Skip to main content

Phosphoinositide Signaling During Membrane Transport in Saccharomyces Cerevisiae

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 59))

Abstract

Phosphatidylinositol (PI) is distinct from other phospholipids, possessing a head group that can be modified by phosphorylation at multiple positions to generate unique signaling molecules collectively known as phosphoinositides. The set of kinases and phosphatases that regulate PI metabolism are conserved throughout eukaryotic evolution, and numerous studies have demonstrated that phosphoinositides regulate a diverse spectrum of cellular processes, including vesicle transport, cell proliferation, and cytoskeleton organization. Over the past two decades, nearly all PI derivatives have been shown to interact directly with cellular proteins to affect their localization and/or activity. Additionally, there is growing evidence, which suggests that phosphoinositides may also affect local membrane topology. Here, we focus on the role of phosphoinositides in membrane trafficking and underscore the significant role that yeast has played in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguliar RC, Watson HA, Wendland B (2003) The yeast Ent1 is recruited to membranes through multiple independent interactions. J Biol Chem 278:10737–10743

    Article  CAS  Google Scholar 

  • Aguliar RC, Longhi SA, Shaw JD, Yeh LY, Kim S, Schon A, Freire E, Hsu A, McCormick WK, Watson HA, Wendland B (2006) Epsin N-terminal homology domains perform an essential function regulating Cdc42 through binding Cdc42 GTPase-activating proteins. Proc Natl Acad Sci U S A 103:4116–4121

    Article  CAS  Google Scholar 

  • Audhya A, Emr SD (2002) Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev Cell 2:593–605

    Article  PubMed  CAS  Google Scholar 

  • Audhya A, Emr SD (2003) Regulation of PI4,5P2 synthesis by nuclear-cytoplasmic shuttling of the Mss4 lipid kinase. EMBO J 22:4223–4236

    Article  PubMed  CAS  Google Scholar 

  • Audhya A, Foti M, Emr SD (2000) Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol Biol Cell 11:2673–2689

    PubMed  CAS  Google Scholar 

  • Audhya A, Loewith R, Parsons AB, Gao L, Tabuchi M, Zhou J, Boone C, Hall MN, Emr SD (2004) Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. EMBO J 23:3747–3757

    Article  PubMed  CAS  Google Scholar 

  • Baird D, Stefan C, Audhya A, Weys S, Emr SD (2008) Assembly of the PtdIns 4-kinase Stt4 complex at the plasma membrane require Ypp1 and Efr3. J Cell Biol 183:1061–1074

    Article  PubMed  CAS  Google Scholar 

  • Barth H, Meiling-Wesse K, Epple UD, Thumm M (2001) Autophagy and the cytoplasm to vacuole targeting pathway both require Aut10p. FEBS Lett 508:23–28

    Article  PubMed  CAS  Google Scholar 

  • Beh CT, Cool L, Phillips J, Rine J (2001) Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics 157:1117–1140

    PubMed  CAS  Google Scholar 

  • Bertin A, McMurray MA, Grob P, Park SS, Garcia G, Patanwala I, Ng HL, Alber T, Thorner J, Nogales E (2008) Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc Natl Acad Sci U S A 105:8274–8279

    Article  PubMed  CAS  Google Scholar 

  • Bertin A, McMurray MA, Thai L, Garcia G, Votin V, Grob P, Allyn T, Thorner J, Nogales E (2010) Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. J Mol Biol 404:711–731

    Article  PubMed  CAS  Google Scholar 

  • Bilodeau PS, Winistorfer SC, Kearney WR, Robertson AD, Piper RC (2003) Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J Cell Biol 163:237–243

    Google Scholar 

  • Black MW, Pelham HR (2000) A selective transport route from Golgi to late endosomes that requires the yeast GGA proteins. J Cell Biol 151:587–600

    Article  PubMed  CAS  Google Scholar 

  • Bonangelino CJ, Catlett NL, Weisman LS (1997) Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Mol Cell Biol 17:6847–6858

    PubMed  CAS  Google Scholar 

  • Botelho RJ, Efe JA, Teis D, Emr SD (2008) Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig4 phosphoinositide phosphatase. Mol Biol Cell 19:4273–4286

    Article  PubMed  CAS  Google Scholar 

  • Bravo J, Karathanassis D, Pacold CM, Pacold ME, Ellson CD, Anderson KE, Butler PJ, Lavenir I, Perisic O, Hawkins PT, Stephens L, Williams RL (2001) The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol Cell 8:829–839

    Article  PubMed  CAS  Google Scholar 

  • Burd CG, Emr SD (1998) Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell 2:157–162

    Article  PubMed  CAS  Google Scholar 

  • Burda P, Padilla SM, Sarkar S, Emr SD (2002) Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci 115:3889–3900

    Article  PubMed  CAS  Google Scholar 

  • Burman C, Ktistakis NT (2010) Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 584:1302–1312

    Article  PubMed  CAS  Google Scholar 

  • Burston HE, Maldonado-Baez L, Davey M, Montpetit B, Schluter C, Wendland B, Conibear E (2009) Regulators of yeast endocytosis identified by systematic quantitative analysis. J Cell Biol 185:1097–1110

    Article  PubMed  CAS  Google Scholar 

  • Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1322

    Article  PubMed  CAS  Google Scholar 

  • Chang FS, Han GS, Carman GM, Blumer KJ (2005) A WASP-binding type II phosphatidylinositol 4-kinase required for actin polymerization-driven endosome motility. J Cell Biol 171:133–142

    Article  PubMed  CAS  Google Scholar 

  • Cheever ML, Sato TK, Beer T de, Kutateladze TG, Emr SD, Overduin M (2001) Phox domain interaction with PtdIns(3)P targets the Vam7 tSNARE to vacuole membranes. Nat Cell Biol 3:613–618

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Ingram MF, Rosal PH, Graham TR (1999) Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol 147:1223–1236

    Article  PubMed  CAS  Google Scholar 

  • Collins BM, McCoy AJ, Kent HM, Evans PR, Owen DJ (2002) Molecular architecture and functional model of the endocytic AP2 complex. Cell 109:523–535

    Article  PubMed  CAS  Google Scholar 

  • Cooke FT, Dove SK, McEwen RK, Painter G, Holmes AB, Hall MN, Michell RH, Parker PJ (1998) The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. Curr Biol 8:1219–1222

    Article  PubMed  CAS  Google Scholar 

  • Cooke FT, Michell RH, Parker PJ, Lemmon MA (2004) Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J 23:1922–1933

    Article  PubMed  CAS  Google Scholar 

  • Copic A, Starr TL, Schekman R (2007) Ent3p and Ent5p exhibit cargo-specific functions in trafficking proteins between the trans-Golgi network and the endosomes in yeast. Mol Biol Cell 18:1803–1815

    Article  PubMed  CAS  Google Scholar 

  • Costaguta G, Stefan CJ, Bensen ES, Emr SD, Payne GS (2001) Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. Mol Biol Cell 12:1885–1896

    PubMed  CAS  Google Scholar 

  • Costaguta G, Duncan MC, Fernandez GE, Huang GH, Payne GS (2006) Distinct roles for TGN/endosome epsin-like adaptors Ent3p and Ent5p. Mol Biol Cell 17:3907–3920

    Article  PubMed  CAS  Google Scholar 

  • Demmel L, Gravert M, Ercan E, Habermann B, Muller-Reichert T, Kukhtina V, Baust T, Sohrmann M, Kalaidzidis Y, Klose C, Beck M, Peter M, Walch-Solimena C (2008) The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol Biol Cell 19:1991–2002

    Article  PubMed  CAS  Google Scholar 

  • Desrivieres S, Cooke FT, Morales-Johansson H, Parker PJ, Hall MN (2002) Calmodulin controls organization of the actin cytoskeleton via regulation of phosphatidylinositol (4,5)-bisphosphate synthesis in Saccharomyces cerevisiae. Biochem J 15:945–951

    Google Scholar 

  • Diraviyam K, Stahelin RV, Cho W, Murray D (2003) Computer modeling of the membrane interaction of FYVE domains. J Mol Biol 328:721–736

    Article  PubMed  CAS  Google Scholar 

  • Dove SK, Johnson ZE (2007) Our FABulous VACation: a decade of phosphatidylinositol 3,5-bisphosphate. Biochem Soc Symp 74:129–139

    Article  PubMed  CAS  Google Scholar 

  • Dove SK, Piper RC, McEwen RK, Yu JW, King MC, Hughes DC, Thuring J, Holmes AB, Bilodeau PS, Windistorfer SC, Kearney WR, Robertson AD, Piper RC (2004) Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J Cell Biol 163:237–243

    Article  CAS  Google Scholar 

  • Dumas JJ, Merithew E, Sudharshan E, Rajamani D, Hayes S, Lawe D, Corvera S, Lambright DG (2001) Multivalent endosome targeting by homodimeric EEA1. Mol Cell 8:947–958

    Article  PubMed  CAS  Google Scholar 

  • Eby JJ, Holly SP, Drogen F van, Grishin AV, Peter M, Drubin DG, Blumer KJ (1998) Actin cytoskeleton organization regulated by the PAK family of protein kinases. Curr Biol 8:967–970

    Article  PubMed  CAS  Google Scholar 

  • Efe JA, Botelho RJ, Emr SD (2005) The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology. Curr Opin Cell Biol 17:402–408

    Article  PubMed  CAS  Google Scholar 

  • Efe JA, Botelho RJ, Emr SD (2007) Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol Biol Cell 18:4232–4244

    Article  PubMed  CAS  Google Scholar 

  • Eugster A, Pecheur E, Michel F, Winsor B, Letourneur F, Friant S (2004) Ent5p is required with Ent3p and Vps27p for ubiquitin-dependent protein sorting into the multivesicular body. Mol Biol Cell 15:3031–3041

    Article  PubMed  CAS  Google Scholar 

  • Ekena K, Stevens TH (1995) The Saccharomyces cerevisiae MVP1 gene interacts with VPS1 and is required for vacuolar protein sorting. Mol Cell Biol 15:1671–1678

    PubMed  CAS  Google Scholar 

  • Fadri M, Daquinag A, Wang S, Xue T, Kunz J (2005) The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol Biol Cell 16:1883–1900

    Article  PubMed  CAS  Google Scholar 

  • Fairn GD, Curwin AJ, Stefan CJ, McMaster CR (2007) The oxysterol binding protein Kes1p regulates Golgi apparatus phosphatidylinositol-4-phosphate function. Proc Natl Acad Sci U S A 104:15352–15357

    Article  PubMed  CAS  Google Scholar 

  • Farre JC, Krick R, Subramani S, Thumm M (2009) Turnover of organelles by autophagy in yeast. Curr Opin Cell Biol 21:522–530

    Article  PubMed  CAS  Google Scholar 

  • Faulhammer F, Konrad G, BranKatschk B, Tahirovic S, Knodler A, Mayinger P (2005) Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p. J Cell Biol 168:185–191

    Article  PubMed  CAS  Google Scholar 

  • Faulhammer F, Kanjilal-Kolar S, Knodler A, Lo J, Lee Y, Konrad G, Mayinger P (2007) Growth control of Golgi phosphoinositides by reciprocal localization of sac1 lipid phosphatase and pik1 4-kinase. Traffic 8:1554–1567

    Article  PubMed  CAS  Google Scholar 

  • Flick JS, Thorner J (1993) Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol Cell Biol 13:5861–5876

    PubMed  CAS  Google Scholar 

  • Foti M, Audhya A, Emr SD (2001) Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell 12:2396–2411

    PubMed  CAS  Google Scholar 

  • Friant S, Pecheur E, Eugster A, Michel F, Lefkir Y, Nourrisson D, Letourneur F (2003) Ent3p is a PtdIns(3,5)P2 effector required for protein sorting to the multivesicular body. Dev Cell 5:499–511

    Article  PubMed  CAS  Google Scholar 

  • Gall WE, Geething NC, Hua Z, Ingram MF, Liu K, Chen SI, Graham TR (2002) Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Curr Biol 12:1623–1627

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Bustos JF, Marini F, Stevenson I, Frei C, Hall MN (1994) PIK1, an essential phosphatidylinositol 4-kinase associated with the yeast nucleus. EMBO J 13:2352–2361

    PubMed  CAS  Google Scholar 

  • Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD (1998) Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 143:65–79

    Article  PubMed  CAS  Google Scholar 

  • Gary JD, Sato TK, Stefan CJ, Bonangelino CJ, Weisman LS, Emr SD (2002) Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 13:1238–1251

    Google Scholar 

  • Gaullier JM, Simonsen A, D’Arrigo A, Bremnes B, Stenmark H, Aasland R (1998) FYVE fingers bind PtdIns(3)P. Nature 394:432–433

    Article  PubMed  CAS  Google Scholar 

  • Gorbatyuk VY, Nosworthy NJ, Robson SA, Bains NP, Maciejewski MW, Dos Remedious CG, King GF (2006) Mapping the phosphoinositide-binding site on chick cofilin explains how PIP2 regulates the cofilin-actin interaction. Mol Cell 24:511–522

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Stolz LE, Lemrow SM, York JD (1999a) SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J Biol Chem 274:12990–12995

    Article  CAS  Google Scholar 

  • Guo W, Roth D, Walch-Solimena C, Novick P (1999b) The exocyst is an effector of Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18:1071–1080

    Article  CAS  Google Scholar 

  • Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB (1999) Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274:34294–34300

    Article  PubMed  CAS  Google Scholar 

  • Han GS, Audhya A, Markley DJ, Emr SD, Carman GM (2002) The Saccharomyces cerevisiae LSB6 gene encodes phosphatidylinositol 4-kinase activity. J Biol Chem 277:47709–47718

    Article  PubMed  CAS  Google Scholar 

  • He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  PubMed  CAS  Google Scholar 

  • He B, Xi F, Zhang X, Zhang J, Guo W (2007) Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J 26:4053–4065

    Article  PubMed  CAS  Google Scholar 

  • He J, Vora M, Haney RM, Filonov GS, Musselman CA, Burd CG, Kutateladze AG, Verkhusha VV, Stahelin RV, Kutateladze TG (2009) Membrane insertion of the FYVE domain is modulated by pH. Proteins 76:852–860

    Article  PubMed  CAS  Google Scholar 

  • Hendricks KB, Wang BQ, Schnieders EA, Thorner J (1999) Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1:234–241

    Article  PubMed  CAS  Google Scholar 

  • Herman PK, Stack JH, DeModena JA, Emr SD (1991) A novel protein kinase homolog essential for protein sorting to the yeast lysosome-like vacuole. Cell 64:425–437

    Article  PubMed  CAS  Google Scholar 

  • Hettema EH, Lewis MJ, Black MW, Pelham HR (2003) Retromer and the sorting nexins Snx4/41/42 mediate distinct retrieval pathways from yeast endosomes. EMBO J 22:548–557

    Article  PubMed  CAS  Google Scholar 

  • Holly SP, Blumer KJ (1999) PAK-family kinases regulate cell and actin polarization throughout the cell cycle of Saccharomyces cerevisiae. J Cell Biol 147:845–856

    Article  PubMed  CAS  Google Scholar 

  • Homma K, Terui S, Minemura M, Qadota H, Anraku Y, Kanaho Y, Ohya Y (1998) Phosphatidylinositol-4-phosphate 5-kinase localized on the plasma membrane is essential for yeast cell morphogenesis. J Biol Chem 273:15770–15786

    Article  Google Scholar 

  • Hua Z, Fatheddin P, Graham TR (2002) An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol Biol Cell 13:3162–3177

    Article  PubMed  CAS  Google Scholar 

  • Huang WP, Klionsky DJ (2002) Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 27:409–420

    Article  PubMed  CAS  Google Scholar 

  • Huang KM, D’Hondt K, Riezman H, Lemmon SK (1999) Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J 18:3897–3908

    Article  PubMed  CAS  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  PubMed  CAS  Google Scholar 

  • Im YJ, Hurley JH (2008) Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev Cell 14:902–913

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T (2001) Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291:1047–1051

    Google Scholar 

  • Janmey PA, Stossel TP (1987) Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325:362–364

    Article  PubMed  CAS  Google Scholar 

  • Kagiwada S, Hashimoto M (2007) The yeast VAP homolog Scs2p has a phosphoinositide-binding ability that is correlated with its activity. Biochem Biophys Res Commun 364:870–876

    Article  PubMed  CAS  Google Scholar 

  • Kametaka S, Okano T, Ohsumi M, Ohsumi Y (1998) Apg14p and Apg6p/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 273:22284–22291

    Article  PubMed  CAS  Google Scholar 

  • Katzmann DJ, Stefan CJ, Babst M, Emr SD (2003) Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J Cell Biol 162:413–423

    Article  PubMed  CAS  Google Scholar 

  • Kearns BG, McGee TP, Mayinger P, Gedvilaite A, Phillips SE, Kagiwada S, Bankaitis VA (1997) Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387:101–105

    Article  PubMed  CAS  Google Scholar 

  • Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530

    Article  PubMed  CAS  Google Scholar 

  • Kim K, McCully ME, Bhattacharya N, Butler B, Sept D, Cooper JA (2007) Structure/function analysis of the interaction of phosphatidylinositol 4,5-bisphosphate with actin-capping protein: implications for how capping protein binds the actin filament. J Biol Chem 282:5871–5879

    Article  PubMed  CAS  Google Scholar 

  • Krick R, Tolstrup J, Appelles A, Henke S, Thumm M (2006) The relevance of the phosphatidylinositol phosphate-binding motif FRRGT of Atg18 and Atg21 for the CVT pathway and autophagy. FEBS Lett 580:4632–4638

    Article  PubMed  CAS  Google Scholar 

  • Krick R, Henke S, Tolstrup J, Thumm M (2008) Dissecting the localization and function of Atg18, Atg21, and Ygr223c. Autophagy 4:896–910

    PubMed  CAS  Google Scholar 

  • Kusano K, Abe H, Obinata T (1999) Detection of a sequence involved in actin-binding and phosphoinositide-binding in the N-terminal side of cofilin. Mol Cell Biochem 190:133–141

    Article  PubMed  CAS  Google Scholar 

  • Kutateladze TG (2006) Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain. Biochim Biophys Acta 1761:868–877

    Article  PubMed  CAS  Google Scholar 

  • Kutateladze TG (2007) Mechanistic similarities in docking of the FYVE and PX domains to phosphatidylinositol 3-phosphate containing membranes. Prog Lipid Res 46:315–327

    Article  PubMed  CAS  Google Scholar 

  • Kutateladze TG, Ogburn KD, Watson WT, Beer T de, Emr SD, Burd CG, Overduin M (1999) Phosphatidylinositol 3-phosphate recognition by the FYVE domain. Mol Cell 3:805–811

    Article  PubMed  CAS  Google Scholar 

  • Kutateladze TG, Capelluto DG, Ferguson CG, Cheever ML, Kutateladze AG, Prestwich GD, Overduin M (2004) Multivalent mechanism of membrane insertion by the FYVE domain. J Biol Chem 279:3050–3057

    Article  PubMed  CAS  Google Scholar 

  • Lassing I, Lindberg U (1985) Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314:472–474

    Article  PubMed  CAS  Google Scholar 

  • Lee SA, Eyeson R, Cheever ML, Geng J, Verkhusha VV, Burd C, Overduin M, Kutateladze TG (2005) Targeting of the FYVE domain to endosomal membranes is regulated by a histidine switch. Proc Natl Acad Sci U S A 102:13052–13057

    Article  PubMed  CAS  Google Scholar 

  • Legendre-Guillemin V, Wasiak S, Hussain NK, Angers A, McPherson PS (2004) ENTH/ANTH proteins and clathrin-mediated membrane budding. J Cell Sci 117:9–18

    Article  PubMed  CAS  Google Scholar 

  • Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111

    Article  PubMed  CAS  Google Scholar 

  • Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291

    Article  PubMed  CAS  Google Scholar 

  • Levine TP, Munro S (2001) Dual targeting of Osh1p, a yeast homologue of oxysterol-binding protein, to both the Golgi and the nucleus-vacuole junction. Mol Biol Cell 12:1633–1644

    PubMed  CAS  Google Scholar 

  • Levine TP, Munro S (2002) Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and --independent components. Curr Biol 12:695–704

    Article  PubMed  CAS  Google Scholar 

  • Li X, Rivas MP, Fang M, Marchena J, Mehrotra B, Chaudhary A, Feng L, Prestwich GD, Bankaitis VA (2002) Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J Cell Biol 157:63–77

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Sun Y, Oster GF, Drubin DG (2010) Mechanochemical crosstalk during endocytic vesicle formation. Curr Opin Cell Biol 22:36–43

    Article  PubMed  CAS  Google Scholar 

  • Lorente-Rodriguez A, Barlowe C (2011) Requirement for Golgi-localized PI(4)P in fusion of COPII vesicles with Golgi compartments. Mol Biol Cell 22:216–229

    Article  PubMed  CAS  Google Scholar 

  • Mao Y, Nickitenko A, Duan X, Lloyd TE, Wu MN, Bellen H, Quiocho FA (2000) Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell 100:447–456

    Article  PubMed  CAS  Google Scholar 

  • Marcusson EG, Horazdovsky BF, Cereghino JL, Gharakhanian E, Emr SD (1994) The sorting receptor for yeast vacuole carboxypeptidase Y is encoded by the VPS10 gene. Cell 77:579–586

    Article  PubMed  CAS  Google Scholar 

  • Michell RH, Heath VL, Lemmon MA, Dove SK (2006) Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends Biochem Sci 31:52–63

    Article  PubMed  CAS  Google Scholar 

  • Misra S, Hurley JH (1999) Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 97:657–666

    Article  PubMed  CAS  Google Scholar 

  • Mizuno-Yamasaki E, Medkova M, Coleman J, Novick P (2010) Phosphatidylinositol 4-phosphate controls both membrane recruitment and a regulatory switch of the Rab GEF Sec2p. Dev Cell 18:828–840

    Article  PubMed  CAS  Google Scholar 

  • Nair U, Cao T, Xie Z, Klionsky DJ (2010) Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J Biol Chem 285:11476–11488

    Article  PubMed  CAS  Google Scholar 

  • Natarajan P, Liu K, Patil DV, Sciorra VA, Jackson CL, Graham TR (2009) Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nat Cell Biol 11:1421–1426

    Article  PubMed  CAS  Google Scholar 

  • Nice DC, Sato TK, Stomhaug PE, Emr SD, Klionsky DJ (2002) Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 277:30198–30207

    Article  PubMed  CAS  Google Scholar 

  • Odorizzi G, Babst M, Emr SD (1998) Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95:847–858

    Article  PubMed  CAS  Google Scholar 

  • Ojala PJ, Paavilainen V, Lappalainen P (2001) Identification of yeast cofilin residues specific for actin monomer and PIP2 binding. Biochemistry 40:15562–15569

    Article  PubMed  CAS  Google Scholar 

  • Ortiz D, Medkova M, Walch-Solimena C, Novick P (2002) Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J Cell Biol 157:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Palmgren S, Ojala PJ, Wear MA, Cooper JA, Lappalainen P (2001) Interactions with PIP2, ADP-actin monomers, and capping protein regulate the activity and localization of yeast twinfilin. J Cell Biol 155:251–260

    Article  PubMed  CAS  Google Scholar 

  • Papayannopoulos V, Co C, Prehoda KE, Snapper S, Taunton J, Lim WA (2005) A polybasic motif allows N-WASP to act as a sensor of PIP(2) density. Mol Cell 17:181–191

    Article  PubMed  CAS  Google Scholar 

  • Parrish WR, Stefan CJ, Emr SD (2004) Essential role for the myotubularin-related phosphatase Ymr1p and the synaptojanin-like phosphatases Sjl2p and Sjl3p in regulation of phosphatidylinositol 3-phosphate in yeast. Mol Biol Cell 15:3567–3579

    Article  PubMed  CAS  Google Scholar 

  • Parrish WR, Stefan CJ, Emr SD (2005) PtdIns(3)P accumulation in triple lipid-phosphatase-deletion mutants triggers lethal hyperactivation of the Rho1p/Pkc1p cell-integrity MAP kinase pathway. J Cell Sci 118:5589–5601

    Article  PubMed  CAS  Google Scholar 

  • Peterson MR, Burd CG, Emr SD (1999) Vac1p coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Curr Biol 9:159–162

    Article  PubMed  CAS  Google Scholar 

  • Phelan JP, Millson SH, Parker PJ, Piper PW, Cooke FT (2006) Fab1p and AP-1 are required for trafficking of endogenously ubiquitylated cargoes to the vacuole lumen in S. cerevisiae. J Cell Sci 119:4225–4234

    Article  PubMed  CAS  Google Scholar 

  • Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A (2004) Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 20:559–591

    Article  PubMed  CAS  Google Scholar 

  • Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:444–452

    Article  CAS  Google Scholar 

  • Richer SM, Stewart NK, Tomaszewski JW, Stone MJ, Oakley MG (2008) NMR investigation of the binding between human profiling I and inositol 1,4,5-triphosphate, the soluble headgroup of phosphatidylinositol 4,5-bisphosphate. Biochemistry 47:13455–13462

    Article  PubMed  CAS  Google Scholar 

  • Rohatgi R, Ho HY, Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J Cell Biol 150:1299–1310

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Levine TP (2004) Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p. J Biol Chem 279:44683–44689

    Article  PubMed  CAS  Google Scholar 

  • Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 90:259–289

    Article  PubMed  CAS  Google Scholar 

  • Santiago-Tirado FH, Legesse-Miller A, Schott D, Bretscher A (2011) PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Dev Cell 20:47–59

    Article  PubMed  CAS  Google Scholar 

  • Sato TK, Overduin M, Emr SD (2001) Location, location, location: membrane targeting directed by PX domains. Science 294:1881–1885

    Article  PubMed  CAS  Google Scholar 

  • Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91

    Article  PubMed  CAS  Google Scholar 

  • Schulz TA, Prinz WA (2007) Sterol transport in yeast and the oxysterol binding protein homologue (OSH) family. Biochim Biophys Acta 1771:769–780

    Article  PubMed  CAS  Google Scholar 

  • Sciorra VA, Rudge SA, Wang J, McLaughlin S, Engebrecht J, Morris AJ (2002) Dual role for phosphoinositides in regulation of yeast and mammalian phospholipase D enzymes. J Cell Biol 159:1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Sciorra VA, Audhya A, Parsons AB, Negev N, Boone C, Emr SD (2005) Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway. Mol Biol Cell 16:776–793

    Article  PubMed  CAS  Google Scholar 

  • Schmitz KR, Liu J, Li S, Setty TG, Wood CS, Burd CG, Ferguson KM (2008) Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 14:523–534

    Article  PubMed  CAS  Google Scholar 

  • Shin ME, Ogburn KD, Varban OA, Gilbert PM, Burd CG (2001) FYVE domain targets Pib1p ubiquitin ligase to endosome and vacuolar membranes. J Biol Chem 276:41388–41393

    Article  PubMed  CAS  Google Scholar 

  • Seet LF, Hong W (2006) The Phox (PX) domain proteins and membrane traffic. Biochim Biophys Acta 1761:878–896

    Article  PubMed  CAS  Google Scholar 

  • Shelton SN, Barylko B, Binns DD, Horazdovsky BF, Albanesi JP, Goodman JM (2003) Saccharomyces cerevisiae contains a Type II phosphoinositide 4-kinase. Biochem J 371:533–540

    Article  PubMed  CAS  Google Scholar 

  • Song X, Xu W, Zhang A, Huang G, Liang X, Virbasius JV, Czech MP, Zhou GW (2001) Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry 40:8940–8944

    Article  PubMed  CAS  Google Scholar 

  • Sreenivas A, Patton-Vogt JL, Bruno V, Griac P, Henry SA (1998) A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J Biol Chem 273:16635–16638

    Article  PubMed  CAS  Google Scholar 

  • Stack JH, Emr SD (1994) Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositol-specific PI 3-kinase activities. J Biol Chem 269:31552–31562

    PubMed  CAS  Google Scholar 

  • Stack JH, Herman PK, Schu PV, Emr SD (1993) A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 12:2195–2204

    PubMed  CAS  Google Scholar 

  • Stack JH, Horazdovsky B, Emr SD (1995) Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP-binding proteins. Annu Rev Cell Dev Biol 11:1–33

    Article  PubMed  CAS  Google Scholar 

  • Stahelin RV, Long F, Diraviyam K, Bruzik KS, Murray D, Cho W (2002) Phosphatidylinositol 3-phosphate induces the membrane penetration of the FYVE domains of Vps27p and Hrs. J Biol Chem 277:26379–26388

    Article  PubMed  CAS  Google Scholar 

  • Stahelin RV, Long F, Peter BJ, Murray D, DeCamilli P, McMahon HT, Cho W (2003) Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J Biol Chem 278:28993–28999

    Article  PubMed  CAS  Google Scholar 

  • Stefan CJ, Audhya A, Emr SD (2002) The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol Biol Cell 13:542–557

    Article  PubMed  CAS  Google Scholar 

  • Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, Mao Y, Emr SD (2011) Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144:1–13

    Article  CAS  Google Scholar 

  • Stenmark H, Gillooly DJ (2001) Intracellular trafficking and turnover of phosphatidylinositol 3-phosphate. Semin Cell Dev Biol 12:193–199

    Article  PubMed  CAS  Google Scholar 

  • Stolz LE, Huynh CV, Thorner J, York JD (1998) Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52, and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics 148:1715–1729

    PubMed  CAS  Google Scholar 

  • Strahl T, Hama H, DeWald DB, Thorner J (2005) Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J Cell Biol 171:967–979

    Article  PubMed  CAS  Google Scholar 

  • Strochlic TI, Setty TG, Sitaram A, Burd CG (2007) Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J Cell Biol 177:115–125

    Article  PubMed  CAS  Google Scholar 

  • Stromhaug PE, Reggiori F, Guan J, Wang CW, Klionsky DJ (2004) Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 15:3553–3566

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Kaksonen M, Madden DR, Schekman R, Drubin DG (2005) Interaction of Sla2p’s ANTH domain with PtdIns(4,5)P2 is important for actin-dependent endocytic internalization. Mol Biol Cell 16:717–730

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi M, Audhya A, Parsons AB, Boone C, Emr SD (2006) The phosphatidylinositol 4,5-bisphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation. Mol Cell Biol 26:5861–5875

    Article  PubMed  CAS  Google Scholar 

  • Tahirovic S, Schorr M, Mayinger P (2005) Regulation of intracellular phosphatidylinositol-4-phosphate by the Sac1 lipid phosphatase. Traffic 6:116–130

    Article  PubMed  CAS  Google Scholar 

  • Tall CG, Hama H, DeWald DB, Horazdovsky BF (1999) The phosphatidylinositol 3-phosphate binding protein Vac1p interacts with a Rab GTPase and a Sec1p homologue to facilitate vacuolar protein sorting. Mol Biol Cell 10:1873–1889

    PubMed  CAS  Google Scholar 

  • Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL (2006) ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLLE in linking to ESCRT-I and membranes. Cell 125:99–111

    Article  PubMed  CAS  Google Scholar 

  • Trotter PJ, Wu WI, Pedretti J, Yates R, Voelker DR (1998) A genetic screen for aminophospholipid transport mutants identifies the phosphatidylinositol 4-kinase, STT4p, as an essential component in phosphatidylserine metabolism. J Biol Chem 273:13189–13196

    Article  PubMed  CAS  Google Scholar 

  • Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321:404–407

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signaling. Nat Rev Mol Cell Biol 11:329–341

    Article  PubMed  CAS  Google Scholar 

  • Votin V, Allyn T, Thorner J (2009) Binding of PI4,5P2 by septin complexes is required for their essential function in cytokinesis in budding yeast. FASEB J 23:697.5

    Google Scholar 

  • Walch-Solimena C, Novick P (1999) The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nat Cell Biol 1:523–525

    Article  PubMed  CAS  Google Scholar 

  • Webb GC, Zhang J, Garlow SJ, Wesp A, Riezman H, Jones EW (1997) Pep7p provides a novel protein that functions in vesicle-mediated transport between the yeast Golgi and endosome. Mol Biol Cell 8:871–895

    PubMed  CAS  Google Scholar 

  • Weirich CS, Erzberger JP, Barral Y (2008) The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9:478–489

    Article  PubMed  CAS  Google Scholar 

  • Wendland B, Emr SD (1998) Pan1p, yeast eps15, functions as a multivalent adaptor that coordinates protein-protein interactions essential for endocytosis. J Cell Biol 141:71–84

    Article  PubMed  CAS  Google Scholar 

  • Wendland B, Steece KE, Emr SD (1999) Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J 18:4383–4393

    Article  PubMed  CAS  Google Scholar 

  • Wesp A, Hicke L, Palecek J, Lombardi R, Aust T, Munn AL, Riezman H (1997) End4p/Sla2p interacts with actin-associated proteins for endocytosis in Saccharomyces cerevisiae. Mol Biol Cell 8:2291–2306

    PubMed  CAS  Google Scholar 

  • Wild AC, Yu JW, Lemmon MA, Blumer KJ (2004) The p21-activated protein kinase-related kinase Cla4 is a coincidence detector of signaling by Cdc42 and phosphatidylinositol 4-phosphate. J Biol Chem 279:17101–17110

    Article  PubMed  CAS  Google Scholar 

  • Wiradjaja F, Ooms LM, Whisstock JC, McColl B, Heifenbaum L, Sanbrook JF, Gething MJ, Mitchell CA (2001) The yeast inositol polyphosphate 5-phosphatase Inp54p localizes to the endoplasmic reticulum via a C-terminal hydrophobic anchoring tail: regulation of secretion from the endoplasmic reticulum. J Biol Chem 276:7643–7653

    Article  PubMed  CAS  Google Scholar 

  • Witke W (2004) The role of profiling complexes in cell motility and other cellular processes. Trends Cell Biol 14:461–469

    Article  PubMed  CAS  Google Scholar 

  • Wood CS, Schmitz KR, Bessman NJ, Setty TG, Ferguson KM, Burd CG (2009) PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 187:967–975

    Article  PubMed  CAS  Google Scholar 

  • Wurmser AE, Emr SD (1998) Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J 17:4930–4942

    Article  PubMed  CAS  Google Scholar 

  • Wurmser AE, Emr SD (2002) Novel PtdIns(3)P-binding protein Etf1 functions as an effector of the Vps34 PtdIns 3-kinase in autophagy. J Cell Biol 158:761–772

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Seet LF, Hanson B, Hong W (2001) The Phox homology (PX) domain, a new player in phosphoinositide signaling. Biochem J 360:513–530

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, DeWald DB, Boronenkov IV, Anderson RA, Emr SD, Koshland D (1995) Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell 6:525–539

    PubMed  CAS  Google Scholar 

  • Yeung BG, Phan HL, Payne GS (1999) Adaptor complex-independent clathrin function in yeast. Mol Biol Cell 10:3643–3659

    PubMed  CAS  Google Scholar 

  • Yin HL, Janmey PA (2003) Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 65:761–789

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Bartolini S, Pellman D (2009) Mechanisms for concentrating Rho1 during cytokinesis. Genes Dev 23:810–823

    Article  PubMed  CAS  Google Scholar 

  • Yu JW, Lemmon MA (2001) All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J Biol Chem 276:44179–44184

    Article  PubMed  Google Scholar 

  • Yu JW, Mendrola JM, Audhya A, Singh S, Keleti D, DeWald DB, Murray D, Emr SD, Lemmon MA (2004) Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol Cell 13:677–688

    Article  PubMed  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

  • Zhai C, Li K, Markaki V, Phelan JP, Bowers K, Cooke FT, Panaretou B (2008) Ypp1/YGR198w plays an essential role in phosphoinositide signaling at the plasma membrane. Biochem J 415:455–466

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Orlando K, He B, Xi F, Zhang J, Zajac A, Guo W (2008) Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J Cell Biol 180:145–158

    Article  PubMed  CAS  Google Scholar 

  • Zhdankina O, Strand NL, Redmond JM, Boman AL (2001) Yeast GGA proteins interact with GTP-bound Arf and facilitate transport through the Golgi. Yeast 18:1–18

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjon Audhya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schuh, A.L., Audhya, A. (2012). Phosphoinositide Signaling During Membrane Transport in Saccharomyces Cerevisiae . In: Balla, T., Wymann, M., York, J. (eds) Phosphoinositides II: The Diverse Biological Functions. Subcellular Biochemistry, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3015-1_2

Download citation

Publish with us

Policies and ethics