Skip to main content

The Phosphatidylinositol 4-Kinases: Don’t Call it a Comeback

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 58))

Abstract

Phosphatidylinositol 4-phosphate (PtdIns4P) is a quantitatively minor membrane phospholipid which is the precursor of PtdIns(4,5)P 2 in the classical agonist-regulated phospholipase C signalling pathway. However, PtdIns4P also governs the recruitment and function of numerous trafficking molecules, principally in the Golgi complex. The majority of phosphoinositides (PIs) phosphorylated at the D4 position of the inositol headgroup are derived from PtdIns4P and play roles in a diverse array of fundamental cellular processes including secretion, cell migration, apoptosis and mitogenesis; therefore, PtdIns4P biosynthesis can be regarded as key point of regulation in many PI-dependent processes.

Two structurally distinct sequence families, the type II and type III PtdIns 4-kinases, are responsible for PtdIns4P synthesis in eukaryotic organisms. These important proteins are differentially expressed, localised and regulated by distinct mechanisms, indicating that the enzymes perform non-redundant roles in trafficking and signalling. In recent years, major advances have been made in our understanding of PtdIns4K biology and here we summarise current knowledge of PtdIns4K structure, function and regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahn J, Chung KS, Kim DU, Won M, Kim L, Kim KS, Nam M, Choi SJ, Kim HC, Yoon M, Chae SK, Hoe KL (2004) Systematic identification of hepatocellular proteins interacting with NS5A of the hepatitis C virus. J Biochem Mol Biol 37:741–748

    Article  PubMed  CAS  Google Scholar 

  • Aikawa Y, Kuraoka A, Kondo H, Kawabuchi M, Watanabe T (1999) Involvement of PITPnm, a mammalian homologue of Drosophila rdgB, in phosphoinositide synthesis on Golgi membranes. J Biol Chem 274:20569–20577

    Article  PubMed  CAS  Google Scholar 

  • Audhya A, Foti M, Emr SD (2000) Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol Biol Cell 11:2673–2689

    PubMed  CAS  Google Scholar 

  • Balla A, Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 16:351–361

    Article  PubMed  CAS  Google Scholar 

  • Balla A, Kim YJ, VarnaI P, Szentpetery Z, Knight Z, Shokat KM, Balla T (2008a) Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol Biol Cell 19:711–721

    Article  CAS  Google Scholar 

  • Balla A, Tuymetova G, Barshishat M, Geiszt M, Balla T (2002) Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J Biol Chem 277:20041–20050

    Article  PubMed  CAS  Google Scholar 

  • Balla A, Tuymetova G, Toth B, Szentpetery Z, Zhao X, Knight ZA, Shokat K, Steinbach PJ, Balla T (2008b) Design of drug-resistant alleles of type-III phosphatidylinositol 4-kinases using mutagenesis and molecular modeling. Biochemistry 47:1599–1607

    Article  CAS  Google Scholar 

  • Balla A, Tuymetova G, Tsiomenko A, Varnai P, Balla T (2005) A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol Biol Cell 16:1282–1295

    Article  PubMed  CAS  Google Scholar 

  • Balla A, Vereb G, Gulkan H, Gehrmann T, Gergely P, Heilmeyer LM, Jr., Antal M (2000a) Immunohistochemical localisation of two phosphatidylinositol 4-kinase isoforms, PI4K230 and PI4K92, in the central nervous system of rats. Exp Brain Res 134:279–288

    Article  CAS  Google Scholar 

  • Balla T, Bondeva T, Varnai P (2000b) How accurately can we image inositol lipids in living cells? Trends Pharmacol Sci 21:238–241

    Article  CAS  Google Scholar 

  • Balla T, Downing GJ, Jaffe H, Kim S, Zolyomi A, Catt KJ (1997) Isolation and molecular cloning of wortmannin-sensitive bovine type III phosphatidylinositol 4-kinases. J Biol Chem 272:18358–18366

    Article  PubMed  CAS  Google Scholar 

  • Banerji S, Ngo M, Lane CF, Robinson CA, Minogue S, Ridgway ND (2010) Oxysterol binding protein (OSBP)-dependent activation of sphingomyelin synthesis in the golgi apparatus requires PtdIns 4-kinase IIα. Mol Biol Cell 21:4141–4150

    Article  PubMed  CAS  Google Scholar 

  • Barylko B, Gerber SH, Binns DD, Grichine N, Khvotchev M, Sudhof TC, Albanesi JP (2001) A novel family of phosphatidylinositol 4-kinases conserved from yeast to humans. J Biol Chem 276:7705–7708

    Article  PubMed  CAS  Google Scholar 

  • Barylko B, Mao YS, Wlodarski P, Jung G, Binns DD, Sun HQ, Yin HL, Albanesi JP (2009) Palmitoylation controls the catalytic activity and subcellular distribution of phosphatidylinositol 4-kinase IIα. J Biol Chem 284:9994–10003

    Article  PubMed  CAS  Google Scholar 

  • Barylko B, Wlodarski P, Binns DD, Gerber SH, Earnest S, Sudhof TC, Grichine N, Albanesi JP (2002) Analysis of the catalytic domain of phosphatidylinositol 4-kinase type II. J Biol Chem 277:44366–44375

    Article  PubMed  CAS  Google Scholar 

  • Berger KL, Cooper JD, Heaton NS, Yoon R, Oakland TE, Jordan TX, Mateu G, Grakoui A, Randall G (2009) Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proc Natl Acad Sci U S A 106:7577–7582

    Article  PubMed  CAS  Google Scholar 

  • Bourne Y, Dannenberg J, Pollmann V, Marchot P, Pongs O (2001) Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J Biol Chem 276:11949–11955

    Article  PubMed  CAS  Google Scholar 

  • Brill JA, Hime GR, Scharer-Schuksz M, Fuller MT (2000) A phospholipid kinase regulates actin organization and intercellular bridge formation during germline cytokinesis. Development 127:3855–3864

    PubMed  CAS  Google Scholar 

  • Bruns JR, Ellis MA, Jeromin A, Weisz OA (2002) Multiple roles for phosphatidylinositol 4-kinase in biosynthetic transport in polarized Madin-Darby canine kidney cells. J Biol Chem 277:2012–2018

    Article  PubMed  CAS  Google Scholar 

  • Carlton JG, Cullen PJ (2005) Coincidence detection in phosphoinositide signaling. Trends Cell Biol 15:540–547

    Article  PubMed  CAS  Google Scholar 

  • Chahdi A, Choi WS, Kim YM, Beaven MA (2003) Mastoparan selectively activates phospholipase D2 in cell membranes. J Biol Chem 278:12039–12045

    Article  PubMed  CAS  Google Scholar 

  • Cochet C, Filhol O, Payrastre B, Hunter T, Gill GN (1991) Interaction between the epidermal growth factor receptor and phosphoinositide kinases. J Biol Chem 266:637–644

    PubMed  CAS  Google Scholar 

  • Craige B, Salazar G, Faundez V (2008) Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic. Mol Biol Cell 19:1415–1426

    Article  PubMed  CAS  Google Scholar 

  • D’angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, Van Der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, de Matteis MA (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449:62–67

    Article  PubMed  CAS  Google Scholar 

  • De Barry J, Janoshazi A, Dupont JL, Procksch O, Chasserot-Golaz S, Jeromin A, Vitale N (2006) Functional implication of neuronal calcium sensor-1 and phosphoinositol 4-kinase-beta interaction in regulated exocytosis of PC12 cells. J Biol Chem 281:18098–18111

    Article  PubMed  CAS  Google Scholar 

  • De Graaf P, Klapisz EE, Schulz TK, Cremers AF, Verkleij AJ, van Bergen en Henegouwen PM (2002) Nuclear localization of phosphatidylinositol 4-kinase beta. J Cell Sci 115:1769–1775

    PubMed  CAS  Google Scholar 

  • De Graaf P, Zwart WT, van Dijken RA, Deneka M, Schulz TK, Geijsen N, Coffer PJ, Gadella BM, Verkleij AJ, Van Der Sluijs P, van Bergen En Henegouwen PM (2004) Phosphatidylinositol 4-kinasebeta is critical for functional association of rab11 with the Golgi complex. Mol Biol Cell 15:2038–2047

    Article  PubMed  CAS  Google Scholar 

  • De Matteis MA, Di Campli A, D’angelo G (2007) Lipid-transfer proteins in membrane trafficking at the Golgi complex. Biochim Biophys Acta 1771:761–768

    Google Scholar 

  • Dumaresq-Doiron K, Savard MF, Akam S, Costantino S, Lefrancois S (2010) The phosphatidylinositol 4-kinase PI4KIIIalpha is required for the recruitment of GBF1 to Golgi membranes. J Cell Sci 123:2273–2280

    Article  PubMed  CAS  Google Scholar 

  • Endemann G, Dunn SN, Cantley LC (1987) Bovine brain contains two types of phosphatidylinositol kinase. Biochemistry 26:6845–6852

    Article  PubMed  CAS  Google Scholar 

  • Flanagan CA, Schnieders EA, Emerick AW, Kunisawa R, Admon A, Thorner J (1993) Phosphatidylinositol 4-kinase: gene structure and requirement for yeast cell viability. Science 262:1444–1448

    Article  PubMed  CAS  Google Scholar 

  • Foti M, Audhya A, Emr SD (2001) Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell 12:2396–2411

    PubMed  CAS  Google Scholar 

  • Garcia-Bustos JF, Marini F, Stevenson I, Frei C, Hall MN (1994) PIK1, an essential phosphatidylinositol 4-kinase associated with the yeast nucleus. EMBO J 13:2352–2361

    PubMed  CAS  Google Scholar 

  • Gehrmann T, Gulkan H, Suer S, Herberg FW, Balla A, Vereb G, Mayr GW, Heilmeyer LM Jr (1999) Functional expression and characterisation of a new human phosphatidylinositol 4-kinase PI4K230. Biochim Biophys Acta 1437:341–356

    Article  PubMed  CAS  Google Scholar 

  • Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6:393–404

    Article  PubMed  CAS  Google Scholar 

  • Godi A, Pertile P, Meyers R, Marra P, Di Tullio G, Iurisci C, Luini A, Corda D, de Matteis MA (1999) ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1:280–287

    Article  PubMed  CAS  Google Scholar 

  • Gromada J, Bark C, Smidt K, Efanov AM, Janson J, Mandic SA, Webb DL, Zhang W, Meister B, Jeromin A, Berggren PO (2005) Neuronal calcium sensor-1 potentiates glucose-dependent exocytosis in pancreatic beta cells through activation of phosphatidylinositol 4-kinase beta. Proc Natl Acad Sci USA 102:10303–10308

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Wenk MR, Pellegrini L, Onofri F, Benfenati F, De Camilli P (2003) Phosphatidylinositol 4-kinase type IIalpha is responsible for the phosphatidylinositol 4-kinase activity associated with synaptic vesicles. Proc Natl Acad Sci USA 100:3995–4000

    Article  PubMed  CAS  Google Scholar 

  • Hammond GR, Dove SK, Nicol A, Pinxteren JA, Zicha D, Schiavo G (2006) Elimination of plasma membrane phosphatidylinositol (4,5)-bisphosphate is required for exocytosis from mast cells. J Cell Sci 119:2084–2094

    Article  PubMed  CAS  Google Scholar 

  • Hammond GR, Schiavo G, Irvine RF (2009) Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2). Biochem J 422:23–35

    Article  PubMed  CAS  Google Scholar 

  • Han GS, Audhya A, Markley DJ, Emr SD, Carman GM (2002) The Saccharomyces cerevisiae LSB6 gene encodes phosphatidylinositol 4-kinase activity. J Biol Chem 277:47709–47718

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–809

    Article  PubMed  CAS  Google Scholar 

  • Harwood JL, Hawthorne JN (1969) The properties and subcellular distribution of phosphatidylinositol kinase in mammalian tissues. Biochim Biophys Acta 171:75–88

    Article  PubMed  CAS  Google Scholar 

  • Haynes LP, Thomas GM, Burgoyne RD (2005) Interaction of neuronal calcium sensor-1 and ADP-ribosylation factor 1 allows bidirectional control of phosphatidylinositol 4-kinase beta and trans-Golgi network-plasma membrane traffic. J Biol Chem 280:6047–6054

    Article  PubMed  CAS  Google Scholar 

  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701

    Article  PubMed  CAS  Google Scholar 

  • Hendricks KB, Wang BQ, Schnieders EA, Thorner J (1999) Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1:234–241

    Article  PubMed  CAS  Google Scholar 

  • Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem 203:967–977

    PubMed  CAS  Google Scholar 

  • Hunyady L, Balla T, Spat A (1983) Angiotensin II stimulates phosphatidylinositol turnover in adrenal glomerulosa cells by a calcium-independent mechanism. Biochim Biophys Acta 753:133–135

    Article  PubMed  CAS  Google Scholar 

  • Jeganathan S, Lee JM (2007) Binding of elongation factor eEF1A2 to phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and phosphatidylinositol 4-phosphate generation. J Biol Chem 282:372–380

    Article  PubMed  CAS  Google Scholar 

  • Jeganathan S, Morrow A, Amiri A, Lee JM (2008) Eukaryotic elongation factor 1A2 cooperates with phosphatidylinositol-4 kinase III beta to stimulate production of filopodia through increased phosphatidylinositol-4,5 bisphosphate generation. Mol Cell Biol 28:4549–4561

    Article  PubMed  CAS  Google Scholar 

  • Jung G, Wang J, Wlodarski P, Barylko B, Binns DD, Shu H, Yin HL, Albanesi JP (2008) Molecular determinants of activation and membrane targeting of phosphoinositol 4-kinase IIbeta. Biochem J 409:501–509

    Article  PubMed  CAS  Google Scholar 

  • Kakuk A, Friedlander E, Vereb G Jr, Kasa A, Balla A, Balla T, Heilmeyer LM Jr, Gergely P, Vereb G (2006) Nucleolar localization of phosphatidylinositol 4-kinase PI4K230 in various mammalian cells. Cytometry A 69:1174–1183

    PubMed  Google Scholar 

  • Kapp-Barnea Y, Ninio-Many L, Hirschberg K, Fukuda M, Jeromin A, Sagi-Eisenberg R (2006) Neuronal calcium sensor-1 and phosphatidylinositol 4-kinase beta stimulate extracellular signal-regulated kinase 1/2 signaling by accelerating recycling through the endocytic recycling compartment. Mol Biol Cell 17:4130–4141

    Article  PubMed  CAS  Google Scholar 

  • Kauffmann-Zeh A, Klinger R, Endemann G, Waterfield MD, Wetzker R, Hsuan JJ (1994) Regulation of human type II phosphatidylinositol kinase activity by epidermal growth factor-dependent phosphorylation and receptor association. J Biol Chem 269:31243–31251

    PubMed  CAS  Google Scholar 

  • Kikuchi A, Yamamoto H, Sato A (2009) Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol 19:119–129

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Jiang LH, Wilson HL, North RA, Surprenant A (2001) Proteomic and functional evidence for a P2X7 receptor signalling complex. Embo J 20:6347–6358

    Article  PubMed  CAS  Google Scholar 

  • Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125:733–747

    Article  PubMed  CAS  Google Scholar 

  • Levine T, Rabouille C (2005) Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues. Curr Opin Cell Biol 17:362–368

    Article  PubMed  CAS  Google Scholar 

  • Levine TP, Munro S (1998) The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr Biol 8:729–739

    Article  PubMed  CAS  Google Scholar 

  • Levine TP, Munro S (2002) Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr Biol 12:695–704

    Article  PubMed  CAS  Google Scholar 

  • Liljedahl M, Maeda Y, Colanzi A, Ayala I, Van Lint J, Malhotra V (2001) Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104:409–420

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Blake T, Chitnis A, Liu P, Balla T (2009) Crucial role of phosphatidylinositol 4-kinase IIIalpha in development of zebrafish pectoral fin is linked to phosphoinositide 3-kinase and FGF signaling. J Cell Sci 122:4303–4310

    Article  PubMed  CAS  Google Scholar 

  • Martone ME, Edelmann VM, Ellisman MH, Nef P (1999) Cellular and subcellular distribution of the calcium-binding protein NCS-1 in the central nervous system of the rat. Cell Tissue Res 295:395–407

    Article  PubMed  CAS  Google Scholar 

  • Mazzocca A, Liotta F, Carloni V (2008) Tetraspanin CD81-regulated cell motility plays a critical role in intrahepatic metastasis of hepatocellular carcinoma. Gastroenterology 135:244–256 e1

    Article  PubMed  CAS  Google Scholar 

  • Mcferran BW, Graham ME, Burgoyne RD (1998) Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem 273:22768–22772

    Article  PubMed  CAS  Google Scholar 

  • Meyers R, Cantley LC (1997) Cloning and characterization of a wortmannin-sensitive human phosphatidylinositol 4-kinase. J Biol Chem 272:4384–4390

    Article  PubMed  CAS  Google Scholar 

  • Michell RH, Harwood JL, Coleman R, Hawthorne JN (1967) Characteristics of rat liver phosphatidylinositol kinase and its presence in the plasma membrane. Biochim Biophys Acta 144:649–658

    Article  PubMed  CAS  Google Scholar 

  • Minogue S, Anderson JS, Waugh MG, Dos Santos M, Corless S, Cramer R, Hsuan JJ (2001) Cloning of a human type II phosphatidylinositol 4-kinase reveals a novel lipid kinase family. J Biol Chem 276:16635–16640

    Article  PubMed  CAS  Google Scholar 

  • Minogue S, Chu KM, Westover EJ, Covey DF, Hsuan JJ, Waugh MG (2010) Relationship between phosphatidylinositol 4-phosphate synthesis, membrane organization, and lateral diffusion of PI4KIIalpha at the trans-Golgi network. J Lipid Res 51:2314–2324

    Article  PubMed  CAS  Google Scholar 

  • Minogue S, Waugh MG, de Matteis MA, Stephens DJ, Berditchevski F, Hsuan JJ (2006) Phosphatidylinositol 4-kinase is required for endosomal trafficking and degradation of the EGF receptor. J Cell Sci 119:571–581

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Goto K, Kondo H (1996) Cloning, expression, and localization of 230-kDa phosphatidylinositol 4-kinase. J Biol Chem 271:12088–12094

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S, Catt KJ, Balla T (1995) A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc Natl Acad Sci U S A 92:5317–5321

    Article  PubMed  CAS  Google Scholar 

  • Nickels JT Jr, Buxeda RJ, Carman GM (1992) Purification, characterization, and kinetic analysis of a 55-kDa form of phosphatidylinositol 4-kinase from Saccharomyces cerevisiae. J Biol Chem 267:16297–16304

    PubMed  CAS  Google Scholar 

  • Nishikawa K, Toker A, Wong K, Marignani PA, Johannes FJ, Cantley LC (1998) Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem 273:23126–23133

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  PubMed  CAS  Google Scholar 

  • Olsson H, Martinez-Arias W, Jergil B (1993) Phosphatidylcholine enhances the activity of rat liver type II phosphatidylinositol-kinase. FEBS Lett 327:332–336

    Article  PubMed  CAS  Google Scholar 

  • Pan W, Choi SC, Wang H, Qin Y, Volpicelli-Daley L, Swan L, Lucast L, Khoo C, Zhang X, Li L, Abrams CS, Sokol SY, Wu D (2008) Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science 321:1350–1353

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (1992) Phosphatidylinositol 4-kinases and the role of polyphosphoinositides in cellular regulation. Endocr Rev 13:692–706

    PubMed  CAS  Google Scholar 

  • Pinton P, Pozzan T, Rizzuto R (1998) The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 17:5298–5308

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Li L, Pan W, Wu D (2009) Regulation of phosphatidylinositol kinases and metabolism by Wnt3a and Dvl. J Biol Chem 284:22544–22548

    Article  PubMed  CAS  Google Scholar 

  • Ridgway ND, Dawson PA, Ho YK, Brown MS, Goldstein JL (1992) Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J Cell Biol 116:307–319

    Article  PubMed  CAS  Google Scholar 

  • Rohatgi R, Scott MP (2007) Patching the gaps in Hedgehog signalling. Nat Cell Biol 9:1005–1009

    Article  PubMed  CAS  Google Scholar 

  • Roth AF, Wan J, Green WN, Yates JR, Davis NG (2006) Proteomic identification of palmitoylated proteins. Methods 40:135–142

    Article  PubMed  CAS  Google Scholar 

  • Salazar G, Craige B, Wainer BH, Guo J, De Camilli P, Faundez V (2005) Phosphatidylinositol-4-kinase type II alpha is a component of adaptor protein-3-derived vesicles. Mol Biol Cell 16:3692–3704

    Article  PubMed  CAS  Google Scholar 

  • Salazar G, Zlatic S, Craige B, Peden AA, Pohl J, Faundez V (2009) Hermansky-Pudlak syndrome protein complexes associate with phosphatidylinositol 4-kinase type II alpha in neuronal and non-neuronal cells. J Biol Chem 284:1790–1802

    Article  PubMed  CAS  Google Scholar 

  • Simons JP, Al-Shawi R, Minogue S, Waugh MG, Wiedemann C, Evangelou S, Loesch A, Sihra TS, King R, Warner TT, Hsuan JJ (2009) Loss of phosphatidylinositol 4-kinase 2alpha activity causes late onset degeneration of spinal cord axons. Proc Natl Acad Sci U S A 106:11535–11539

    Article  PubMed  CAS  Google Scholar 

  • Stevenson-Paulik J, Love J, Boss WF (2003) Differential regulation of two Arabidopsis type III phosphatidylinositol 4-kinase isoforms. A regulatory role for the pleckstrin homology domain. Plant Physiol 132:1053–1064

    Article  PubMed  CAS  Google Scholar 

  • Stevenson JM, Perera IY, Boss WF (1998) A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J Biol Chem 273:22761–22767

    Article  PubMed  CAS  Google Scholar 

  • Strahl T, Hama H, Dewald DB, Thorner J (2005) Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J Cell Biol 171:967–979

    Article  PubMed  CAS  Google Scholar 

  • Strahl T, Thorner J (2007) Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1771:353–404

    Article  PubMed  CAS  Google Scholar 

  • Szentpetery Z, Balla A, Kim YJ, Lemmon MA, Balla T (2009) Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study. BMC Cell Biol 10:67

    Article  PubMed  CAS  Google Scholar 

  • Szentpetery Z, Varnai P, Balla T (2010) Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling. Proc Natl Acad Sci USA 107:8225–8230

    Article  PubMed  CAS  Google Scholar 

  • Taverna E, Francolini M, Jeromin A, Hilfiker S, Roder J, Rosa P (2002) Neuronal calcium sensor 1 and phosphatidylinositol 4-OH kinase beta interact in neuronal cells and are translocated to membranes during nucleotide-evoked exocytosis. J Cell Sci 115:3909–3922

    Article  PubMed  CAS  Google Scholar 

  • Toth B, Balla A, Ma H, Knight ZA, Shokat KM, Balla T (2006) Phosphatidylinositol 4-kinase IIIbeta regulates the transport of ceramide between the endoplasmic reticulum and Golgi. J Biol Chem 281:36369–36377

    Article  PubMed  CAS  Google Scholar 

  • Varnai P, Balla T (2006) Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim Biophys Acta 1761:957–967

    Article  PubMed  CAS  Google Scholar 

  • Vieira OV, Verkade P, Manninen A, Simons K (2005) FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. J Cell Biol 170:521–526

    Article  PubMed  CAS  Google Scholar 

  • VIllen J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA 104:1488–1493

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sun HQ, Macia E, Kirchhausen T, Watson H, Bonifacino JS, Yin HL (2007) PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. Mol Biol Cell 18:2646–2655

    Article  PubMed  CAS  Google Scholar 

  • Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, Macia E, Kirchhausen T, Albanesi JP, Roth MG, Yin HL (2003) Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114:299–310

    Article  PubMed  CAS  Google Scholar 

  • Watt SA, Kular G, Fleming IN, Downes CP, Lucocq JM (2002) Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. Biochem J 363:657–666

    Article  PubMed  CAS  Google Scholar 

  • Waugh MG, Minogue S, Anderson JS, Balinger A, Blumenkrantz D, Calnan DP, Cramer R, Hsuan JJ (2003a) Localization of a highly active pool of type II phosphatidylinositol 4-kinase in a p97/valosin-containing-protein-rich fraction of the endoplasmic reticulum. Biochem J 373:57–63

    Article  CAS  Google Scholar 

  • Waugh MG, Minogue S, Blumenkrantz D, Anderson JS, Hsuan JJ (2003b) Identification and characterization of differentially active pools of type IIalpha phosphatidylinositol 4-kinase activity in unstimulated A431 cells. Biochem J 376:497–503

    Article  CAS  Google Scholar 

  • Waugh MG, Minogue S, Chotai D, Berditchevski F, Hsuan JJ (2006) Lipid and peptide control of phosphatidylinositol 4-kinase IIalpha activity on Golgi-endosomal Rafts. J Biol Chem 281:3757–3763

    Article  PubMed  CAS  Google Scholar 

  • Wei YJ, Sun HQ, Yamamoto M, Wlodarski P, Kunii K, Martinez M, Barylko B, Albanesi JP, Yin HL (2002) Type II phosphatidylinositol 4-kinase beta is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP. J Biol Chem 277:46586–46593

    Article  PubMed  CAS  Google Scholar 

  • Weisz OA, Gibson GA, Leung SM, Roder J, Jeromin A (2000) Overexpression of frequenin, a modulator of phosphatidylinositol 4-kinase, inhibits biosynthetic delivery of an apical protein in polarized madin-darby canine kidney cells. J Biol Chem 275:24341–24347

    Article  PubMed  CAS  Google Scholar 

  • Weixel KM, Blumental-Perry A, Watkins SC, Aridor M, Weisz OA (2005) Distinct Golgi populations of phosphatidylinositol 4-phosphate regulated by phosphatidylinositol 4-kinases. J Biol Chem 280:10501–10508

    Article  PubMed  CAS  Google Scholar 

  • Whitman M, Kaplan D, Roberts T, Cantley L (1987) Evidence for two distinct phosphatidylinositol kinases in fibroblasts. Implications for cellular regulation. Biochem J 247:165–174

    CAS  Google Scholar 

  • Wong K, Cantley LC (1994) Cloning and characterization of a human phosphatidylinositol 4-kinase. J Biol Chem 269:28878–28884

    PubMed  CAS  Google Scholar 

  • Wong K, Meyers R, Cantley LC (1997) Subcellular locations of phosphatidylinositol 4-kinase isoforms. J Biol Chem 272:13236–13241

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa A, Nishizawa M, Fujiwara KT, Kawai S, Kawasaki H, Suzuki K, Takenawa T (1991) Molecular cloning and sequencing of cDNA encoding the phosphatidylinositol kinase from rat brain. J Biol Chem 266:17580–17583

    PubMed  CAS  Google Scholar 

  • Yavari A, Nagaraj R, Owusu-Ansah E, Folick A, Ngo K, Hillman T, Call G, Rohatgi R, Scott MP, Banerjee U (2010)  Role of lipid metabolism in smoothened depression in hedgehog signaling. Dev Cell 19:54–65

    Google Scholar 

  • Yoshida S, Ohya Y, Goebl M, Nakano A, Anraku Y (1994) A novel gene, STT4, encodes a phosphatidylinositol 4-kinase in the PKC1 protein kinase pathway of Saccharomyces cerevisiae. J Biol Chem 269:1166–1172

    PubMed  CAS  Google Scholar 

  • Zolyomi A, Zhao X, Downing GJ, Balla T (2000) Localization of two distinct type III phosphatidylinositol 4-kinase enzyme mRNAs in the rat. Am J Physiol Cell Physiol 278:C914–C920

    PubMed  CAS  Google Scholar 

Download references

Acknowlegements

We are grateful to Prof. Justin Hsuan, Dr. Emma Clayton and Dr. Emily Chu for comments on the manuscript. SM and MGW acknowledge the support of the BBSRC (award BB/G021163/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane Minogue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Minogue, S., Waugh, M.G. (2012). The Phosphatidylinositol 4-Kinases: Don’t Call it a Comeback. In: Balla, T., Wymann, M., York, J. (eds) Phosphoinositides I: Enzymes of Synthesis and Degradation. Subcellular Biochemistry, vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3012-0_1

Download citation

Publish with us

Policies and ethics