Skip to main content

Phosphoinositides and Cellular Pathogens

  • Chapter
  • First Online:
Phosphoinositides II: The Diverse Biological Functions

Part of the book series: Subcellular Biochemistry ((SCBI,volume 59))

Abstract

Phosphoinositides are considered as highly dynamic players in the spatiotemporal organization of key signaling pathways, actin cytoskeleton rearrangements, establishment of cell polarity and intracellular vesicle trafficking. Their metabolism is accurately controlled and mutations in several phosphoinositide metabolizing enzymes take part in the development of human pathologies. Interestingly, evidence is accumulating that modulation of the phosphoinositide metabolism is critical for pathogenicity and virulence of many human pathogens. Given the importance of phosphoinositides, which link membrane and cytoskeleton dynamics to cell responses, it is not surprising that many invasive pathogens hijack their metabolism as part of their strategies to establish infection. In fact, according to their lifestyle, cellular pathogens use the phosphoinositide metabolism in order to trigger their uptake in nonphagocytic cells and/or modulate the maturation of the pathogen-containing vacuole to establish their replicative niche or escape in the cytosol and promote host cell survival. The last two decades have been marked by the discovery of different tactics used by cellular pathogens to modulate the phosphoinositide metabolism as part of their strategies to survive, proliferate and disseminate in a hostile environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal V, Hammerschmidt S (2009) Cdc42 and the phosphatidylinositol 3-kinase-Akt pathway are essential for PspC-mediated internalization of pneumococci by respiratory epithelial cells. J Biol Chem 284:19427–19436

    Article  PubMed  CAS  Google Scholar 

  • Aleman A, Rodriguez-Escudero I, Mallo GV, Cid VJ, Molina M, Rotger R (2005) The amino-terminal non-catalytic region of Salmonella typhimurium SigD affects actin organization in yeast and mammalian cells. Cell Microbiol 7:1432–1446

    Article  PubMed  CAS  Google Scholar 

  • Alrutz MA, Isberg RR (1998) Involvement of focal adhesion kinase in invasin-mediated uptake. Proc Natl Acad Sci U S A 95:13658–13663

    Article  PubMed  CAS  Google Scholar 

  • Alrutz MA, Srivastava A, Wong KW, D’Souza-Schorey C, Tang M, Ch’ng LE, Snapper SB, Isberg RR (2001) Efficient uptake of Yersinia pseudotuberculosis via integrin receptors involves a Rac1-Arp2/3 pathway that bypasses N-WASP function. Mol Microbiol 42:689–703

    Article  PubMed  CAS  Google Scholar 

  • Banarjee M, Copp J, Vuga D, Marino M, Chapman T, van der Geer P, Ghosh P (2004) GW domains of the Listeria monocytogenes invasion protein InlB are required for potenitation of Met activation. Mol Microbiol 52:257–271

    Article  CAS  Google Scholar 

  • Basar T, Shen Y, Ireton K (2005) Redundant role for Met docking site tyrosines and Gab1 PH domain in InlB-mediated entry of Listeria monocytogenes. Infect Immun 73:2061–2074

    Article  PubMed  CAS  Google Scholar 

  • Beresford N, Patel S, Armstrong J, Szoor B, Fordham-Skelton AP, Tabernero L (2007) MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem J 406:13–18

    Article  PubMed  CAS  Google Scholar 

  • Beresford N, Saville C, Bennett HJ, Roberts IS, Tabernero L (2010) A new family of phosphoinositide phosphatases in microorganisms: identification and biochemical analysis. BMC Genomics 11:457–469

    Article  PubMed  CAS  Google Scholar 

  • Bergmann S, Lang A, Rohde M, Agarwal V, Rennermeier C, Grashoff C, Preissner KT, Hammerschmidt S (2009) Integrin-linked kinase is required for vitronectin-mediated internalization of Streptococcus pneumoniae by host cells. J Cell Sci 122:256–267

    Article  PubMed  CAS  Google Scholar 

  • Bershadsky A (2004) Magic touch: how does cell-cell adhesion trigger actin assembly? Trends Cell Biol 14:589–593

    Article  PubMed  CAS  Google Scholar 

  • Bierne H, Dramsi S, Gratacap MP, Randriamampita C, Carpenter G, Payrastre B, Cossart P (2000) The invasion protein InlB from L. monocytogenes activates PLC-g1 downstream from PI 3-kinase. Cell Microbiol 2:465–476

    CAS  Google Scholar 

  • Bierne H, Gouin E, Roux P, Caroni P, Yin HL, Cossart P (2001) A role for cofilin and LIM kinase in Listeria-induced phagocytosis. J Cell Biol 155:101–112

    Article  PubMed  CAS  Google Scholar 

  • Borawski J, Troke P, Puyang X, Gibaja V, Zhao S, Mickanin C, Leighton-Davies J, Wilson CJ, Myer V, Cornellataracido I, Baryza J, Tallarico J, Joberty G, Bantscheff M, Schirle M, Bouwmeester T, Mathy JE, Lin K, Compton T, Labow M, Wiedmann B, Gaither LA (2009) Class III phosphatidylinositol 4-kinase alpha and beta are novel host factor regulators of hepatitis C virus replication. J Virol 83:10058–10074

    Article  PubMed  CAS  Google Scholar 

  • Braun L, Ghebrehiwet B, Cossart P (2000) gC1q-R/32, a C1q-binding protein is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J 19:1458–1466

    Article  PubMed  CAS  Google Scholar 

  • Broberg CA, Zhang L, Gonzalez H, Laskowski-Arce MA, Orth K (2010) A Vibrio effector protein is an inositol phosphatase and disrupts host cell membrane integrity. Science 329:1660–1662

    Article  PubMed  CAS  Google Scholar 

  • Brombacher E, Urwyler S, Ragaz C, Weber SS, Kami K, Overduin M, Hilbi H (2009) Rab1 guanine nucleotide exchange factor SidM is a major PtdIns(4)P-binding effector protein of Legionella pneumophila. J Biol Chem 284:4846–4856

    Article  PubMed  CAS  Google Scholar 

  • Brown FD, Rozelle AL, Yin HL, Balla T, Donaldson JG (2001) Phosphatidylinositol 4, 5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol 154:1007–1017

    Article  PubMed  CAS  Google Scholar 

  • Brumel JH, Grinstein S (2003) Role of lipid-mediated signal transduction in bacterial internalization. Cell Microbiol 5:287–297

    Article  Google Scholar 

  • Campellone KG, Leong JM (2005) Nck-independent actin assembly is mediated by two phosphorylated tyrosines within nteropathogenic Escherichia coli Tir. Mol Microbiol 56:416–432

    Article  PubMed  CAS  Google Scholar 

  • Carlton JG, Cullen PJ (2005) Coincidence detection in phosphoinositide signalling. Trends Cell Biol 15:540–547

    Article  PubMed  CAS  Google Scholar 

  • Carricaburu V, Lamia KA, Lo E, Favereaux L, Payrastre B, Cantley LC, Rameh LE (2003) The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Proc Natl Acad Sci U S A 100:9867–9872

    Article  PubMed  CAS  Google Scholar 

  • Celli J, Olivier M, Finlay BB (2001) Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J 20:1245–1258

    Article  PubMed  CAS  Google Scholar 

  • Chua J, Vergne I, Master S, Deretic V (2004) A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest. Curr Opin Microbiol 7:71–77

    Article  PubMed  CAS  Google Scholar 

  • Cossart P, Sansonetti P (2004) Bacterial invasion: the paradigms of enterinvasive pathogens. Science 304:242–248

    Article  PubMed  CAS  Google Scholar 

  • Daeron M, Jaeger S, Du Pasquier L, Vivier E (2008) Immunoreceptor tyrosine based inhibition motifs: a quest in the past and future. Immunol Rev 224:11–43

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Zhang Y, Weimbs T, Yaffe MB, Zhou D (2007) Bacteria-generated PtdIns(3)P recruits VAMP8 to facilitate phagocytosis. Traffic 8:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Das S, Saha AK, Remaley AT, Glew RH, Dowling JN, Kajiyoshi M, Gottlieb M (1986) Hydrolysis of phosphoproteins and inositol phosphates by cell surface phosphatase of Leishmania donovani. Mol Biochem Parasitol 20:143–153

    Article  PubMed  CAS  Google Scholar 

  • De Santis G, Miotti S, Mazzi M, Canevari S, Tomassetti A (2009) E-cadherin directly contributes to PI3K/AKT activation by engaging the PI3K-p85 regulatory subunit to adherens junctions of ovarian carcinoma cells. Oncogene 28:1206–1217

    Article  PubMed  CAS  Google Scholar 

  • DeVinney R, Steele-Mortimer O, Finlay BB (2000) Phosphatases and kinases delivered to the host cell by bacterial pathogens. Trends Microbiol 8:29–33

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  CAS  Google Scholar 

  • Dokainish H, Gavicherla B, Shen Y, Ireton K (2007) The carboxyl-terminal SH3 domain of the mammalian adaptor CrkII promotes internalization of Listeria monocytogenes through activation of host phosphoinositide 3-kinase. Cell Microbiol 9:2497–2516

    Article  PubMed  CAS  Google Scholar 

  • Duncan MJ, Shin JS, Abraham SN (2002) Microbial entry through caveolae: variations on a theme. Cell Microbiol 4:783–791

    Article  PubMed  CAS  Google Scholar 

  • Duncan MJ, Li G, Shin JS, Carson JL, Abraham SN (2004) Bacterial penetration of bladder epithelium through lipid rafts. J Biol Chem 279:18944–18951

    Article  PubMed  CAS  Google Scholar 

  • Elabbadi N, Ancelin ML, Vial HJ (1994) Characterization of phosphatidylinositol synthase and evidence of a polyphosphoinositide cycle in Plasmodium-infected erythrocytes. Mol Biochem Parasitol 63:179–192

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Wente SR, Majerus PW (2001) Overexpression of the inositol phosphatase SopB in human 293 cells stimulates cellular chloride influx and inhibits nuclear mRNA export. Proc Natl Acad Sci U S A 98:75–79

    Article  Google Scholar 

  • Fowler T, Wann ER, Joh D, Johansson SA, Foster TJ, Höök M (2000) Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell beta 1 integrins. Eur J Cell Biol 79:672–679

    Article  PubMed  CAS  Google Scholar 

  • Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V (2001) Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154:631–644

    Article  PubMed  CAS  Google Scholar 

  • Fratti RA, Chua J, Vergne I, Deretic V (2003) Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 100:5437–5442

    Article  PubMed  CAS  Google Scholar 

  • Gassama-Diagne A, Payrastre B (2009) Phosphoinositides signalling pathways: promising role as builders of epithelial cell polarity. In Rev Cell Mol Biol 273:313–343

    Article  CAS  Google Scholar 

  • Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA, Baird CL, Zhu H, Field SJ, Lessnick SL, Villasenor J, Mehrotra B, Chen J, Rao VR, Brugge JS, Ferguson CG, Payrastre B, Myszka DG, Cantley LC, Wagner G, Divecha N, Prestwich GD, Yuan J (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114:99–111

    Article  PubMed  CAS  Google Scholar 

  • Gruenheid S, DeVinney R, Bladt F, Goosney D, Gelkop S, Gish GD, Pawson T, Finlay BB (2001) Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat Cell Biol 3:856–859

    Article  PubMed  CAS  Google Scholar 

  • Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33:891–895

    Article  PubMed  CAS  Google Scholar 

  • Hamon M, Bierne H, Cossart P (2006) Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4:423–434

    Article  PubMed  CAS  Google Scholar 

  • Hernandez LD, Hueffer K, Wenk MR, Galan JE (2004) Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304:1805–1807

    Article  PubMed  CAS  Google Scholar 

  • Hilbi H (2006) Modulation of phosphoinositide metabolism by pathogenic bacteria. Cell Microbiol 8:1697–1706

    Article  PubMed  CAS  Google Scholar 

  • Hmam Z, Sendide K, Talal A, Garcia R, Dobos K, Reiner NE (2004) Quantitative analysis of phagolysosome fusion in intact cells: inhibition by mycobacterial lipoarabinomannan and rescue by an 1alpha,25-dihydroxyvitamin D3-phosphoinositide 3-kinase pathway. J Cell Sci 117:2131–2140

    Article  CAS  Google Scholar 

  • Hoffman I, Eugene E, Nassif X, Couraud PO, Bourdoulous S (2001) Activation of ErbB2 receptor tyrosine kinase supports invasion of endothelial cells by Neisseria meningitis. J Cell Biol 155:133–143

    Article  Google Scholar 

  • Hsu, N-Y, Ilnytska O, Belov G, Santiana M, Chen, Y-H, Takvorian PM, Pau C, Van der Schaar H, Kaushik-Basu N, Balla T, Cameron CE, Ehrenfeld E, Van Kuppeveld, FJM, Altan-Bonnet N (2010) Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell 141:799–811

    Article  PubMed  CAS  Google Scholar 

  • Ireton K, Payrastre B, Chap H, Ogawa W, Sakaue H, Kasuga M, Cossart P (1996) A role for phosphoinositide 3-kinase in bacterial invasion. Science 274:780–782

    Article  PubMed  CAS  Google Scholar 

  • Ireton K, Payrastre B, Cossart P (1999) The Listeria monocytogenes protein InlB is an agonist of mammalian Phosphoinositide 3-kinase. J Biol Chem 274:17025–17032

    Article  PubMed  CAS  Google Scholar 

  • Isberg RR, Leong JM (1990) Multiple β1 chain integrins are recptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60:861–871

    Article  PubMed  CAS  Google Scholar 

  • Jones DR, Bultsma Y, Keune WJ, Halstead JR, Elouarrat D, Mohammed S, Heck AJ, D’Santos CS, Divecha N (2006) Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4K beta. Mol Cell 23:685–695

    Article  PubMed  CAS  Google Scholar 

  • Kale SD, Gu B, Capelluto DGS, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R, Fudal I, Rouxel T, Lawrence CB, Shan W, Tyler BM (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142:284–295

    Article  PubMed  CAS  Google Scholar 

  • Kallstrom H, LiszwskiI MK, Atkinson JP, Jonsson AB (1997) Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol Microbiol 25:639–647

    Article  PubMed  CAS  Google Scholar 

  • Kang PB, Azad AK, Torrelles JB, Kaufman TM, Beharka A, Tibesar E, DesJardin LE, Schlesinger LS (2005) The human macrophage mannose receptor directs mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 202:987–999

    Article  PubMed  CAS  Google Scholar 

  • Kerk D, Moorhead GBG (2010) A phylogenetic survey of myotubularin genes of eukaryotes: distribution, protein structure, evolution, and gene expression. BMC Evol Biol 10:196–212

    Article  PubMed  CAS  Google Scholar 

  • Knodler LA, Finlay BB, Steele-Mortimer O (2005) The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J Biol Chem 280:9058–9064

    Article  PubMed  CAS  Google Scholar 

  • Koul A, Choidas A, Treder M, Tyagi AK, Drlica K, Singh Y, Ullrich A (2000) Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J Bacteriol 182:5425–5432

    Article  PubMed  CAS  Google Scholar 

  • Lecuit M, Hurme R, Pizarro-Cerdà J, Ohayon H, Geiger B, Cossart P (2000) A role for alpha- and beta-catenins in bacterial uptake. Proc Natl Acad Sci U S A 97:10008–10013

    Article  PubMed  CAS  Google Scholar 

  • Lemichez E, Lecuit M, Nassif X, Bourdoulous S (2010) Breaking the wall: targetting of the endothelium by pathogen bacteria. Nat Rev Microbiol 8:93–104

    PubMed  CAS  Google Scholar 

  • Lemmon MA (2003) Phosphoinositide recognition domains. Traffic 4:201–213

    Article  PubMed  CAS  Google Scholar 

  • Machner MP, Isberg RR (2006) Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 11:47–56

    Article  PubMed  CAS  Google Scholar 

  • Malaviya R, Gao Z, Thankavel K, Merwe PA van der, Abraham SN (1999) The mast cell tumor necrosis factor alpha response to FimH-expressing Eschericchia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc Natl Acad Sci U S A 96:8110–8115

    Article  PubMed  CAS  Google Scholar 

  • Mallo GV, Espina M, Smith AC, Terebiznik MR, Aleman A, Finlay BB, Rameh LE, Grinstein S, Brumell JH (2008) SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J Cell Biol 182:741–752

    Article  PubMed  CAS  Google Scholar 

  • Marcus SL, Wenk MR, Steele-Mortimer O, Finlay BB (2001) A synaptojanin-homologous region of Salmonella typhimurium SigD is essential for inositol phosphatase activity and Akt activation. FEBS Lett 494:201–207

    Article  PubMed  CAS  Google Scholar 

  • Marino M, Braun L, Cossart P, Ghosh P (1999) Structure of the InlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. monocytogenes. Mol Cell 4:1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Marino M, Banarjee M, Jonquieres R, Cossart P, Ghosh P (2002) GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligand. EMBO J 21:5623–5634

    Article  PubMed  CAS  Google Scholar 

  • Marti M, Good RT, Rug M, Knuepfer E, Cowman AF (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306:1930–1933

    Article  PubMed  CAS  Google Scholar 

  • Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ (2000) Type 1 pilus-mediated bacterial invasion of bladder epithelial cell. EMBO J 19:2803–2812

    Article  PubMed  CAS  Google Scholar 

  • Mason D, Mallo GV, Terebiznik MR, Payrastre B, Finlay BB, Brumell JH, Rameh L, Grinstein S (2007) Alteration of epithelial structure and function associated with PtdIns(4,5)P2 degradation by a bacterial phosphatise. J Gen Physiol 129:267–283

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Yonamura S, Tsukita S (1999) Activated of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr Biol 9:1259–1262

    Article  PubMed  CAS  Google Scholar 

  • McCrea HJ, De Camilli P (2009) Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology 24:8–16

    Article  PubMed  CAS  Google Scholar 

  • Mengaud J, Ohayon H, Gounon P, Mège RM, Cossart P (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of Listeria monocytogenes into epithelial cells. Cell 84:923–932

    Article  PubMed  CAS  Google Scholar 

  • Merz AJ, Enns CA, So M (1999) Type IV pili of pathogenic Neisseria elicit cortical plaque formation in epithelial cells. Mol Microbiol 32:1316–1332

    Article  PubMed  CAS  Google Scholar 

  • Min G, Stolz M, Zhou G, Liang F, Sebbel P, Stoffler D, Glockshuber R, Sun T-T, Aebi U, Kong X-P (2002) Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH on the six inner domains of the 16 nm urothelial plaque particle. J Mol Biol 317:697–706

    Article  PubMed  CAS  Google Scholar 

  • Moorhead AM, Jung JY, Smirnov A, Kaufer S, Scidmore MA (2010) Multiple host proteins that function in phosphatidylinositol-4-phosphate metabolism are recruited to the chlamydial inclusion. Infect Immun 78:1990–2007

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8:971–977

    Article  PubMed  CAS  Google Scholar 

  • Nakada-Tsukui K, Okada H, Mitra BN, Nozaki T (2009) Phosphatidylinositol-phosphates mediate cytoskeletal reorganisation during phagocytosis via a unique modular protein consisting of RhoGEF/DH and FYVE domains in the parasitic protozoon entamoeba histolytica. Cell Microbiol 11:1471–1491

    Article  PubMed  CAS  Google Scholar 

  • Nerlich A, Rohde M, Talay SR, Genth H, Just I, Chhatwal GS (2009) Invasion of endothelial cells by tissue-invasive M3 type group A streptococci requires Src kinase and activation of Rac1 by a phosphatidylinoditol 3-kinase independent mechanism. J Biol Chem 284:20319–20328

    Article  PubMed  CAS  Google Scholar 

  • Niebuhr K, Giuriato S, Pedron T, Philpott DJ, Gaits F, Sable J, Sheetz MP, Parsot C, Sansonetti PJ, Payrastre B (2002) Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S.flexneri effector IpgD reorganizes host cell morphology. EMBO J 21:5069–5078

    Article  PubMed  CAS  Google Scholar 

  • Niemann HH, Jäger V, Buttler PJ, Heuvel J van den, Schmidt S, Ferraris D, Gherardi E, Heinz DW (2007) Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB. Cell 130:235–246

    Article  PubMed  CAS  Google Scholar 

  • Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW (1998) SopB, a protein required for virulence of Salmonella dublin is an inositol phosphate phosphatase. Proc Natl Acad Sci U S A 95:14057–14059

    Article  PubMed  CAS  Google Scholar 

  • Ozeri V, Rosenshine I, Mosher DF, Fässler R, Hanski E (1998) Roles of integrins and fibronectin in the entry of streptococcus pyogenes into cells via protein F1. Mol Microbiol 30:625–637

    Article  PubMed  CAS  Google Scholar 

  • Ozeri V, Rosenshine I, Ben-Ze’ev A, Bokoch GM, Jou TS, Hanski E (2001) De novo formation of focal complex-like structures in host cells by invading Streptococci. Mol Microbiol 41:561–573

    Article  PubMed  CAS  Google Scholar 

  • Pattni K, Jepson M, Stenmark H, Banting G (2001) A PtdIns(3)P-specific probe cycles on and off host cell membranes during Salmonella invasion of mammalian cells. Curr Biol 11:1636–1642

    Article  PubMed  CAS  Google Scholar 

  • Payrastre B, Missy K, Giuriato S, Bodin S, Plantavid M, Gratacap MP (2001) Phosphoinositides key players in cell signalling in time and space. Cell Signal 13:377–387

    Article  PubMed  CAS  Google Scholar 

  • Pendaries C, Tronchère H, Plantavid M, Payrastre B (2003) Phosphoinositide signaling disorders in human diseases. FEBS Lett 546:25–31

    Article  PubMed  CAS  Google Scholar 

  • Pendaries C, Tronchere H, Arbibe L, Mounier J, Gozani O, Cantley L, Fry MJ, Gaits-Iacovoni F, Sansonetti PJ, Payrastre B (2006) PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J 25:1024–1014

    Article  PubMed  CAS  Google Scholar 

  • Pizarro-Cerdà J, Cossart P (2004) Subvertion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol 6:1026–1033

    Article  PubMed  CAS  Google Scholar 

  • Pizarro-Cerdà J, Payrastre B, Wang YJ, Veiga E, Yin HL, Cossart P (2007) Type II phosphatidylinositol 4-kinases promote Listeria monocytogenes entry into target cells. Cell Microbiol 9:2381–2390

    Article  PubMed  CAS  Google Scholar 

  • Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H (2008) The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10:2416–2433

    Article  PubMed  CAS  Google Scholar 

  • Rameh LE, Tolias KF, Duckworth BC, Cantley LC (1997) A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390:192–196

    Article  PubMed  CAS  Google Scholar 

  • Ramel D, Lagarrigue F, Dupuis-Coronas S, Chicanne G, Leslie N, Gaits-Iacovoni F, Payrastre B, Tronchere H (2009) PtdIns5P protects Akt from dephosphorylation through PP2A inhibition. Biochem Biophys Res Commun 387:127–131

    Article  PubMed  CAS  Google Scholar 

  • Ramel D, Lagarrigue F, Pons V, Mounier J, Dupuis-Coronas S, Chicanne G, Sansonetti PJ, Gaits-Iacovoni F, Tronchère H, Payrastre B (2011) Shigella flexneri Infection generates the lipid PI5P to alter endocytosis and prevent termination of EGFR signaling. Sci Signal 4:ra61

    Google Scholar 

  • Raynaud C, Etienne G, Peyron P, Laneelle MA, Daffe M (1998) Extracellular enzyme activities potentially involved in the pathogenicity of Mycobacterium tuberculosis. Microbiology 144:577–587

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg CM, Brumell JH, Finlay BB (2000) Microbial pathogenesis: lipid rafts as pathogen portals. Curr Biol 10:R823–R825

    Article  Google Scholar 

  • Russell DG, Mwandumba HC, Rhoades EE (2002) Mycobacterium and the coat of many lipids. J Cell Biol 158:421–426

    Article  PubMed  CAS  Google Scholar 

  • Saha AK, Dowling JN, LaMarco KL, Das S, Remaley AT, Olomu N, Pope MT, Glew RH (1985) Properties of an acid phosphatase from Legionella micdadei which blocks superoxide anion production by human neutrophils. Arch Biochem Biophys 243:150–160

    Article  PubMed  CAS  Google Scholar 

  • Saha AK, Dowling JN, Pasculle AW, Glew RH (1988) Legionella micdadei phosphatase catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate in human neutrophils. Arch Biochem Biophys 265:94–104

    Article  PubMed  CAS  Google Scholar 

  • Saha AK, Dowling JN, Mukhopadhyay NK, Glew RH (1989) Legionella micdadei protein kinase catalyzes phosphorylation of tubulin and phosphatidylinositol. J Bacteriol 171:5103–5110

    PubMed  CAS  Google Scholar 

  • Saleh MT, Belisle JT (2000) Secretion of an acid phosphatase (SapM) by mycobacterium tuberculosis that is similar to eukaryotic acid phosphatases. J Bacteriol 182:6850–6853

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A (2009) Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 48:307–343

    Article  PubMed  CAS  Google Scholar 

  • Sason H, Milgrom M, Weiss AM, Melamed-Book N, Balla T, Grinstein S, Backert S, Rosenshine I, Aroeti B (2009) Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection. Mol Biol Cell 20:544–555

    Article  PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Strakova J, Shisheva A (2004) Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology 145:4853–4865

    Article  PubMed  CAS  Google Scholar 

  • Schubert W-D, Urbanke C, Ziehm T, Beier V, Machner MP, Domann E, Wehland J, Chakraborty T, Heinz DW (2002) Structure of internalin, a major invasion protein of Listeria monocytogenes in complex with its human receptor E-cadherin. Cell 111:825–836

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Linek U, Höök M, Potts JR (2004) The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 52:631–641

    Article  PubMed  CAS  Google Scholar 

  • Scott CC, Cuellar-Mata P, Matsuo T, Davidson HW, Grinstein S (2002) Role of 3-phosphoinositides in the maturation of Salmonella-containing vacuoles within host cells. J Biol Chem 277:12770–12776

    Article  PubMed  CAS  Google Scholar 

  • Seveau S, Tham TN, Payrastre B, Hoppe AD, Swanson JA, Cossart P (2007) A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway. Cell Microbiol 9:790–803

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Naujokas K, Park M, Ireton K (2000) InlB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103:501–510

    Article  PubMed  CAS  Google Scholar 

  • Sinha B, Francois PP, Nüsse O, Foti M, Hartford OM, Vaudaux P, Foster TJ, Lew DP, Herrmann M, Krause KH (1999) Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol 1:101–117

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Rao V, Shakila H, Gupta R, Khera A, Dhar, N. Singh A, Koul A, Singh Y, Naseema M, Narayanan PR, Paramasivan CN, Ramanathan VD, Tyagi AK (2003) Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol Microbiol 50:751–762

    Article  PubMed  CAS  Google Scholar 

  • Smith K, Humphreys D, Hume PJ, Koronakis V (2009) Enteropathogenic Escherichia coli recruits the cellular inositol phosphatase SHIP2 to regulate actin-pedestal formation. Cell Host Microbe 7:13–24

    Article  CAS  Google Scholar 

  • Sousa S, Cabanes D, E-Amraoui A, Petit C, Lecuit M, Cossart P (2003) Unconventional myosin VIIa and vezatin, two proteins crucial for Listeria entry into epithelial cells. J Cell Sci 117:2121–2130

    Article  CAS  Google Scholar 

  • Sousa S, Cabanes D, Archambaud C, Colland F, Lemichez E, Popoff M, Boisson-Dupuis S, Gouin E, Lecuit M, Legrain P, Cossart P (2005) ARHGAP10 is necessary for alpha-catenin recruitment at adherens junctions and for Listeria invasion. Nat Cell Biol 7:954–960

    Article  PubMed  CAS  Google Scholar 

  • Steele-Mortimer O, Knodler LA, Marcus SL, Scheid MP, Goh B, Pfeifer CG, Duronio V, Finlay BB (2000) Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J Biol Chem 275:37718–37724

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Shen Y, Dokainish H, Holgado-Madruga M, Wong A, Ireton K (2005) Host adaptor proteins Gab1 and CrkII promote InlB-dependent entry of Listeria monocytogenes. Cell Microbiol 7:443–457

    Article  PubMed  CAS  Google Scholar 

  • Tawk L, Chicanne G, Dubremetz JF, Richard V, Payrastre B, Vial HJ, Roy C, Wengelnik K (2010) Phosphatidylinositol 3-phosphate an essential lipid in Plasmodium, localizes to the food vacuole membrane and the apicoplast. Eukaryot Cell 9:1519–1530

    Article  PubMed  CAS  Google Scholar 

  • Terebiznik MR, Vieira OV, Marcus SL, Slade A, Yip CM, Trimble WS, Meyer T, Finlay BB, Grinstein S (2002) Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat Cell Biol 4:766–773

    Article  PubMed  CAS  Google Scholar 

  • Trotard M, Lepère-Douard C, Régeard M, Piquet-Pellorce C, Lavillette D, Cosset FL, Gripon P, Le Seyec J (2009) Kinases required in hepatitis C virus entry and replication highlighted by small interference RNA screening. FASEB J 23:3780–3789

    Article  PubMed  CAS  Google Scholar 

  • Vaid A, Ranjan R, Smythe WA, Hoppe HC, Sharma P (2010) PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum is exported to the host erythrocyte and is involved in hemoglobin trafficking. Blood 115:2500–2507

    Article  PubMed  CAS  Google Scholar 

  • Van den Bout I, Divecha N (2009) PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J Cell Sci 122:3837–3850

    Article  PubMed  CAS  Google Scholar 

  • Veiga E, Cossart P (2005) Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat Cell Biol 7:894–900

    Article  PubMed  CAS  Google Scholar 

  • Vergne I, Chua J, Deretic V (2003) Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVps34 cascade. J Exp Med 198:653–659

    Article  PubMed  CAS  Google Scholar 

  • Vergne I, Fratti RA, Hill PJ, Chua J, Belisle J, Deretic V (2004) Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol Cell Biol 15:751–760

    CAS  Google Scholar 

  • Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V (2005) Mechanism of phagolysosome biogenesis block by viable mycobacterium tuberculosis. Proc Natl Acad Sci U S A 102:4033–4038

    Article  PubMed  CAS  Google Scholar 

  • Weber SS, Ragaz C, Hilbi H (2009a) The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 11:442–460

    Article  CAS  Google Scholar 

  • Weber SS, Ragaz C, Hilbi H (2009b) Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 71:1341–1352

    Article  CAS  Google Scholar 

  • Wong KW, Isberg RR (2003) Arf6 and phosphoinositol-4-phosphate-5-kinase activites permit bypass of the Rac1 requirement for b1 integrin-mediated bacterial uptake. J Exp Med 198:603–614

    Article  PubMed  CAS  Google Scholar 

  • Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, Tsukita K, Tsukita S (1998) Ezrin/radixin/moesin (ERM) proteins bind to a positively chatged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol 140:885–895

    Article  PubMed  CAS  Google Scholar 

  • Yonemura S, Tsukita S, Tsukita S (1999) Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins. J Cell Biol 145:1497–1509

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Payrastre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Payrastre, B., Gaits-Iacovoni, F., Sansonetti, P., Tronchère, H. (2012). Phosphoinositides and Cellular Pathogens. In: Balla, T., Wymann, M., York, J. (eds) Phosphoinositides II: The Diverse Biological Functions. Subcellular Biochemistry, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3015-1_12

Download citation

Publish with us

Policies and ethics