Advertisement

Derivation and Invasive Function of Trophoblast from Human Pluripotent Stem Cells

  • Harry Moore
  • Ramya Udayashankar
Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 6)

Abstract

Human embryo implantation in situ remains a ‘blackbox’ as it is virtually inaccessible to investigation. The finding that pluripotent stem cells such as human embryonic stem cells and induced pluripotent stem cells generate trophoblast has created a new paradigm for studying the very earliest stages of human development in vitro. The phenotype of trophoblast cells generated from pluripotent stem cells depends on the specific culture conditions and displays considerable variation with some uncertainty. These derived cells offer an important new route to investigate the earliest stages of human trophoblast differentiation and in co-culture with endometrial cells an in vitro model of embryo invasiveness at implantation.

Keywords

Trophoblast Cell Human Pluripotent Stem Cell Cytotrophoblast Cell Trophoblast Stem Trophoblast Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bernardo AS, Faial T, Gardner L, Niakan KK, Ortmann D, Senner CE, Callery EM, Trotter MW, Hemberger M, Smith JC, Bardwell L, Moffett A, Pedersen RA (2011) BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9:144–155PubMedCrossRefGoogle Scholar
  2. Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803:55–71PubMedCrossRefGoogle Scholar
  3. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, de Sousa C, Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195PubMedCrossRefGoogle Scholar
  4. Cakmak H, Taylor HS (2011) Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update 17:242–253PubMedCrossRefGoogle Scholar
  5. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–64PubMedCrossRefGoogle Scholar
  6. Fisher KE, Pop K, Koh W, Anthis NJ, Saunders WB, Davis GE (2006) Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling. Mol Cancer 8:69CrossRefGoogle Scholar
  7. Gellersen B, Reimann K, Samalecos A, Aupers S, Bamberger AM (2010) Invasiveness of human endometrial stromal cells is promoted by decidualization and by trophoblast-derived signals. Hum Reprod 25:862–873PubMedCrossRefGoogle Scholar
  8. Genbacev O, Donne M, Kapidzic M, Gormley M, Lamb J, Gilmore J, Larocque N, Goldfien G, Zdravkovic T, McMaster MT, Fisher SJ (2011) Establishment of human trophoblast progenitor cell lines from the chorion. Stem Cells 29:1427–1436PubMedGoogle Scholar
  9. Grewal S, Carver J, Ridley AJ, Mardon HJ (2010) Human endometrial stromal cell rho GTPases have opposing roles in regulating focal adhesion turnover and embryo invasion in vitro. Biol Reprod 83:75–82PubMedCrossRefGoogle Scholar
  10. Hannan NJ, Paiva P, Dimitriadis E, Salamonsen LA (2010) Models for study of human embryo implantation: choice of cell lines? Biol Reprod 82:235–245PubMedCrossRefGoogle Scholar
  11. Harun R, Ruban L, Matin M, Draper J, Jenkins NM, Liew GC, Andrews PW, Li TC, Laird SM, Moore HD (2006) Cytotrophoblast stem cell lines derived from human embryonic stem cells and their capacity to mimic invasive implantation events. Hum Reprod 21:1349–1358PubMedCrossRefGoogle Scholar
  12. Hemberger M, Udayashankar R, Tesar P, Moore H, Burton GJ (2010) ELF5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta. Hum Mol Genet 19:2456–2467PubMedCrossRefGoogle Scholar
  13. Henderson JK, Draper JS, Baillie HS, Fishel S, Thomson JA, Moore H, Andrews PW (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20:329–337PubMedCrossRefGoogle Scholar
  14. MacAuley A, Cross JC, Werb Z (1998) Reprogramming the cell cycle for endoreduplication in rodent trophoblast cells. Mol Biol Cell 9:795–807PubMedGoogle Scholar
  15. Marchand M, Horcajadas JA, Esteban FJ, McElroy SL, Fisher SJ, Giudice LC (2011) Transcriptomic signature of trophoblast differentiation in a human embryonic stem cell model. Biol Reprod 84:1258–1271PubMedCrossRefGoogle Scholar
  16. Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–929PubMedCrossRefGoogle Scholar
  17. Peiffer I, Belhomme D, Barbet R, Haydont V, Zhou YP, Fortunel NO, Li M, Hatzfeld A, Fabiani JN, Hatzfeld JA (2007) Simultaneous differentiation of endothelial and trophoblastic cells derived from human embryonic stem cells. Stem Cells Dev 16:393–402PubMedCrossRefGoogle Scholar
  18. Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, Fisher SJ (2004) Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest 114:744–754PubMedGoogle Scholar
  19. Rossant J (2008) Stem cells and early lineage development. Cell 132:527–531PubMedCrossRefGoogle Scholar
  20. Schenke-Layland K, Angelis E, Rhodes KE, Heydarkhan-Hagvall S, Mikkola HK, Maclellan WR (2007) Collagen IV induces trophoectoderm differentiation of mouse embryonic stem cells. Stem Cells 25:1529–1538PubMedCrossRefGoogle Scholar
  21. Simard J, Ricketts ML, Gingras S, Soucy P, Feltus FA, Melner MH (2005) Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev 26:525–582PubMedCrossRefGoogle Scholar
  22. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282:2072–2075PubMedCrossRefGoogle Scholar
  23. Teklenburg G, Macklon NS (2009) Review: in vitro models for the study of early human embryo-endometrium interactions. Reprod Sci 16:811–818PubMedCrossRefGoogle Scholar
  24. Thomson JA, Istkovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  25. Udayashankar R, Baker D, Tuckerman E, Laird S, Li TC, Moore HD (2011) Characterization of invasive trophoblasts generated from human embryonic stem cells. Hum Reprod 26:398–406PubMedCrossRefGoogle Scholar
  26. Vandevoort CA, Thirkill TL, Douglas GC (2007) Blastocyst-derived trophoblast stem cells from the rhesus monkey. Stem Cells Dev 16:779–788PubMedCrossRefGoogle Scholar
  27. Velkey JM, O’Shea KS (2003) Oct4 RNA interference induces trophectoderm differentiation in mouse embryonic stem cells. Genesis 37:18–24PubMedCrossRefGoogle Scholar
  28. Weier JF, Weier HU, Jung CJ, Gormley M, Zhou Y, Chu LW, Genbacev O, Wright AA, Fisher SJ (2005) Human cytotrophoblasts acquire aneuploidies as they differentiate to an invasive phenotype. Dev Biol 279:420–432PubMedCrossRefGoogle Scholar
  29. Zhou S, Xie Y, Puscheck EE, Rappolee DA (2011) Oxygen levels that optimize TSC culture are identified by maximizing growth rates and minimizing stress. Placenta 32:475–481PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Centre for Stem Cell BiologyUniversity of SheffieldSheffieldUK
  2. 2.GE Healthcare Life sciencesCardiffUK

Personalised recommendations