the Scientific Panel on Genetically Modified Organisms on an application (Reference EFSA GMO BE 2004 07) for the placing on the market of insect protected glyphosate tolerant genetically modified maize MON863 × MON810 × NK603, for food and feed uses, and import and processing under Regulation (EC) No 1829/2003 from Monsanto (Question No EFSA Q 2004 159). EFSA J 256:1–25

    Google Scholar 

  • EFSA (2005d) Opinion of the Scientific Panel on Genetically Modified Organisms on a request from the Commission related to the Notification (Reference C/DE/02/9) for the placing on the market of insect-protected genetically modified maize MON 863 x MON 810, for import and processing, under Part C of Directive 2001/18/EC from Monsanto. EFSA J 251:1–22

    Google Scholar 

  • EFSA (2007) Opinion of the Scientific Panel on Genetically Modified Organisms on an application (Reference EFSA-GMO-NL-2005-12) for the placing on the market of insect-resistant genetically modified maize 59122, for food and feed uses, import and processing under Regulation (EC) No 1829/2003, from Pioneer Hi-Bred International, Inc. and Mycogen Seeds, c/o Dow Agrosciences LLC. EFSA J 470:1–25

    Google Scholar 

  • EFSA (2008) Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxicol 46:S2–S70

    Google Scholar 

  • EFSA (2011) Guidance for risk assessment of food and feed from genetically modified plants. EFSA J 9(5):2150

    Google Scholar 

  • EPA (1998) EPA Registration Eligibility Decision (RED) Bacillus thuringiensis EPA 738-R-98-004

    Google Scholar 

  • EPA (2001) Bacillus thuringiensis Cry1F protein and the genetic material necessary for its production in maize; exemption from the requirement for a tolerance. Fed Regist 66(109):30321

    Google Scholar 

  • EPA (2004) Bacillus thuringiensis VIP3A insect control protein and the genetic material necessary for its production; notice of a filing to a pesticide petition to amend the exemption from the requirement for a tolerance for a certain pesticide chemical in the food. Fed Regist 69(178):55605

    Google Scholar 

  • EPA (2008a) Exemption from the requirement of a tolerance for the Bacillus Thuringiensis Cry1A.105 protein in maize. 40 CFR 174.502

    Google Scholar 

  • EPA (2008b) Exemption from the requirement of a tolerance for the Bacillus Thuringiensis Cry2Ab2 protein in maize. 40 CFR 174.503

    Google Scholar 

  • EPA (2010) Biopesticide Registration Action Document. Bacillus thuringiensis Cry1Ac Protein and the Genetic Material (Vector PV-GMIR9) Necessary for Its Production in MON 87701 (OECD Unique Identifier: MON 877Ø1-2) Soybean (PC Code 006532). U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division. Accessed 8 Oct 2010

    Google Scholar 

  • Federici B, Siegel J (2008) Safety assessment of Bacillus thuringiensis and Bt crops used in insect control. In: Hammond BG (ed) Food safety of proteins in agricultural biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Finamore A, Roselli M, Britti S, Monastra G, Ambra R, Turrini A, Mengheri E (2008) Intestinal and peripheral immune response to MON810 maize ingestion in weaning and old mice. J Agric Food Chem 56:11533–11539

    Article  CAS  Google Scholar 

  • Fisher R, Rosner L (1959) Toxicology of the microbial insecticide, Thuricide. J Agric Food Chem 7:686–688

    Article  CAS  Google Scholar 

  • Flachowsky G, Chesson A, Aulrich K (2005a) Animal nutrition with feeds from genetically modified plants. Arch Anim Nutr 59:1–40

    Article  Google Scholar 

  • Flachowsky G, Halle I, Aulrich K (2005b) Long term feeding of Bt-maize—a ten generation study with quails. Arch Anim Nutr 59:449–451

    Article  Google Scholar 

  • Flachowsky G, Aulrich K, Bohme H, Halle I (2007) Studies on feeds from genetically modified plants (GMP)—Contributions to nutritional and safety assessment. Anim Feed Sci Technol 133:2–30

    Article  CAS  Google Scholar 

  • Folcher L, Delos M, Marengue E, Jarry M, Weissenberger A, Eychenne N, Regnault-Roger C (2010) Lower mycotoxin levels in Bt maize. Agron Sustain Dev 30:711–719

    Article  CAS  Google Scholar 

  • Frederiksen K, Rosenquist H, Jørgensen K, Wilcks A (2006) Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables. Appl Environ Microbiol 72(5):3435–3440

    Article  CAS  Google Scholar 

  • Goodman R, Vieths S, Sampson HA, Hill D, Ebisawa M, Taylor SL, Ree R van (2008) Allergenicity assessment of genetically modified crops—what makes sense? Nat Biotechnol 26:73–81

    Article  CAS  Google Scholar 

  • Griffiths JS, Haslam SM, Yang T, Garczynski SF, Mulloy B, Morris H, Cremer PS, Dell A, Adang MJ, Aroian RV (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307:922–925

    Article  Google Scholar 

  • Grothaus GD, Bandla M, Currier T, Giroux R, Jenkins GR, Lipp M, Shan G, Stave JW, Pantella V (2006) Immunoassay as an analytical tool in agricultural biotechnology. AOAC Int 89(4):913–928

    CAS  Google Scholar 

  • Guimaraes V, Drumare MF, Lereclus D, Gohar M, Lamourette P, Nevers MC, Vaisanen-Tunkelrott ML, Bernard H, Guillon B, Creminon C, Wal JM, Adel-Patient K (2010) In vitro digestion of Cry1Ab proteins and analysis of the impact on their immunoreactivity. J Agric Food Chem 58:3222–3231

    Article  CAS  Google Scholar 

  • Hammond B, Cockburn A (2008) The safety assessment of proteins introduced into crops developed through agricultural biotechnology: a consolidated approach to meet current and future needs. In: Hammond BG (ed) Food safety of proteins in agricultural biotechnology. CRC Press, New York

    Google Scholar 

  • Hammond BG, Jez JM (2011) Impact of food processing on the safety assessment for proteins introduced into biotechnology-derived soybean and maize crops. Food Chem Toxicol 49(4):711–721

    Article  CAS  Google Scholar 

  • Hammond BG, Dudek R, Lemen JK, Nemeth MA (2006a) Results of a 90-day safety assurance study with rats fed grain from maize borer-protected maize. Food Chem Toxicol 44(7):1092–1099

    Article  CAS  Google Scholar 

  • Hammond B, Lemen J, Dudek R, Ward D, Jiang C, Nemeth M, Burns J (2006b) Results of a 90-day safety assurance study with rats fed grain from maize rootworm-protected maize. Food Chem Toxicol 44(2):147–160

    Article  CAS  Google Scholar 

  • He XY, Huang KL, Li X, Qin W, Delaney B, Luo YB (2008) Comparison of grain from maize rootworm resistant transgenic DAS 59122-7 maize with non transgenic maize grain in a 90 day feeding study in Sprague Dawley rats. Food Chem Toxicol 46:1994–2002

    Article  CAS  Google Scholar 

  • Healy C, Hammond B, Kirkpatrick J (2008) Results of a 90 day safety assurance study with rats fed grain from maize rootworm protected, glyphosate tolerant MON 88017 maize. Food Chem Toxicol 46:2517–2524

    Article  CAS  Google Scholar 

  • Herman RA, Schafer BW, Korjagin VA, Ernest AD (2003) Rapid digestion of Cry34Ab1 and Cry35Ab1 in simulated gastric fluid. J Agric Food Chem 51:6823–6827

    Article  CAS  Google Scholar 

  • Herman RA, Storer NP, Gao Y (2006) Acid-induced unfolding kinetics in simulated gastric digestion of proteins. Regul Toxicol Pharmacol 46:93–99

    Article  CAS  Google Scholar 

  • Hofmann C, Luthy P, Hutter R, Piska V (1988a) Binding of the delta endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the Cabbage Butterfly (Pieris brassicae). Eur J Biochem 173:85–91

    Article  CAS  Google Scholar 

  • Hofmann C, Vanderbruggen H, Hofte H, Van Rie J, Jansens S, Van Mellaert H (1988b) Specificity of B. thuringiensis delta-endotoxins is correlated with the presence of high affinity binding sites in the brush-border membrane of target insect midgastrointestinal tracts. Proc Natl Acad Sci USA 85:7844–7848

    Article  CAS  Google Scholar 

  • Huang DF, Zhang J, Song FP, Lang ZH (2007) Microbial control and biotechnology research on Bacillus thuringiensis in China. J Invertebr Pathol 95:175–180

    Article  Google Scholar 

  • James C (2010) Global Status of Commercialized Biotech GM Crops: 2010 International Service for the Acquisition of Agri-biotech Applications (ISAAA). ISAAA Briefs brief 42

    Google Scholar 

  • Juberg DR, Herman RA, Thomas J, Delaney B (2009) Acute and Repeated Dose (28 Day) Mouse Oral Toxicology Studies with Cry34Ab1 and Cry35Ab1 Bt Proteins Used in Coleopteran Resistant DAS-59122-1 Maize. Regul Toxicol Pharmacol 54:154–163

    Article  CAS  Google Scholar 

  • Kilara A, Sharkasi T (1986) Effects of temperature on food proteins and its implications on functional properties. Crit Rev Food Sci Nutr 23(4):323–395

    Article  CAS  Google Scholar 

  • Kroghsbo S, Madsen C, Poulsen M, Schroder M, Kvist PH, Taylor M, Gatehouse A, Shu Q, Knudsen L (2008) Immunotoxicological studies of genetically modified rice expressing PHA-E lectin or Bt toxin in Wistar rats. Toxicology 245:24–34

    Article  CAS  Google Scholar 

  • Kouser S, Qaim M (2011) Impact of Bt cotton on pesticide poisoning in smallholder agriculture: a panel data analysis. Ecol Econ 70(11):2105–2113

    Article  Google Scholar 

  • Lambert B, Buysse L, Decock C, Jansens S, Piens C, Saey B, Seurinck J, Van Audenhove K, Van Rie J, Van Vliet A, Peferoen M (1996) A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family Noctuidae. Appl Environ Microbiol 62:80–86

    CAS  Google Scholar 

  • Latte KP, Appel KE, Lampen A (2011) Health benefits and possible risks of broccoli. Food Chem Toxicol 49:3287–3309

    Article  CAS  Google Scholar 

  • Li FQ, Yoshizawa T, Kawamura O, Luo XY, Li YW (2001) Aflatoxins and fumonisins in maize from the high-incidence area for human hepatocellular carcinoma in Guangxi, China. J Agric Food Chem 49:4122–4126

    Article  CAS  Google Scholar 

  • MacKenzie SA, Lamb I, Schmidt J, Deege L, Morrisey MJ, Harper M, Layton RJ, Prochaska LM, Sanders C, Locke M, Mattsson JL, Fuentes A, Delaney B (2007) Thirteen week feeding study with transgenic maize grain containing event DASO15O7 1 in Sprague–Dawley rats. Food Chem Toxicol 45:551–562

    Article  CAS  Google Scholar 

  • Marasas WFO, Riley RL, Hendricks KA, Stevens VL, Sadler TW, Waes JG van, Missmer SA, Cabrera J, Torres O, Gelderblom WCA, Allegood J, Martínez C, Maddox J, Miller JD, Starr L, Sullards MC, Roman AV, Voss KA, Wang E, Merrill AH Jr (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134:711–716

    CAS  Google Scholar 

  • Malley LA, Everds NE, Reynolds J, Mann PC, Lamb I, Rood T, Schmidt J, Layton RL, Prochaska LM, Hinds M, Locke M, Chui CF, Claussen F, Mattsson JL, Delaney B (2007) Subchronic feeding study of DAS 59122 7 maize grain in Sprague Dawley rats. Food Chem Toxicol 45:1277–1292

    Article  CAS  Google Scholar 

  • Margarit E, Reggiardo M, Vallejos R, Permingeat H (2006) Detection of Bt transgenic maize in foodstuffs. Food Res Int 39:250–255

    Article  CAS  Google Scholar 

  • McClintock J, Schaffer C, Sjoblad R (1995) A comparative review of the mammalian toxicity of Bacillus thuringiensis-based pesticides. Pestic Sci 45:95–105

    Article  CAS  Google Scholar 

  • McNaughton JL, Roberts M, Rice D, Smith B, Hinds M, Schmidt J, Locke M, Bryant A, Rood T, Layton R, Lamb I, Delaney B (2007) Feeding performance in broiler chickens fed diets containing DAS-59122-7 maize grain compared to diets containing non-transgenic maize grain. Anim Feed Sci Technol 132:227–239

    Article  CAS  Google Scholar 

  • Meade S, Reid E, Gerrard J (2005) The impact of processing on the nutritional quality of food proteins. J AOAC Int 88(3):904–922

    CAS  Google Scholar 

  • Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nat Biotechnol 21:1003–1009

    Article  CAS  Google Scholar 

  • Miller JD (2001) Factors That affect the occurrence of fumonisin. Environ Health Perspect 109(Suppl 2):321–324

    CAS  Google Scholar 

  • Moreno-Fierros L, Garcia N, Gastrointestinal tractierrez R, Lopez-Revilla R, Vazquez-Padron RI (2000) Intranasal, rectal and intraperitoneal immunization with protoxin Cry1Ac from Bacillus thuringiensis induces compartmentalized serum, intestinal, vaginal and pulmonary immune responses in Balb/c mice. Microbes Infect 2:885–890

    Article  CAS  Google Scholar 

  • Noteborn HPJ, Bienenmann-Ploum ME, Berg JHJ van den, Alink GM, Zolla L, Reynaerts A, Pensa M, Kuiper HA (1995) Safety Assessment of Bacillus thuringiensis insecticidal protein CRYIA(b) expressed in transgenic tomato. In: Engel K-H, Takeoka GR, Teranishi R (eds) Genetically modified foods: safety issues. American Chemical Society, Washington, DC

    Google Scholar 

  • OECD (2007) Consensus document on safety information on transgenic plants expressing Bacillus thuringiensis—derived insect control proteins. In Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, Paris, France

    Google Scholar 

  • Ofori-Anti AO, Ariyarathna H, Chen L, Lee HL, Pramod SN, Goodman RE (2008) Establishing objective detection limits for pepsin digestion assay used in the assessment of genetically modified foods. Regul Toxicol Pharmacol 52:94–103

    Article  CAS  Google Scholar 

  • Okunuki H, Teshima R, Shigeta T, Sakushima J, Akiyama H, Goda Y, Toyoda M, Sawada J (2001) Increased digestibility of two products in genetically modified food (CP-4 EPSPS and Cry1Ab) after preheating. J Food Hyg Soc Jpn 43(2):68–73

    Article  Google Scholar 

  • Onose J, Imai T, Hasumura M, Ueda M, Ozeki Y, Hirose M (2008) Evaluation of subchronic toxicity of dietary administered Cry1Ab protein from Bacillus thuringiensis var. Kurustaki HD-1 in F344 male rats with chemically induced gastrointestinal impairment. Food Chem Toxicol 46:2184–2189

    Article  CAS  Google Scholar 

  • Ostry V, Ovesna J, Skarkova J, Pouchova V, Ruprich J (2010) A review on comparative data concerning Fusarium mycotoxins in Bt maize and non-Bt isogenic maize. Mycotox Res 26:141–145

    Article  CAS  Google Scholar 

  • Paul V, Steinke K, Meyer HH (2008) Development and validation of a sensitive enzyme immunoassay for surveillance of Cry1Ab toxin in bovine blood plasma of cows fed Bt-maize (MON 810). Anal Chim Acta 607:106–113

    Article  CAS  Google Scholar 

  • Rooney LW, Serna-Saldivar SO (2003) Chapter 13. Food use of whole maize and dry-milled fractions. In: While PJ, Johnson LA (eds) Maize chemistry and technology, 2nd edn. American Association of Cereal Chemists, Inc., St Paul

    Google Scholar 

  • Sacchi VF, Parenti P, Hanozet GM, Giordana B, Luthy P, Wolfersberger MG (1986) Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgastrointestinal tract cells. FEBS Lett 204:213–218

    Article  CAS  Google Scholar 

  • Sanchis V (2010) From microbial sprays to insect-resistant transgenic plants: a history of the biopesticide Bacillus thuringiensis. A review. Agron Sustain Dev 1–15. doi:10.1051/agro/2010027

    Google Scholar 

  • Scheideler SE, Rice D, Smith B, Dana G, Sauber T (2008) Evaluation of nutritional equivalency of maize grain from DAS-Ø15Ø7-1 (Herculex I) in the diets of laying hens. J Appl Poult Res 17:383–389

    Article  CAS  Google Scholar 

  • Schrøder M, Poulsen M, Wilcks A, Kroghsbo S, Miller A, Frenzel T, Danier J, Rychlik M, Emami K, Gatehouse A, Shu Q, Engel KH, Altosaar I, Knudsen I (2007) A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats. Food Chem Toxicol 45(3):339–349

    Article  Google Scholar 

  • Schultz RM, Liebman MN (2002) Chapter 3. Proteins I: composition and structure. In: Devlin TM (ed) Textbook of biochemistry with clinical correlations, 5th edn. Wiley-Liss, NY

    Google Scholar 

  • Shimada N, Miyamoto K, Kanda K, Murata H (2006) Bacillus thuringiensis insecticidal Cry1Ab toxin does not affect the membrane integrity of the mammalian intestinal epithelial cells: an in vitro study. Vitro Cell Dev Biol Anim 42:45–49

    CAS  Google Scholar 

  • Siegel JP (2001) The mammalian safety of Bacillus thuringiensis-based insecticides. J Invertebr Pathol 77:13

    Article  CAS  Google Scholar 

  • Siegel JP, Shadduck JA (1989) Safety of microbial insecticides to vertebrates, Chapter 8. In: Laird M, Lacey L, Davidson E (eds) Safety of microbial insecticides. CRC Press, Boca Raton

    Google Scholar 

  • Soberón M, Pardo L, Muñóz-Garay C, Sánchez J, Gómez I, Porta H, Bravo A (2010) Chapter 11. Pore formation by Cry toxins. In: Anderluh G, Lakey J (eds) Proteins: membrane binding and pore formation. Landes Bioscience and Springer Science + Business Media, NY

    Google Scholar 

  • Taylor ML, Hartnell G, Nemeth M, Karunanandaa K, George B (2005) Comparison of broiler performance when fed diets containing maize grain with insect-protected (maize rootworm and European maize borer) and herbicide-tolerant (glyphosate) traits, control maize, or commercial reference maize—revisited. Poult Sci 84:1893–1899

    CAS  Google Scholar 

  • Taylor M, Hartnell G, Nemeth M, Lucas D, Davis S (2007) Comparison of broiler performance when fed diets containing grain from second-generation insect-protected and glyphosate-tolerant, conventional control or commercial reference. Maize. Poult Sci 86:1972–1979

    Article  CAS  Google Scholar 

  • Terry C, Harris N, Parkes HC (2002) Detection of genetically modified crops and their derivatives: critical steps in sample preparation and extraction. J AOAC Int 85:768–774

    CAS  Google Scholar 

  • Thomas K, Aalbers M, Bannon GA, Bartels M, Dearman RJ, Esdaile DJ, Fu TJ, Glatt CM, Hadfield N, Hatzos C, Hefle SL, Heylings JR, Goodman RE, Henry B, Herouet C, Holsapple M, Ladics GS, Landry TD, MacIntosh SC, Rice EA, Privalle LS, Steiner HY, Teshima R, Ree R van, Woolhiser M, Zawodnyk J (2004) A multi-laboratory evaluation of a common in vitro pepsin digestion assay protocol used in assessing the safety of novel proteins. Regul Toxicol Pharmacol 39:87–98

    Article  CAS  Google Scholar 

  • Thomas K, Herouet-Guicheney C, Ladics G, Bannon G, Cockburn A, Crevel R, Fitzpatrick J, Mills C, Privalle L, Veiths S (2007) Evaluating the effect of food processing on the potential human allergenicity of novel proteins: international workshop report. Food Chem Toxicol 45:1116–1122

    Article  CAS  Google Scholar 

  • Thomas K, MacIntosh S, Bannon G, Herouet-Guicheney C, Holsapple M, Ladics G, McClain S, Vieths S, Woolhiser M, Privalle L (2009) Scientific advancement of novel protein allergenicity evaluation: an overview of the HESI Protein Allergenicity Technical Committee (2000–2008). Food Chem Toxicol 47:1041–1050

    Article  CAS  Google Scholar 

  • Van Rie J, Jansens S, Hofte H, Degheele D, Van Mellaert H (1989) Specificity of Bacillus thuringiensis delta-endotoxins, importance of specific receptors on the brush border membrane of the mid-gastrointestinal tract of target insects. Eur J Biochem 186:239–247

    Article  Google Scholar 

  • Van Rie J, Jansens S, Hofte H, Degheele D, Van Mellaert H (1990) Receptors on the brush border membrane of the insect midgastrointestinal tract as determininants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol 56:1378–1385

    Google Scholar 

  • Vazquez-Padron RI, Gonzales-Cabrera J, Garcia-Toyar C, Neri-Bazan L, Lopez-Revilla R, Hernandez M, Moreno-Fierro L, De La Riva GA (2000) Cry1Ac protoxin from Bacillus thuringiensis sp. kurstaki HD73 binds to surface proteins in the mouse small intestine. Biochem Biophys Res Commun 271:54–58

    Article  CAS  Google Scholar 

  • Wang J, Wang S, Su J, Huang T, Hu X, Yu J, Wei Z, Liang Y, Liu Y, Luo H, Sun G (2003) Food contamination of fumonisin B1 in high-risk area of esophageal and liver cancer. Toxicol Sci 72:188

    Article  Google Scholar 

  • WHO/GEMs Food Programme. http://www.who.int/foodsafety/chem/gems/en/. Accessed 20 Aug 2011

    Google Scholar 

  • WHO/IPCS (International Programme on Chemical Safety) (1999) Environmental health criteria 217: microbial pest control agent Bacillus thuringiensis. Geneva, Switzerland

    Google Scholar 

  • Wolfersberger MG, Hofmann C, Luthy P (1986) In: Falmagne P, Alouf JEF, Fehrenbach J, Jeljaszewics J, Thelestam M (eds) Bacterial protein toxins. Fischer, NY

    Google Scholar 

  • Wu F, Miller JD, Casman EA (2004) The economic impact of Bt maize resulting from mycotoxin reduction. J Toxicol 23:393–419

    Google Scholar 

  • Xu W, Cao S, Hea X, Luoa Y, Guoa X, Yuan Y, Huanga K (2010) Safety Assessment of Cry1Ab/Ac fusion protein. Food Chem Toxicol 47(7):1716–1721

    Google Scholar 

  • Ziwen Y (2010) Hubei Bt Research and Development. Commercialization of Bacillus thuringiensis Insecticides in China. http://www.authorstream.com. Accessed 24 Sept 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce G. Hammond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hammond, B.G., Koch, M.S. (2012). A Review of the Food Safety of Bt Crops. In: Sansinenea, E. (eds) Bacillus thuringiensis Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3021-2_16

Download citation

Publish with us

Policies and ethics