Skip to main content

Bt Crops: Past and Future

  • Chapter
  • First Online:

Abstract

The development and commercialization of transgenic plants expressing insecticidal toxin genes from the bacterium Bacillus thuringiensis (Bt) has revolutionized agriculture in the past two decades. Development of this revolutionary insect pest control technology was facilitated by the identification and characterization of insecticidal Bt proteins and advancements in plant transformation and genetic engineering. While commercialization of this technology is currently limited to a number of countries, these transgenic “Bt crops” are replacing in most cases conventional crop varieties due to their insect resistance, lower spraying requirements, and higher yields. However, concerns related to the increasing adoption of this technology include gene flow to wild relatives, evolution of resistance in target pests, and unintended effects on the environment. In this chapter, we discuss key events in the history of Bt crop development and summarize current regulations aimed at reducing the risks associated with increased adoption of this technology. By analyzing the history of Bt transgenic crops and the current marketplace trends and issues, we aim to examine the outlook of current and impending Bt crops as well as potential issues that may emerge during their future use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarssen R, Soetaert P, Stam M, Dockx J, Gosselé V, Seurinck J, Reynaerts A, Cornelissen M (1995) cryIA(b) transcript formation in tobacco is inefficient. Plant Mol Biol 28:513–524

    Article  Google Scholar 

  • Adamczyk JJ Jr, Sumerford DV (2001) Potential factors impacting season-long expression of Cry1Ac in 13 commercial varieties of Bollgard cotton. J Insect Sci 1:13

    Google Scholar 

  • Adamczyk JJ Jr, Adams LC, Hardee DD (2001) Field efficacy and seasonal expression profiles for terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. J Econ Entomol 94:1589–1593

    Article  CAS  Google Scholar 

  • Adamczyk JJ Jr, Perera O, Meredith WR (2009) Production of mRNA from the cry1Ac transgene differs among Bollgard lines which correlates to the level of subsequent protein. Transgenic Res 18:143–149

    Article  CAS  Google Scholar 

  • Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177:6027–6032

    CAS  Google Scholar 

  • Andrews RE, Faust RM, Wabiko H, Raymond KC, Bulla LA (1987) The biotechnology of Bacillus thuringiensis. Crit Rev Biotechnol 6:163–232

    Article  CAS  Google Scholar 

  • Barton KA, Whiteley HR, Yang NS (1987) Bacillus thuringienis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol 85:1103–1109

    Article  CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  Google Scholar 

  • Benbrook C (2009) Impacts of genetically engineered crops on pesticide use: the first thirteen years. The Organic Center (http://www.organic-center.org), Critical Issue Report: The First Thirteen years, Boulder, CO

    Google Scholar 

  • Betz FS, Hammond BG, Fuchs RL (2000) Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul Toxicol Pharmacol 32:156–173

    Article  CAS  Google Scholar 

  • Bourguet D, Desquilbet M, Lemarie S (2005) Regulating insect resistance management: the case of non-Bt corn refuges in the US. J Environ Manag 76:210–220

    Article  Google Scholar 

  • Brookes G, Barfoot P (2009) Global impact of biotech crops: Income and production effects 1996–2007. AgBioForum 12:184–208

    Google Scholar 

  • Bulla LA, Kramer KJ, Davidson LI (1977) Characterization of entomocidal parasporal crystal of Bacillus thuringiensis. J Bacteriol 130:375–383

    CAS  Google Scholar 

  • Cantamutto M, Poverene M (2007) Genetically modified sunflower release: opportunities and risks. Field Crops Res 101:133–144

    Article  Google Scholar 

  • Carozzi NB, Warren GW, Desai N, Jayne SM, Lotstein R, Rice DA, Evola S, Koziel MG (1992) Expression of a chimeric CaMV 35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco. Plant Mol Biol 20:539–548

    Article  CAS  Google Scholar 

  • Carriere Y, Dennehy TJ, Pedersen B, Haller S, Ellers-Kirk C, Antilla L, Liu YB, Willott E, Tabashnik BE (2001) Large-scale management of insect resistance to transgenic cotton in Arizona: can transgenic insecticidal crops be sustained? J Econ Entomol 94:315–325

    Article  CAS  Google Scholar 

  • Center for Environmental Risk Assessment (2009) GM Crop Database, International Life Sciences Institute Research Foundation. http://cera-gmc.org/index.php?action = gm_crop_database. Accessed 7 Sept 2011

    Google Scholar 

  • Chen J, Hua G, Jurat-Fuentes JL, Abdullah MA, Adang MJ (2007) Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin. Proc Natl Acad Sci USA 104:13901–13906

    Article  CAS  Google Scholar 

  • Chen Y, Tian JC, Wang W, Fang Q, Akhtar ZR, Peng YF, Cui H, Guo YY, Song QS, Ye GY (2011) Bt rice expressing Cry1Ab does not stimulate an outbreak of its non-target herbivore, Nilaparvata lugens. Transgenic Res. doi:10.1007/s11248-011-9530-x

    Google Scholar 

  • Chitkowski RL, Turnipseed SG, Sullivan MJ, Bridges WC (2003) Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. J Econ Entomol 96:755–762

    Article  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  CAS  Google Scholar 

  • Christou P (2002) No credible scientific evidence is presented to support claims that transgenic DNA was introgressed into traditional maize landraces in Oaxaca, Mexico. Transgenic Res 11:III–V

    CAS  Google Scholar 

  • Crickmore N, Bone EJ, Williams JA, Ellar DJ (1995) Contribution of the individual components of the d-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol Lett 131:249–254

    CAS  Google Scholar 

  • Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean DH (2011) Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/. Accessed 23 Sept 2011

    Google Scholar 

  • Cui J, Luo J, Werf WVD, Ma Y, Xia J (2011) Effect of Pyramiding Bt and CpTI Genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions. J Econ Entomol 104:673–684

    Article  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  CAS  Google Scholar 

  • de Barjac H, Bonnefoi A (1968) A classification of strains of Bacillus thuringiensis Berliner with a key to their differentiation. J Invertebr Pathol 11:335–347

    Article  Google Scholar 

  • Dhurua S, Gujar GT (2011) Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag Sci 67:898–903

    Article  CAS  Google Scholar 

  • Dogan EB, Berry RE, Reed GL, Rossignol PA (1996) Biological parameters of convergent lady beetle (Coleoptera: Coccinellidae) feeding on aphids (Homoptera: Aphididae) on transgenic potato. J Econ Entomol 89:1105–1108

    Google Scholar 

  • Dowd PF (2000) Indirect reduction of ear molds and associated mycotoxins in Bacillus thuringiensis corn under controlled and open field conditions: utility and limitations. J Econ Entomol 93:1669–1679

    Article  CAS  Google Scholar 

  • Earl C (1983) Biotechnology regulation- rules for freed organisms planned. Nature 306:5

    Google Scholar 

  • Economic Research Service-USDA (2011) Adoption of genetically engineered crops in the U.S. http://www.ers.usda.gov/Data/BiotechCrops/. Accessed 23 Sept 2011. Accessed 23 Sept 2011

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci USA 93:5389–5394

    Article  CAS  Google Scholar 

  • Estruch JJ, Carozzi NB, Desai N, Duck NB, Warren GW, Koziel MG (1997) Transgenic plants: an emerging approach to pest control. Nat Biotechnol 15:137–141

    Article  CAS  Google Scholar 

  • Fernandez-Cornejo J (2004) The seed industry in U.S. agriculture—an exploration of data and information on crop seed markets, regulation, industry structure, and research and development. Agriculture Information Bulletin, U.S. Department of Agriculture, Economic Research Service, Washington

    Google Scholar 

  • Fernandez-Cornejo J, McBride WD (2002) Adoption of bioengineered crops. U.S. Department of Agriculture, Economic Research Service, Washington

    Google Scholar 

  • Ferré J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    Article  Google Scholar 

  • Ferré J, Real MD, Van Rie J, Jansens S, Peferoen M (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci USA 88:5119–5123

    Article  Google Scholar 

  • Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant transgenic tomato plants. Nat Biotechnol 5:807–813

    Article  CAS  Google Scholar 

  • Fraley RT (1996) Bollgard cotton performance. Science 274:1994

    Article  CAS  Google Scholar 

  • Franco-Rivera A, Benintende G, Cozzi J, Baizabal-Aguirre VM, Valdez-Alarcón JJ, López-Meza JE (2004) Molecular characterization of Bacillus thuringiensis strains from Argentina. Antonie Van Leeuwenhoek 86:87–92

    Article  CAS  Google Scholar 

  • Gaertner FH, Quick TC, Thompson MA (1993) CellCap: an encapsulation system for insecticidal biotoxin proteins. In: Kim L (ed) Advanced engineered pesticides. Marcel Dekker, Inc., NY

    Google Scholar 

  • Gao Y, Schafer BW, Collins RA, Herman RA, Xu XP, Gilbert JR, Ni WT, Langer VL, Tagliani LA (2004) Characterization of Cry34Ab1 and Cry35Ab1 insecticidal crystal proteins expressed in transgenic corn plants and Pseudomonas fluorescens. J Agric Food Chem 52:8057–8065

    Article  CAS  Google Scholar 

  • Gao Y, Jurat-Fuentes JL, Oppert B, Fabrick JA, Liu C, Gao J, Lei Z (2011) Increased toxicity of Bacillus thuringiensis Cry3Aa against Crioceris quatuordecimpunctata, Phaedon brassicae and Colaphellus bowringi by a Tenebrio molitor cadherin fragment. Pest Manag Sci 67:1076–1081

    CAS  Google Scholar 

  • Gatehouse AMR, Ferry N, Raemaekers RJM (2002) The case of the monarch butterfly: a verdict is returned. Trends Genet 18:249–251

    Article  CAS  Google Scholar 

  • Gatehouse AMR, Ferry N, Edwards MG, Bell HA (2011) Insect-resistant biotech crops and their impacts on beneficial arthropods. Philos Trans R Soc Lond B Biol Sci 366:1438–1452

    Article  CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR Jr, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell Online 2:603–618

    CAS  Google Scholar 

  • Gould F (1988) Evolutionary biology and genetically engineered crops: consideration of evolutionary theory can aid in crop design. Bioscience 38:26–33

    Article  Google Scholar 

  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726

    Article  CAS  Google Scholar 

  • Gray ME (2010) Relevance of traditional integrated pest management (IPM) strategies for commercial corn producers in a transgenic agroecosystem: a bygone era? J Agric Food Chem 59:5852–5858

    Article  CAS  Google Scholar 

  • Hammond BG, Campbell KW, Pilcher CD, Degooyer TA, Robinson AE, McMillen BL, Spangler SM, Riordan SG, Rice LG, Richard JL (2004) Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000–2002. J Agric Food Chem 52:1390–1397

    Article  CAS  Google Scholar 

  • Hannay CL, Fitz-James P (1955) The protein crystals of Bacillus thuringiensis Berliner. Can J Microbiol 1:694–710

    Article  CAS  Google Scholar 

  • He SC, Abad AR, Gelvin SB, Mackenzie SA (1996) A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco. Proc Natl Acad Sci USA 93:11763–11768

    Article  CAS  Google Scholar 

  • Heuberger S, Crowder DW, Brevault T, Tabashnik BE, Carriere Y (2011) Modeling the effects of plant-to-plant gene flow, larval behavior, and refuge size on pest resistance to Bt cotton. Environ Entomol 40:484–495

    Article  Google Scholar 

  • Horsch RB (1993) Commercialization of genetically engineered crops. Philos Trans R Soc Lond B Biol Sci 342:287–291

    Article  CAS  Google Scholar 

  • Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW, Fleischer SJ, Abrahamson M, Hamilton KL, Steffey KL, Gray ME, Hellmich RL, Kaster LV, Hunt TE, Wright RJ, Pecinovsky K, Rabaey TL, Flood BR, Raun ES (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225

    Article  CAS  Google Scholar 

  • Ives AR, Glaum PR, Ziebarth NL, Andow DA (2011) The evolution of resistance to two-toxin pyramid transgenic crops. Ecol Appl 21:503–515

    Article  Google Scholar 

  • Jackson RE, Bradley JR Jr, Van Duyn JW, Gould F (2004) Comparative production of Helicoverpa zea (Lepidoptera: Noctuidae) from transgenic cotton expressing either one or two Bacillus thuringiensis proteins with and without insecticide oversprays. J Econ Entomol 97:1719–1725

    Article  CAS  Google Scholar 

  • Jansens S, Vliet A van, Dickburt C, Buysse L, Piens C, Saey B, DeWulf A, Gossele V, Paez A, Gobel E, Peferoen M (1997) Transgenic corn expressing a Cry9C insecticidal protein from Bacillus thuringiensis protected from European corn borer damage. Crop Sci 37:1616–1624

    Article  CAS  Google Scholar 

  • Jayaraman KS (2001) Illegal Bt cotton in India haunts regulators. Nat Biotechnol 19:1090

    Article  CAS  Google Scholar 

  • Jayaraman KS (2002) Poor crop management plagues Bt cotton experiment in India. Nat Biotechnol 20:1069

    Article  CAS  Google Scholar 

  • Kaur S (2006) Molecular approaches for identification and construction of novel insecticidal genes for crop protection. World J Microbiol Biotechnol 22:233–253

    Article  CAS  Google Scholar 

  • Kausch AP, Hague J, Oliver M, Li Y, Daniell H, Mascia P, Watrud LS, Stewart CN (2010) Transgenic perennial biofuel feedstocks and strategies for bioconfinement. Biofuels 1:163–176

    Article  CAS  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  CAS  Google Scholar 

  • Kershen DL (2006) Health and food safety: the benefits of Bt-corn. Food Drug Law J 61:197–235

    Google Scholar 

  • Kim E, Suh S, Park B, Shin K, Kweon S, Han E, Park S-H, Kim Y, Kim J-K (2009) Chloroplast-targeted expression of synthetic cry1Ac in transgenic rice as an alternative strategy for increased pest protection. Planta 230:397–405

    Article  CAS  Google Scholar 

  • Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96:1840–1845

    Article  CAS  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nat Biotechnol 11:194–200

    Article  CAS  Google Scholar 

  • Koziel MG, Carozzi NB, Desai N, Warren GW, Dawson J, Dunder E, Launis K, Evola SV (1996) Transgenic maize for the control of european corn corer and other maize insect pests. Ann N Y Acad Sci 792:164–171

    Article  CAS  Google Scholar 

  • Kronstad JW, Schnepf HE, Whiteley HR (1983) Diversity of locations for Bacillus thuringiensis crystal protein genes. J Bacteriol 154:419–428

    CAS  Google Scholar 

  • Lampel JS, Canter GL, Dimock MB, Kelly JL, Anderson JJ, Uratani BB, Foulke JS, Turner JT (1994) Integrative cloning, expression, and stability of the cryIA(c) gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol 60:501–508

    CAS  Google Scholar 

  • Lang A, Otto M (2010) A synthesis of laboratory and field studies on the effects of transgenic Bacillus thuringiensis (Bt) maize on non-target Lepidoptera. Entomol Exp Appl 135:121–134

    Article  Google Scholar 

  • Lawo NC, Wackers FL, Romeis J (2009) Indian Bt cotton varieties do not affect the performance of cotton aphids. PLoS One 4:e4804

    Article  CAS  Google Scholar 

  • Lawson EC, Weiss JD, Thomas PE, Kaniewski WK (2001) NewLeaf Plus (R) Russet Burbank potatoes: replicase-mediated resistance to potato leafroll virus. Mol Breed 7:1–12

    Article  CAS  Google Scholar 

  • Li Y, Meissle M, Romeis J (2008) Consumption of Bt maize pollen expressing Cry1Ab or Cry3Bb1 does not harm adult green lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae). PLoS One 3:e2909

    Article  CAS  Google Scholar 

  • Liu W (2010) Do genetically modified plants impact arbuscular mycorrhizal fungi? Ecotoxicology 19:229–238

    Article  CAS  Google Scholar 

  • Liu CW, Lin CC, Yiu JC, Chen JJW, Tseng MJ (2008) Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor Appl Genet 117:75–88

    Article  CAS  Google Scholar 

  • Llewellyn DJ, Mares CL, Fitt GP (2007) Field performance and seasonal changes in the efficacy against Helicoverpa armigera (Hubner) of transgenic cotton expressing the insecticidal protein Vip3A. Agric For Entomol 9:93–101

    Article  Google Scholar 

  • Long N, Bottoms J, Meghji M, Hart H, Que Q, Pulliam D (2007) Corn Event MIR162. United States Patent US 20090300784 A1, 15 July 2009

    Google Scholar 

  • Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214

    Article  CAS  Google Scholar 

  • Lovei GL, Andow DA, Arpaia S (2009) Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Environ Entomol 38:293–306

    Article  Google Scholar 

  • Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys KA, Guo Y (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–1154

    Article  CAS  Google Scholar 

  • Luo KM, Duan H, Zhao DG, Zheng XL, Deng W, Chen YQ, Stewart CN, McAvoy R, Jiang XN, Wu YH, He AG, Pei Y, Li Y (2007) ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274

    Article  CAS  Google Scholar 

  • Martin MA, Hyde J (2001) Economic considerations for the adoption of transgenic crops: the case of Bt corn. J Nematol 33:173–177

    CAS  Google Scholar 

  • Martinez-Ramirez AC, Gould F, Ferre J (1999) Histopathological effects and growth reduction in a susceptible and a resistant strain of Heliothis virescens (Lepidoptera: Noctuidae) caused by sublethal doses of pure Cry1A crystal proteins from Bacillus thuringiensis. Biocontrol Sci Technol 9:239–246

    Article  Google Scholar 

  • Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1477

    Article  CAS  Google Scholar 

  • Matten SR, Lewis PI, Tomimatsu G, Sutherland DWS, Anderson N, ColvinSnyder TL (1996) The US Environmental Protection Agency’s role in pesticide resistance management. In: Brown TM (ed) Molecular genetics and evolution of pesticide resistance. Amer Chemical Soc, Washington

    Google Scholar 

  • McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a Chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Nat Biotechnol 13:362–365

    Article  CAS  Google Scholar 

  • Mulder C, Wouterse M, Raubuch M, Roelofs W, Rutgers M (2006) Can transgenic maize affect soil microbial communities? PLoS Comput Biol 2:e128

    Article  CAS  Google Scholar 

  • Murray EE, Stock C, Eberle M, Sekar V, Rocheleau TA, Adang MJ (1991) Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacilus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol Biol 16:1035–1050

    Article  CAS  Google Scholar 

  • Naranjo SE (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. In: CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, CABI, Wallingford, UK

    Google Scholar 

  • Obukowicz MG, Perlak FJ, Kusano-Kretzmer K, Mayer EJ, Watrud LS (1986) Integration of the delta-endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of pseudomonads using Tn5. Gene 45:327–331

    Article  CAS  Google Scholar 

  • Oliveira AP, Pampulha ME, Bennett JP (2008) A two-year field study with transgenic Bacillus thuringiensis maize: effects on soil microorganisms. Sci Total Environ 405:351–357

    Article  CAS  Google Scholar 

  • Oppert B, Kramer KJ, Beeman RW, Johnson D, McGaughey WH (1997) Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem 272:23473–23476

    Article  CAS  Google Scholar 

  • Pan ZQ, Onstad DW, Nowatzki TM, Stanley BH, Meinke LJ, Flexner JL (2011) Western corn rootworm (Coleoptera: Chrysomelidae) dispersal and adaptation to single-toxin transgenic corn deployed with block or blended refuge. Environ Entomol 40:964–978

    Article  CAS  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Nat Biotechnol 8:939–943

    Article  CAS  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88:3324–3328

    Article  CAS  Google Scholar 

  • Perlak FJ, Stone TB, Muskopf YM, Petersen LJ, Parker GB, McPherson SA, Wyman J, Love S, Reed G, Biever D et al (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22:313–321

    Article  CAS  Google Scholar 

  • Pitt G (2003) Implementation and impact of transgenic Bt cottons in Australia. ICAC Recorder 21:14–19

    Google Scholar 

  • Pray CE, Huang J, Hu R, Rozelle S (2002) Five years of Bt cotton in China—the benefits continue. Plant J 31:423–430

    Article  CAS  Google Scholar 

  • Qaim M, Zilberman D (2003) Yield effects of genetically modified crops in developing countries. Science 299:900–902

    Article  CAS  Google Scholar 

  • Qiao F, Huang J, Rozelle S, Wilen J (2010) Natural refuge crops, buildup of resistance, and zero-refuge strategy for Bt cotton in China. Sci China Life Sci 53:1227–1238

    Article  Google Scholar 

  • Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543

    Article  CAS  Google Scholar 

  • Rodrigo-Simon A, Maagd RA de, Avilla C, Bakker PL, Molthoff J, Gonzalez-Zamora JE, Ferre J (2006) Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis. Appl Environ Microbiol 72:1595–1603

    Article  CAS  Google Scholar 

  • Romeis J, Dutton A, Bigler F (2004) Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). J Insect Physiol 50:175–183

    Article  CAS  Google Scholar 

  • Rong J, Lu BR, Song Z, Su J, Snow AA, Zhang X, Sun S, Chen R, Wang F (2007) Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytol 173:346–353

    Article  Google Scholar 

  • Roush RT (1998) Two-toxins strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Philos Trans R Soc Lond B Biol Sci 353:1777–1786

    Article  CAS  Google Scholar 

  • Salamitou S, Agaisse H, Bravo A, Lereclus D (1996) Genetic analysis of cryIIIA gene expression in Bacillus thuringiensis. Microbiology 142:2049–2055

    Article  CAS  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    Article  CAS  Google Scholar 

  • Sanchis V (2010) From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review. Agron Sustain Dev. 31:217–231

    Google Scholar 

  • Schnepf HE, Whiteley HR (1981) Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci USA 78:2893–2897

    Article  CAS  Google Scholar 

  • Sears MK, Hellmich RL, Stanley-Horn DE, Oberhauser KS, Pleasants JM, Mattila HR, Siegfried BD, Dively GP (2001) Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. Proc Natl Acad Sci USA 98:11937–11942

    Article  CAS  Google Scholar 

  • Seetharam S (2010) Should the Bt brinjal controversy concern healthcare professionals and bioethicists? Indian J Med Ethics 7:9–12

    Google Scholar 

  • Shelton A, Sears M (2001) The monarch butterfly controversy: scientific interpretations of a phenomenon. Plant J 27:483–488

    Article  CAS  Google Scholar 

  • Shelton AM, Zhao J-Z, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  Google Scholar 

  • Sheridan C (2009) Report claims no yield advantage for Bt crops. Nat Biotechnol 27:588–589

    Article  CAS  Google Scholar 

  • Shivakumar AG, Vanags RI, Wilcox DR, Katz L, Vary PS, Fox JL (1989) Gene dosage effect on the expression of the delta-endotoxin genes of Bacillus thuringiensis subsp. kurstaki in Bacillus subtilis and Bacillus megaterium. Gene 79:21–31

    Article  CAS  Google Scholar 

  • Skøt L, Harrison SP, Nath A, Mytton LR, Clifford BC (1990) Expression of insecticidal activity in Rhizobium containing the d-endotoxin gene cloned from Bacillus thuringiensis subsp. tenebrionis. Plant Soil 127:285–295

    Article  Google Scholar 

  • Soberón M, Pardo-López L, López I, Gómez I, Tabashnik BE, Bravo A (2007) Engineering modified Bt toxins to counter insect resistance. Science 318:1640–1642

    Article  CAS  Google Scholar 

  • Stark DM (1997) Risk assessment and criteria for commercial launch of transgenic plants. Proceedings of the 3rd Ifgene Workshop, Dornach, Switzerland

    Google Scholar 

  • Stewart SD, Adamczyk JJ Jr, Knighten KS, Davis FM (2001) Impact of Bt cottons expressing one or two insecticidal proteins of Bacillus thuringiensis Berliner on growth and survival of noctuid (Lepidoptera) larvae. J Econ Entomol 94:752–760

    Article  CAS  Google Scholar 

  • Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW, Huckaba RM (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031–1038

    Article  Google Scholar 

  • Tabashnik BE (1989) Managing resistance with multiple pesticide tactics: theory, evidence, and recommendations. J Econ Entomol 82:1263–1269

    CAS  Google Scholar 

  • Tabashnik BE, Van Rensburg JB, Carrière Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2025

    Article  CAS  Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Royer TV, Whiles MR, Griffiths NA, Frauendorf TC, Treering DJ (2010) Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape. Proc Natl Acad Sci USA 107:17645–17650

    Article  CAS  Google Scholar 

  • Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    Article  CAS  Google Scholar 

  • van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16

    Article  CAS  Google Scholar 

  • van Rensburg JBJ (2007) First report of field resistance by stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S Afr J Plant Soil 24:147–151

    Google Scholar 

  • Van Rie J, McGaughey WH, Johnson DE, Barnett BD, Van Mellaert H (1990) Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247:72–74

    Article  Google Scholar 

  • Vaughan H (2003) GM plants and protection against insects—Alternative strategies based on gene technology. Acta Agric Scand B 53:34–40

    Google Scholar 

  • Viktorov AG (2011) Transfer of Bt corn byproducts from terrestrial to stream ecosystems. Russ J Plant Physiol 58:543–548

    Article  CAS  Google Scholar 

  • Walters FS, Stacy CM, Lee MK, Palekar N, Chen JS (2008) An engineered chymotrypsin/cathepsin G site in domain I renders Bacillus thuringiensis Cry3A active against Western corn rootworm larvae. Appl Environ Microbiol 74:367–374

    Article  CAS  Google Scholar 

  • Walters FS, de Fontes CM, Hart H, Warren GW, Chen JS (2010) Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry3.1Ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Appl Environ Microbiol 76:3082–3088

    Article  CAS  Google Scholar 

  • Waltz E (2009) Battlefield. Nature 461:27–32

    Article  CAS  Google Scholar 

  • Warren GW, Carozzi NB, Desai N, Koziel MG (1992) Field evaluation of transgenic tobacco containing a Bacillus thuringiensis insecticidal protein gene. J Econ Entomol 85:1651–1659

    CAS  Google Scholar 

  • Whalon ME, Wingerd BA (2003) Bt: mode of action and use. Arch Insect Biochem Physiol 54:200–211

    Article  CAS  Google Scholar 

  • Wu F (2006) Mycotoxin reduction in Bt corn: potential economic, health, and regulatory impacts. Transgenic Res 15:277–289

    Article  CAS  Google Scholar 

  • Wu ZL, Guo WY, Qiu JZ, Huang TP, Li XB, Guan X (2004) Cloning and localization of vip3A gene of Bacillus thuringiensis. Biotechnol Lett 26:1425–1428

    Article  CAS  Google Scholar 

  • Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321:1676–1678

    Article  CAS  Google Scholar 

  • Xia H, Lu BR, Xu K, Wang W, Yang X, Yang C, Luo J, Lai FX, Ye WL, Fu Q (2011) Enhanced yield performance of Bt rice under target-insect attacks: implications for field insect management. Transgenic Res 20:655–664

    Article  CAS  Google Scholar 

  • Yang Z, Chen H, Tang W, Hua H, Lin Y (2011) Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes. Pest Manag Sci 67:414–422

    Article  CAS  Google Scholar 

  • Zambryski P, Joos H, Genetello C, Leemans J, Montagu MV, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150

    CAS  Google Scholar 

  • Zhang H, Yin W, Zhao J, Jin L, Yang Y, Wu S, Tabashnik BE, Wu Y (2011) Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS One 6:e22874

    Article  CAS  Google Scholar 

  • Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497

    Article  CAS  Google Scholar 

  • Zhao JZ, Cao J, Collins HL, Bates SL, Roush RT, Earle ED, Shelton AM (2005) Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Natl Acad Sci USA 102:8426–8430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Jurat-Fuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Castagnola, A.S., Jurat-Fuentes, J. (2012). Bt Crops: Past and Future. In: Sansinenea, E. (eds) Bacillus thuringiensis Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3021-2_15

Download citation

Publish with us

Policies and ethics