Skip to main content

Therapeutic Applications of Induced Pluripotent Stem Cells in Parkinson’s Disease

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 6

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 6))

  • 1324 Accesses

Abstract

Parkinson’s disease (PD) is commonly known as an idiopathic, incurable, and progressive neurodegenerative disorder whose patients exhibit three main symptoms: bradykinesia, rigidity, and rest tremor. Current research has shown that the degeneration of dopaminergic neurons in the nigrostriatal pathway plays a crucial role in the emergence of the three symptoms in PD patients. Even though the number of PD patients is becoming increasingly more prevalent, the mechanisms behind the disease are not well understood, which, in turn, makes clinical treatment increasingly difficult. In order to better elucidate the cause of PD, new methods and techniques are necessary to identify all various factors that contribute to the disorder. The emergence of stem cells, specifically induced pluripotent stem cells (iPSCs), has provided a new avenue to analyze PD. Due to the difficulty in obtaining affected human dopaminergic neurons, the iPSC system gives researchers the opportunity to derive dopamine neurons and create a model in order to be able to directly study all factors contributing to the development of PD. Due to increased accessibility to human dopamine neurons, iPSC technology will hopefully enable researchers to study the intricacies surrounding PD and can eventually pave the way towards novel clinical treatments for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson E, Jensen JB, Parmar M, Guillemot F, Bjorklund A (2006) Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2. Development 131:3229–3236

    Google Scholar 

  • Andressoo J, Saarma M (2008) Signalling mechanisms underlying development and maintenance of dopamine neurons. Curr Opin Neurobiol 18:297–306

    Article  PubMed  CAS  Google Scholar 

  • Ang S (2006) Transcriptional control of midbrain dopaminergic neuron development. Development 133:3499–3506

    Article  PubMed  CAS  Google Scholar 

  • Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884

    PubMed  CAS  Google Scholar 

  • Bayer SA, Willis KV, Triarhou LC, Ghetti B (1995) Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp Brain Res 105:191–199

    PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Kiel D, Rub U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249:1–5

    Article  Google Scholar 

  • Byrne JA (2008) Generation of isogenic pluripotent stem cells. Hum Mol Genet 17:R31–R41

    Article  Google Scholar 

  • Chambers S, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Xiao S (2011) Induced pluripotent stem cell and neurodegenerative diseases. Neurosci Bull 27:107–114

    Article  PubMed  Google Scholar 

  • Colman A, Dreesen O (2009) Pluripotent stem cells and disease modeling. Cell Stem Cell 5:244–247

    Article  PubMed  CAS  Google Scholar 

  • Cookson MR (2009) α-Synuclein and neuronal cell death. Mol Neurodegener 4:1–14

    Article  Google Scholar 

  • Cowan CA, Atienza J, Melton DA, Eggan K (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373

    Article  PubMed  CAS  Google Scholar 

  • de Rijk MC, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, Fratiglioni L, Lobo A, Martinez-Lage J, Trenkwalder C, Hofman A (2000) Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurology 54:S21–S23

    PubMed  Google Scholar 

  • Farkas LM, Kunker N, Roussa E, Unsicker K, Krieglstein K (2003) Transforming growth factor-βs are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci 23:5178–5186

    PubMed  CAS  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129

    Article  PubMed  CAS  Google Scholar 

  • Fuchs J, Nilsson C, Kachergus J, Munz M, Larsson EM, Schule B, Langston JW, Middleton FA, Ross OA, Hulihan M, Gasser T, Farrer MJ (2007) Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 68:916–922

    Article  PubMed  CAS  Google Scholar 

  • Gasser T (2005) Genetics of Parkinson’s disease. Curr Opin Neurol 18:363–369

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuana Y, Nakanishi S, Nishikawa S, Sasai Y (2000) Induction of midbrain dopaminergic neurotechnique neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Calne SM, Schulzer M, Mak E, Wszolek Z, Van Netten C, Tsui JK, Stoessl AJ, Calne DB (2004) Clustering of Parkinson’s disease: shared cause or coincidence? Arch Neurol 61:1057–1060

    Article  PubMed  Google Scholar 

  • Langston JW (2006) The Parkinson’s complex: Parkinsonism is just the tip of the iceberg. Am Neurol Assoc 59:591–596

    Article  Google Scholar 

  • Lewy FH (1912) Paralysis agitans. Pathologische Anatomie. Handbuch der Neurologie. Lewandowsky M (ed). Berlin, Germany, Springer-Verlag, 920–933

    Google Scholar 

  • Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schule B, Dometsch RE, Langston W, Palmer TD, Reijo Pera R (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8:267–280

    Article  PubMed  CAS  Google Scholar 

  • Paisan-Ruiz C, Lang AE, Kawarai T, Sato C, Salehi-Rad S, Fisman GK, Al-Khairallah T, St George-Hyslop P, Singleton A, Rogaeva E (2005) LRRK2 gene in Parkinson disease: mutation analysis and case control association study. Neurology 65:696–700

    Article  PubMed  CAS  Google Scholar 

  • Parkinson J (1817) An essay on shaking palsy. Macmillan, London

    Google Scholar 

  • Perez RG, Waymore JC, Lin E, Liu JJ, Guo F, Zigmond MJ (2002) A role for a-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22:3090–3099

    PubMed  CAS  Google Scholar 

  • Perrier A, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 101:12543–12548

    Article  PubMed  CAS  Google Scholar 

  • Petrucelli L, O’Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L, Choi P, Wolozin B, Farrer M, Hardy J, Cookson MR (2002) Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36:1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Ross OA, Toft M, Whittle AJ, Johnson JL, Papapetropoulous S, Mash DC, Litvan I, Gordon MF, Wszolek ZK, Farrer MJ, Dickson DW (2006) LRRK2 and Lewy body disease. Ann Neurol 59:388–393

    Article  PubMed  CAS  Google Scholar 

  • Rowland BD, Bernards R, Peeper DS (2005) The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7:1074–1082

    Article  PubMed  CAS  Google Scholar 

  • Simon HH, Saueressig H, Wurst W, Goulding MD, O’Leary DD (2001) Fate of midbrain dopaminergic neurons controlled by engrailed genes. J Neurosci 21:3126–3134

    PubMed  CAS  Google Scholar 

  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) a-synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  PubMed  CAS  Google Scholar 

  • Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G (2009) Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27:543–549

    Article  PubMed  CAS  Google Scholar 

  • Sommer CA, Sommer AG, Longmire TA, Christodoulou C, Thomas DD, Gostissa M, Alt FM, Murphy GJ, Kotton DN, Mostoslavsky G (2010) Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28:64–74

    PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embyronic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, Takahashi H (1997) Neuropathology of autonomic nervous system in Parkinson’s disease. Eur Neurol 38:2–7

    Article  PubMed  Google Scholar 

  • Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1:39–49

    Google Scholar 

  • Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lee, P.C., Pera, R.R. (2012). Therapeutic Applications of Induced Pluripotent Stem Cells in Parkinson’s Disease. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 6. Stem Cells and Cancer Stem Cells, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2993-3_36

Download citation

Publish with us

Policies and ethics