Gene Expression and Epigenetic Signatures of Germ Cell-Derived Pluripotent Stem Cells and Embryonic Stem Cells

  • Jessica Nolte
  • D. V. Krishna Pantakani
  • Hassan Dihazi
  • Ulrich Zechner
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 6)


Germ cell-derived Pluripotent Stem Cells (gPSCs) are pluripotent stem cells that originate from Spermatogonial Stem Cells (SSCs) of the testis. Several reports in the last few years have shown that it is possible to isolate and enrich the SSC population by different approaches and even reprogram these in vivo multipotent cells to gPSCs in vitro. As these cells could be an alternative to circumvent the ethical objections regarding the use of Embryonic Stem Cells (ESCs) for therapeutic approaches, these SSC-derived gPSCs were characterized in several studies comparatively to the gold standard of pluripotency, the ESCs. The results ­provide great promise that gPSCs can be of importance for practical use in regenerative medicine.


Histone Modification Methylation Level Pluripotent Stem Cell Imprint Gene Spermatogonial Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agata Y, Matsuda E, Shimizu A (1999) Two novel Kruppel-associated box-containing zinc-finger proteins, KRAZ1 and KRAZ2, repress transcription through functional interaction with the corepressor KAP-1 (TIF1beta/KRIP-1). J Biol Chem 274:16412–16422PubMedCrossRefGoogle Scholar
  2. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326PubMedCrossRefGoogle Scholar
  3. Buratti E, Baralle FE (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem 276:36337–36343PubMedCrossRefGoogle Scholar
  4. Chou MY, Rooke N, Turck CW, Black DL (1999) hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol Cell Biol 19:69–77PubMedGoogle Scholar
  5. Com E, Evrard B, Roepstorff P, Aubry F, Pineau C (2003) New insights into the rat spermatogonial proteome: identification of 156 additional proteins. Mol Cell Proteomics 2:248–261PubMedGoogle Scholar
  6. Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M, Aicher W, Bühring HJ, Mattheus U, Mack A, Wagner HJ, Minger S, Matzkies M, Reppel M, Hescheler J, Sievert KD, Stenzl A, Skutella T (2008) Generation of pluripotent stem cells from adult human testis. Nature 456:344–349, Erratum in: Nature. 460: 1044PubMedCrossRefGoogle Scholar
  7. Dihazi H, Müller GA (2007) Urinary proteomics: a tool to discover biomarkers of kidney diseases. Expert Rev Proteomics 4:39–50PubMedCrossRefGoogle Scholar
  8. Dihazi H, Dihazi GH, Nolte J, Meyer S, Jahn O, Muller GA, Engel W (2009) Multipotent adult germline stem cells and embryonic stem cells: comparative proteomic approach. J Proteome Res 8:5497–5510PubMedCrossRefGoogle Scholar
  9. Dihazi H, Dihazi GH, Jahn O, Meyer S, Nolte J, Asif AR, Mueller GA, Engel W (2011) Multipotent adult germline stem cells and embryonic stem cells functional proteomics revealed an important role of eukaryotic initiation factor 5A (Eif5a) in stem cell differentiation. J Proteome Res 10:1962–1973PubMedCrossRefGoogle Scholar
  10. Durcova-Hills G, Hajkova P, Sullivan S, Barton S, Surani MA, McLaren A (2006) Influence of sex chromosome constitution on the genomic imprinting of germ cells. Proc Natl Acad Sci USA 103:11184–11188PubMedCrossRefGoogle Scholar
  11. Elliott ST, Crider DG, Garnham CP, Boheler KR, Van Eyk JE (2004) Two-dimensional gel electrophoresis database of murine R1 embryonic stem cells. Proteomics 4:3813–3832PubMedCrossRefGoogle Scholar
  12. Farthing CR, Ficz G, Ng RK, Chan CF, Andrews S, Dean W, Hemberger M, Reik W (2008) Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4:e1000116PubMedCrossRefGoogle Scholar
  13. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203PubMedCrossRefGoogle Scholar
  14. Hemberger M, Dean W, Reik W (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 10:526–537PubMedCrossRefGoogle Scholar
  15. Honbou K, Suzuki NN, Horiuchi M, Niki T, Taira T, Ariga H, Inagaki F (2003) The crystal structure of DJ-1, a protein related to male fertility and Parkinson’s disease. J Biol Chem 278:31380–31384PubMedCrossRefGoogle Scholar
  16. Izadyar F, Pau F, Marh J, Slepko N, Wang T, Gonzalez R, Ramos T, Howerton K, Sayre C, Silva F (2008) Generation of multipotent cell lines from a distinct population of male germ line stem cells. Reproduction 135:771–784PubMedCrossRefGoogle Scholar
  17. Jasiulionis MG, Luchessi AD, Moreira AG, Souza PP, Suenaga AP, Correa M, Costa CA, Curi R, Costa-Neto CM (2007) Inhibition of eukaryotic translation initiation factor 5A (eIF5A) hypusination impairs melanoma growth. Cell Biochem Funct 25:109–114PubMedCrossRefGoogle Scholar
  18. Jung YH, Gupta MK, Oh SH, Uhm SJ, Lee HT (2010) Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells. Exp Cell Res 316:747–761PubMedCrossRefGoogle Scholar
  19. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001–1012PubMedCrossRefGoogle Scholar
  20. Kanatsu-Shinohara M, Lee J, Inoue K, Ogonuki N, Miki H, Toyokuni S, Ikawa M, Nakamura T, Ogura A, Shinohara T (2008) Pluripotency of a single spermatogonial stem cell in mice. Biol Reprod 78:681–687PubMedCrossRefGoogle Scholar
  21. Khromov T, Pantakani DV, Nolte J, Wolf M, Dressel R, Engel W, Zechner U (2011) Global and gene-specific histone modification profiles of mouse multipotent adult germline stem cells. Mol Hum Reprod 17:166–174PubMedCrossRefGoogle Scholar
  22. Kimura H, Tada M, Nakatsuji N, Tada T (2004) Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell Biol 24:5710–5720PubMedCrossRefGoogle Scholar
  23. Ko K, Tapia N, Wu G, Kim JB, Bravo MJ, Sasse P, Glaser T, Ruau D, Han DW, Greber B, Hausdörfer K, Sebastiano V, Stehling M, Fleischmann BK, Brüstle O, Zenke M, Schöler HR (2009) Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5:87–96PubMedCrossRefGoogle Scholar
  24. Ko K, Reinhardt P, Tapia N, Schneider RK, Araúzo-Bravo MJ, Han DW, Greber B, Kim J, Kliesch S, Zenke M, Schöler HR (2011) Brief report: evaluating the potential of putative pluripotent cells derived from human testis. Stem Cells 29:1304–1309PubMedCrossRefGoogle Scholar
  25. Kossack N, Meneses J, Shefi S, Nguyen HN, Chavez S, Nicholas C, Gromoll J, Turek PJ, Reijo-Pera RA (2009) Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 27:138–149PubMedCrossRefGoogle Scholar
  26. Kouzarides T (2007) Chromatin modifications and their functions. Cell 128:693–705PubMedCrossRefGoogle Scholar
  27. Liao B, Bao X, Liu L, Feng S, Zovoilis A, Liu W, Xue Y, Cai J, Guo X, Qin B, Zhang R, Wu J, Lai L, Teng M, Niu L, Zhang B, Esteban MA, Pei D (2011) MicroRNA cluster 302–367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem 286:17359–17364PubMedCrossRefGoogle Scholar
  28. Luo L, Gassman KL, Petell LM, Wilson CL, Bewersdorf J, Shopland LS (2009) The nuclear periphery of embryonic stem cells is a transcriptionally permissive and repressive compartment. J Cell Sci 122:3729–3737PubMedCrossRefGoogle Scholar
  29. Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546PubMedCrossRefGoogle Scholar
  30. Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10:105–116PubMedCrossRefGoogle Scholar
  31. Meyer S, Nolte J, Opitz L, Salinas-Riester G, Engel W (2010) Pluripotent embryonic stem cells and multipotent adult germline stem cells reveal similar transcriptomes including pluripotency-related genes. Mol Hum Reprod 16:846–855PubMedCrossRefGoogle Scholar
  32. Mizrak SC, Chikhovskaya JV, Sadri-Ardekani H, van Daalen S, Korver CM, Hovingh SE, Roepers-Gajadien HL, Raya A, Fluiter K, de Reijke TM, de la Rosette JJ, Knegt AC, Belmonte JC, van der Veen F, de Rooij DG, Repping S, van Pelt AM (2010) Embryonic stem cell-like cells derived from adult human testis. Hum Reprod 25:158–167PubMedCrossRefGoogle Scholar
  33. Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459:118–121PubMedCrossRefGoogle Scholar
  34. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16:919–932PubMedCrossRefGoogle Scholar
  35. Shin JY, Gupta MK, Jung YH, Uhm SJ, Lee HT (2011) Differential genomic imprinting and expression of imprinted microRNAs in testes-derived male germ-line stem cells in mouse. PLoS One 6:e22481PubMedCrossRefGoogle Scholar
  36. Shovlin TC, Durcova-Hills G, Surani A, McLaren A (2008) Heterogeneity in imprinted methylation patterns of pluripotent embryonic germ cells derived from pre-migratory mouse germ cells. Dev Biol 313:674–681PubMedCrossRefGoogle Scholar
  37. Zechner U, Nolte J, Wolf M, Shirneshan K, Hajj NE, Weise D, Kaltwasser B, Zovoilis A, Haaf T, Engel W (2009) Comparative methylation profiles and telomerase biology of mouse multipotent adult germline stem cells and embryonic stem cells. Mol Hum Reprod 15:345–353PubMedCrossRefGoogle Scholar
  38. Zovoilis A, Nolte J, Drusenheimer N, Zechner U, Hada H, Guan K, Hasenfuss G, Nayernia K, Engel W (2008) Multipotent adult germline stem cells and embryonic stem cells have similar microRNA profiles. Mol Hum Reprod 14:521–529PubMedCrossRefGoogle Scholar
  39. Zovoilis A, Smorag L, Pantazi A, Engel W (2009) Members of the miR-290 cluster modulate in vitro differentiation of mouse embryonic stem cells. Differentiation 78:69–78PubMedCrossRefGoogle Scholar
  40. Zovoilis A, Pantazi A, Smorag L, Opitz L, Riester GS, Wolf M, Zechner U, Holubowska A, Stewart CL, Engel W (2010) Embryonic stem cell-related miRNAs are involved in differentiation of pluripotent cells originating from the germ line. Mol Hum Reprod 16:793–803PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jessica Nolte
    • 1
  • D. V. Krishna Pantakani
    • 1
  • Hassan Dihazi
    • 2
  • Ulrich Zechner
    • 3
  1. 1.Institut für HumangenetikUniversitätsmedizin Göttingen (UMG)GöttingenGermany
  2. 2.Abteilung Nephrologie und RheumatologieUniversitätsmedizin Göttingen (UMG)GöttingenGermany
  3. 3.Institut für HumangenetikUniversitätsmedizin der, Johannes Gutenberg-UniversitätMainzGermany

Personalised recommendations