Skip to main content

Differentiation of Mesenchymal Stem Cells into Adipocyte Lineage: Role of Cytoskeleton-Associated Proteins

  • Chapter
  • First Online:

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 6))

Abstract

Mesenchymal stem cells (MSCs) are a heterogeneous population of stem/progenitor cells that can differentiate into a variety of cell types, including osteoblasts, adipocytes, chondrocytes, and myocytes. Commitment of stem cells to these different lineages is regulated by many cues in the local tissue microenvironment. Recently, it has been demonstrated that cell shape might regulate commitment of human mesenchymal stem cells (hMSCs) to adipocyte, i.e. unspread/round hMSCs are allowed to develop into adipocytes. Evidences indicate that MSC with changes in cytoskeletal tension and disorganizing the actin cytoskeleton, or microtubule depolymerization enforcing cell rounding promotes adipogenesis. Members of the evolutionarily conserved Rho family of small GTPases are essential regulatory components of signaling pathways that direct the organization of the cytoskeleton. The apparent role of cell shape in MSC lineage commitment or adipogenic-osteogenic switch in hMSC is mediated through the RhoA-ROCK signaling pathway, and the proteins which affect the stability of cytoskeleton also contribute to the commitment of adipocyte lineage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acuna-Castroviejo D (2007) A new guest playing with bone and fat. Am J Physiol Regul Integr Comp Physiol 292:R2206–R2207

    Article  PubMed  CAS  Google Scholar 

  • Bazile F, Pascal A, Arnal I, Le Clainche C, Chesnel F, Kubiak JZ (2009) Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells. Carcinogenesis 30:555–565

    Article  PubMed  CAS  Google Scholar 

  • Bedard K, Szabo E, Michalak M, Opas M (2005) Cellular functions of endoplasmic reticulum chaperones calreticulin, calnexin, and ERp57. Int Rev Cytol 245:91–121

    Article  PubMed  CAS  Google Scholar 

  • Begum N, Sandu OA, Ito M, Lohmann SM, Smolenski A (2002) Active Rho kinase (ROK-alpha) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem 277:6214–6222

    Article  PubMed  CAS  Google Scholar 

  • Benya PD, Padilla SR, Nimni ME (1978) Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 15:1313–1321

    Article  PubMed  CAS  Google Scholar 

  • Bowers RR, Kim JW, Otto TC, Lane MD (2006) Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc Natl Acad Sci USA 103:13022–13027

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (1994) The mesengenic process. Clin Plast Surg 21:429–435

    PubMed  CAS  Google Scholar 

  • De La Cruz EM, Ostap EM, Brundage RA, Reddy KS, Sweeney HL, Safer D (2000) Thymosin-beta(4) changes the conformation and dynamics of actin monomers. Biophys J 78:2516–2527

    Article  Google Scholar 

  • Feng TS, Szabo E, Dziak E, Opas M (2010) Cytoskeletal disassembly and cell rounding promotes adipogenesis from ES cells. Stem Cell Rev 6:74–85

    Article  PubMed  Google Scholar 

  • Gao L, McBeath R, Chen CS (2010) Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells 28:564–572

    PubMed  CAS  Google Scholar 

  • Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98:251–266

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Ho JH, Ma WH, Su Y, Tseng KC, Kuo TK, Lee OK (2010) Thymosin beta-4 directs cell fate determination of human mesenchymal stem cells through biophysical effects. J Orthop Res 28:131–138

    PubMed  CAS  Google Scholar 

  • Huang HY, Song TJ, Li X, Hu LL, He Q, Liu M, Lane MD, Tang QQ (2009) BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA 106:12670–12675

    Article  PubMed  CAS  Google Scholar 

  • Huang HY, Hu LL, Song TJ, Li X, He Q, Sun X, Li YM, Lu HJ, Yang PY, Tang QQ (2011) Involvement of cytoskeleton-associated proteins in the commitment of C3H10T1/2 pluripotent stem cells to adipocyte lineage induced by BMP2/4. Mol Cell Proteomics 10:1–8

    Google Scholar 

  • McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  PubMed  CAS  Google Scholar 

  • Meyers VE, Zayzafoon M, Douglas JT, McDonald JM (2005) RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res 20:1858–1866

    Article  PubMed  CAS  Google Scholar 

  • Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226:507–520

    CAS  Google Scholar 

  • Payne SL, Hendrix MJ, Kirschmann DA (2006) Lysyl oxidase regulates actin filament formation through the p130(Cas)/Crk/DOCK180 signaling complex. J Cell Biochem 98:827–837

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Pockwinse SM, Stein JL, Lian JB, Stein GS (1995) Developmental stage-specific cellular-responses to vitamin-D and glucocorticoids during differentiation of the osteoblast phenotype – interrelationship of morphology and gene-expression by in-situ hybridization. Exp Cell Res 216:244–260

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212

    Article  PubMed  CAS  Google Scholar 

  • Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterials and bone mechanotransduction. Biomaterials 22:2581–2593

    Article  PubMed  CAS  Google Scholar 

  • Sordella R, Classon M, Hu KQ, Matheson SF, Brouns MR, Fine B, Zhang L, Takami H, Yamada Y, Settleman J (2002) Modulation of CREB activity by the Rho GTPase regulates cell and organism size during mouse embryonic development. Dev Cell 2:553–565

    Article  PubMed  CAS  Google Scholar 

  • Sordella R, Jiang W, Chen GC, Curto M, Settleman J (2003) Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell 113:147–158

    Article  CAS  Google Scholar 

  • Spiegelman BM, Ginty CA (1983) Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell 35:657–666

    Article  PubMed  CAS  Google Scholar 

  • Stossel TP (1993) On the crawling of animal cells. Science 260:1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Szabo E, Feng T, Dziak E, Opas M (2009) Cell adhesion and spreading affect adipogenesis from embryonic stem cells: the role of calreticulin. Stem Cells 27:2092–2102

    Article  PubMed  CAS  Google Scholar 

  • Thomas CH, Collier JH, Sfeir CS, Healy KE (2002) Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci USA 99:1972–1977

    Article  PubMed  CAS  Google Scholar 

  • Treiser MD, Yang EH, Gordonov S, Cohen DM, Androulakis IP, Kohn J, Chen CS, Moghe PV (2010) Cytoskeleton-based forecasting of stem cell lineage fates. Proc Natl Acad Sci USA 107:610–615

    Article  PubMed  CAS  Google Scholar 

  • Villagomez M, Szabo E, Podcheko A, Feng T, Papp S, Opas M (2009) Calreticulin and focal-contact-dependent adhesion. Biochem Cell Biol 87:545–556

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Spector A (1996) Alpha-crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. Eur J Biochem 242:56–66

    Article  PubMed  CAS  Google Scholar 

  • Wieske M, Benndorf R, Behlke J, Dolling R, Grelle G, Bielka H, Lutsch G (2001) Defined sequence segments of the small heat shock proteins HSP25 and alphaB-crystallin inhibit actin polymerization. Eur J Biochem 268:2083–2090

    Article  PubMed  CAS  Google Scholar 

  • Young HE, Mancini ML, Wright RP, Smith JC, Black AC, Reagan CR, Lucas PA (1995) Mesenchymal stem-cells reside within the connective tissues of many organs. Dev Dyn 202:137–144

    Article  PubMed  CAS  Google Scholar 

  • Yu ZK, Wright JT, Hausman GJ (1997) Preadipocyte recruitment in stromal vascular cultures after depletion of committed preadipocytes by immunocytotoxicity. Obes Res 5:9–15

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Qun Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Huang, HY., Tang, QQ. (2012). Differentiation of Mesenchymal Stem Cells into Adipocyte Lineage: Role of Cytoskeleton-Associated Proteins. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 6. Stem Cells and Cancer Stem Cells, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2993-3_18

Download citation

Publish with us

Policies and ethics