Skip to main content

Biogeochemistry of Arsenic in Paddy Environments

  • Chapter
  • First Online:
Arsenic & Rice

Abstract

Flooding paddy soils is a common practice for the cultivation of paddy rice. Rice can be grown aerobically, but yield tends to be smaller than flooded rice possibly due to the build-up of pathogens and nematodes and generally lower bioavailability of nutrients (e.g. phosphorus) under aerobic conditions (Ventura et al. 1981). Flooding soil has a profound impact on the biogeochemical cycles of major and trace elements primarily through influencing the reduction-oxidation (redox) reactions. For a comprehensive discussion on this topic, readers are referred to the book by Kirk (2004). A brief overview is presented in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  PubMed  CAS  Google Scholar 

  • Ahmann D, Roberts AL, Krumholz LR, Morel FMM (1994) Microbe grows by reducing arsenic. Nature 371:750

    Article  PubMed  CAS  Google Scholar 

  • Ahmed ZU, Panaullah GM, Gauch H, McCouch SR, Tyagi W, Kabir MS, Duxbury JM (2011) Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant Soil 338:367–382

    Article  CAS  Google Scholar 

  • Ali I, Jain CK (2004) Advances in arsenic speciation techniques. Int J Environ Anal Chem 84:947–964

    Article  CAS  Google Scholar 

  • Anderson GL, Williams J, Hille R (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267:23674–23682

    PubMed  CAS  Google Scholar 

  • Arai Y, Elzinga EJ, Sparks DL (2001) X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide-water interface. J Colloid Interface Sci 235:80–88

    Article  PubMed  CAS  Google Scholar 

  • Arai Y, Sparks DL, Davis JA (2004) Effects of dissolved carbonate on arsenate adsorption and surface speciation at the hematite-water interface. Environ Sci Technol 38:817–824

    Article  PubMed  CAS  Google Scholar 

  • Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009) Effects of water management on ­cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 43:9361–9367

    Article  PubMed  CAS  Google Scholar 

  • Bartlett RJ, James BR (1993) Redox chemistry of soils. Adv Agron 50:151–208

    Article  CAS  Google Scholar 

  • Bauer M, Blodau C (2006) Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci Total Environ 354:179–190

    Article  PubMed  CAS  Google Scholar 

  • Bauer M, Blodau C (2009) Arsenic distribution in the dissolved, colloidal and particulate size ­fraction of experimental solutions rich in dissolved organic matter and ferric iron. Geochim Cosmochim Acta 73:529–542

    Article  CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and ­bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee H, Rosen BP (2007) Arsenic metabolism in prokaryotic and eukaryotic microbes. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, Berlin, pp 371–406

    Chapter  Google Scholar 

  • Blodau C, Fulda B, Bauer M, Knorr KH (2008) Arsenic speciation and turnover in intact organic soil mesocosms during experimental drought and rewetting. Geochim Cosmochim Acta 72:3991–4007

    Article  CAS  Google Scholar 

  • Bogdan K, Schenk MK (2009) Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.). Environ Pollut 157:2617–2621

    Article  PubMed  CAS  Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44:15–23

    Article  PubMed  CAS  Google Scholar 

  • Buschmann J, Kappeler A, Lindauer U, Kistler D, Berg M, Sigg L (2006) Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminum. Environ Sci Technol 40:6015–6020

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Liu GH, Rensing C, Wang GJ (2009) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol 9:4

    Article  PubMed  CAS  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36:315–361

    Article  CAS  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • Cummings DE, Caccavo F, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the ­dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33:723–729

    Article  CAS  Google Scholar 

  • Dittmar J, Voegelin A, Roberts LC, Hug SJ, Saha GC, Ali MA, Badruzzaman ABM, Kretzschmar R (2007) Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil. Environ Sci Technol 41:5967–5972

    Article  PubMed  CAS  Google Scholar 

  • Dittmar J, Voegelin A, Roberts LC, Hug SJ, Saha GC, Ali MA, Badruzzaman ABM, Kretzschmar R (2010) Arsenic accumulation in a paddy field in Bangladesh: seasonal dynamics and trends over a three-year monitoring period. Environ Sci Technol 44:2925–2931

    Article  PubMed  CAS  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189

    Article  PubMed  CAS  Google Scholar 

  • Fendorf S, Eick MJ, Grossl P, Sparks DL (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ Sci Technol 31:315–320

    Article  CAS  Google Scholar 

  • Fendorf S, Herbel MJ, Tufano KJ, Kocar BD (2008) Biogeochemical processes controlling the cycling of arsenic in soils and sediments. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, Hoboken, pp 313–338

    Google Scholar 

  • Gao S, Burau RG (1997) Environmental factors affecting rates of arsine evolution from and ­mineralization of arsenicals in soil. J Environ Qual 26:753–763

    Article  CAS  Google Scholar 

  • Garcia-Dominguez E, Mumford A, Rhine ED, Paschal A, Young LY (2008) Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments. FEMS Microbiol Ecol 66:401–410

    Article  PubMed  CAS  Google Scholar 

  • Geiszinger A, Goessler W, Kosmus W (2002) Organoarsenic compounds in plants and soil on top of an ore vein. Appl Organomet Chem 16:245–249

    Article  CAS  Google Scholar 

  • Goldberg S, Johnston CT (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci 234:204–216

    Article  PubMed  CAS  Google Scholar 

  • Grafe M, Eick MJ, Grossl PR (2001) Adsorption of arsenate(V) and arsenite(III) on goethite in the presence and absence of dissolved organic carbon. Soil Sci Soc Am J 65:1680–1687

    Article  CAS  Google Scholar 

  • Grafe M, Eick MJ, Grossl PR, Saunders AM (2002) Adsorption of arsenate and arsenite on ­ferrihydrite in the presence and absence of dissolved organic carbon. J Environ Qual 31:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Grossl PR, Eick M, Sparks DL, Goldberg S, Ainsworth CC (1997) Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol 31:321–326

    Article  CAS  Google Scholar 

  • Hamon RE, Lombi E, Fortunati P, Nolan AL, McLaughlin MJ (2004) Coupling speciation and isotope dilution techniques to study arsenic mobilization in the environment. Environ Sci Technol 38:1794–1798

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Kobayashi Y, Cui X, Hirano S (2005) A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79:183–191

    Article  PubMed  CAS  Google Scholar 

  • Hossain MB, Jahiruddin M, Panaullah GM, Loeppert RH, Islam MR, Duxbury JM (2008) Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus. Environ Pollut 156:739–744

    Article  PubMed  CAS  Google Scholar 

  • Hossain MB, Jahiruddin M, Loeppert RH, Panaullah GM, Islam MR, Duxbury JM (2009) The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant Soil 317:167–176

    Article  CAS  Google Scholar 

  • Huang JH, Matzner E (2006) Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochim Cosmochim Acta 70:2023–2033

    Article  CAS  Google Scholar 

  • Huang JH, Scherr F, Matzner E (2007) Demethylation of dimethylarsinic acid and arsenobetaine in different organic soils. Water Air Soil Pollut 182:31–41

    Article  CAS  Google Scholar 

  • Inskeep WP, McDermott TR, Fendorf S (2002) Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes. In: Frankenberger JWT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 183–215

    Google Scholar 

  • Inskeep WP, Macur RE, Hamamura N, Warelow TP, Ward SA, Santini JM (2007) Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol 9:934–943

    Article  PubMed  CAS  Google Scholar 

  • Jain A, Loeppert RH (2000) Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite. J Environ Qual 29:1422–1430

    Article  CAS  Google Scholar 

  • Jones CA, Langner HW, Anderson K, McDermott TR, Inskeep WP (2000) Rates of microbially mediated arsenate reduction and solubilization. Soil Sci Soc Am J 64:600–608

    Article  CAS  Google Scholar 

  • Khan MA, Islam MR, Panaullah GM, Duxbury JM, Jahiruddin M, Loeppert RH (2009) Fate of irrigation-water arsenic in rice soils of Bangladesh. Plant Soil 322:263–277

    Article  CAS  Google Scholar 

  • Khan MA, Stroud JL, Zhu YG, McGrath SP, Zhao FJ (2010) Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environ Sci Technol 44:8515–8521

    Article  PubMed  CAS  Google Scholar 

  • Kirk G (2004) The biogeochemistry of submerged soils. Wiley, Chichester

    Book  Google Scholar 

  • Kocar BD, Fendorf S (2009) Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments. Environ Sci Technol 43:4871–4877

    Article  PubMed  CAS  Google Scholar 

  • Kocar BD, Herbel MJ, Tufano KJ, Fendorf S (2006) Contrasting effects of dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport. Environ Sci Technol 40:6715–6721

    Article  PubMed  CAS  Google Scholar 

  • Lafferty BJ, Loeppert RH (2005) Methyl arsenic adsorption and desorption behavior on iron oxides. Environ Sci Technol 39:2120–2127

    Article  PubMed  CAS  Google Scholar 

  • Larsen S (1969) L value determination under paddy soil condition. Plant Soil 31:282–286

    Article  Google Scholar 

  • Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ (2009) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43:3778–3783

    Article  PubMed  CAS  Google Scholar 

  • Li HF, Lombi E, Stroud JL, McGrath SP, Zhao FJ (2010) Selenium speciation in soil and rice: influence of water management and Se fertilization. J Agric Food Chem 58:11837–11843

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Shi Q, Nix FB, Styblo M, Beck MA, Herbin-Davis KM, Hall LL, Simeonsson JB, Thomas DJ (2002) A novel S-adenosyl-L-methionine: arsenic(III) methyltransferase from rat liver cytosol. J Biol Chem 277:10795–10803

    Article  PubMed  CAS  Google Scholar 

  • Liu GL, Cai Y (2010) Complexation of arsenite with dissolved organic matter. Conditional distribution coefficients and apparent stability constants. Chemosphere 81:890–896

    Article  PubMed  CAS  Google Scholar 

  • Liu GL, Fernandez A, Cai Y (2011) Complexation of arsenite with humic acid in the presence of ferric iron. Environ Sci Technol 45:3210–3216

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Adomako EE, Solaiman ARM, Islam MR, Deacon C, Williams PN, Rahman G, Meharg AA (2009) Baseline soil variation is a major factor in arsenic accumulation in Bengal delta paddy rice. Environ Sci Technol 43:1724–1729

    Article  PubMed  CAS  Google Scholar 

  • Lumsdon DG, Fraser AR, Russell JD, Livesey NT (1984) New infrared band assignments for the arsenate ion adsorbed on synthetic goethite (alpha-FeOOH). J Soil Sci 35:381–386

    Article  CAS  Google Scholar 

  • Macur RE, Wheeler JT, McDermott TR, Inskeep WP (2001) Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35:3676–3682

    Article  PubMed  CAS  Google Scholar 

  • Macur RE, Jackson CR, Botero LM, McDermott TR, Inskeep WP (2004) Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ Sci Technol 38:104–111

    Article  PubMed  CAS  Google Scholar 

  • Maki T, Takeda N, Hasegawa H, Ueda K (2006) Isolation of monomethylarsonic acid mineralizing bacteria from arsenic contaminated soils of Ohkunoshima Island. Appl Organomet Chem 20:538–544

    Article  CAS  Google Scholar 

  • Manning BA, Goldberg S (1996) Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci Soc Am J 60:121–131

    Article  CAS  Google Scholar 

  • Manning BA, Fendorf SE, Goldberg S (1998) Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environ Sci Technol 32:2383–2388

    Article  CAS  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH (1993) Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil 152:245–253

    Article  CAS  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419

    Article  CAS  Google Scholar 

  • Meng XY, Qin J, Wang LH, Duan GL, Sun GX, Wu HL, Chu CC, Ling HQ, Rosen BP, Zhu YG (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191:49–56

    Article  PubMed  CAS  Google Scholar 

  • Mestrot A, Uroic MK, Plantevin T, Islam MR, Krupp EM, Feldmann J, Meharg AA (2009) Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil. Environ Sci Technol 43:8270–8275

    Article  PubMed  CAS  Google Scholar 

  • Mestrot A, Feldmann J, Krupp EM, Hossain MS, Roman-Ross G, Meharg AA (2011) Field fluxes and speciation of arsines emanating from soils. Environ Sci Technol 45:1798–1804

    Article  PubMed  CAS  Google Scholar 

  • Newman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, Morel FMM (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388

    Article  PubMed  CAS  Google Scholar 

  • Norra S, Berner ZA, Agarwala P, Wagner F, Chandrasekharam D, Stuben D (2005) Impact of irrigation with as rich groundwater on soil and crops: a geochemical case study in West Bengal delta plain, India. Appl Geochem 20:1890–1906

    Article  CAS  Google Scholar 

  • Ona-Nguema G, Morin G, Juillot F, Calas G, Brown GE (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ Sci Technol 39:9147–9155

    Article  PubMed  CAS  Google Scholar 

  • Onken BM, Hossner LR (1996) Determination of arsenic species in soil solution under flooded conditions. Soil Sci Soc Am J 60:1385–1392

    Article  CAS  Google Scholar 

  • Oscarson DW, Huang PM, Defosse C, Herbillon A (1981) Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(IIII) in terrestrial and aquatic environments. Nature 291:50–51

    Article  CAS  Google Scholar 

  • Oscarson DW, Huang PM, Liaw WK, Hammer UT (1983) Kinetics of oxidation of arsenite by various manganese dioxides. Soil Sci Soc Am J 47:644–648

    Article  CAS  Google Scholar 

  • Panaullah GM, Alam T, Hossain MB, Loeppert RH, Lauren JG, Meisner CA, Ahmed ZU, Duxbury JM (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317:31–39

    Article  CAS  Google Scholar 

  • Peryea FJ (1991) Phosphate-induced release of arsenic from soils contaminated with lead arsenate. Soil Sci Soc Am J 55:1301–1306

    Article  CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang GJ, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080

    Article  PubMed  CAS  Google Scholar 

  • Radu T, Subacz JL, Phillippi JM, Barnett MO (2005) Effects of dissolved carbonate on arsenic adsorption and mobility. Environ Sci Technol 39:7875–7882

    Article  PubMed  CAS  Google Scholar 

  • Raven KP, Jain A, Loeppert RH (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ Sci Technol 32:344–349

    Article  CAS  Google Scholar 

  • Reynolds JG, Naylor DV, Fendorf SE (1999) Arsenic sorption in phosphate-amended soils during flooding and subsequent aeration. Soil Sci Soc Am J 63:1149–1156

    Article  CAS  Google Scholar 

  • Ritter K, Aiken GR, Ranville JF, Bauer M, Macalady DL (2006) Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(III). Environ Sci Technol 40:5380–5387

    Article  PubMed  CAS  Google Scholar 

  • Roberts LC, Hug SJ, Dittmar J, Voegelin A, Saha GC, Ali MA, Badruzzaman ABM, Kretzschmar R (2007) Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 1. Irrigation water. Environ Sci Technol 41:5960–5966

    Article  PubMed  CAS  Google Scholar 

  • Roberts LC, Hug SJ, Dittmar J, Voegelin A, Kretzschmar R, Wehrli B, Cirpka OA, Saha GC, Ali MA, Badruzzaman ABM (2010) Arsenic release from paddy soils during monsoon ­flooding. Nat Geosci 3:53–59

    Article  CAS  Google Scholar 

  • Rochette EA, Bostick BC, Li GC, Fendorf S (2000) Kinetics of arsenate reduction by dissolved sulfide. Environ Sci Technol 34:4714–4720

    Article  CAS  Google Scholar 

  • Saha GC, Ali MA (2007) Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh. Sci Total Environ 379:180–189

    Article  PubMed  CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Ofner J, Kappler A (2010) Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Environ Sci Technol 44:4479–4485

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Rolle M, Kocar B, Fendorf S, Kappler A (2011) Influence of natural organic matter on As transport and retention. Environ Sci Technol 45:546–553

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Arai Y, Sparks DL (2011a) Multiscale assessment of methylarsenic reactivity in soil. 1. Sorption and desorption on soils. Environ Sci Technol 45:4293–4299

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Arai Y, Sparks DL (2011b) Multiscale assessment of methylarsenic reactivity in soil. 2. Distribution and speciation in soil. Environ Sci Technol 45:4300–4306

    Article  PubMed  CAS  Google Scholar 

  • Signes-Pastor A, Burlo F, Mitra K, Carbonell-Barrachina AA (2007) Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma 137:504–510

    Article  CAS  Google Scholar 

  • Sparks DL (2003) Environmental soil chemistry. Academy Press, Amsterdam

    Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Stachowicz M, Hiemstra T, Van Riemsdijk WH (2007) Arsenic-bicarbonate interaction on goethite particles. Environ Sci Technol 41:5620–5625

    Article  PubMed  CAS  Google Scholar 

  • Stroud JL, Khan MA, Norton GJ, Islam MR, Dasgupta T, Zhu YG, Price AH, Meharg AA, McGrath SP, Zhao FJ (2011a) Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. Environ Sci Technol 45:4262–4269

    Article  PubMed  CAS  Google Scholar 

  • Stroud JL, Norton GJ, Islam MR, Dasgupta T, White R, Price AH, Meharg AA, McGrath SP, Zhao FJ (2011b) The dynamics of arsenic in four paddy fields in the Bengal delta. Environ Pollut 159:947–953

    Article  PubMed  CAS  Google Scholar 

  • Sun XH, Doner HE (1996) An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil Sci 161:865–872

    Article  CAS  Google Scholar 

  • Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic ­behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu T, Aoki H, Yoshida T (1982) Determination of arsenate, arsenite, monomethylarsonate, and dimethylarsinate in soil polluted with arsenic. Soil Sci 133:239–246

    Article  CAS  Google Scholar 

  • Thomas DJ, Waters SB, Styblo M (2004) Elucidating the pathway for arsenic methylation. Toxicol Appl Pharmacol 198:319–326

    Article  PubMed  CAS  Google Scholar 

  • Tufano KJ, Fendorf S (2008) Confounding impacts of iron reduction on arsenic retention. Environ Sci Technol 42:4777–4783

    Article  PubMed  CAS  Google Scholar 

  • Tufano KJ, Reyes C, Saltikov CW, Fendorf S (2008) Reductive processes controlling arsenic ­retention: revealing the relative importance of iron and arsenic reduction. Environ Sci Technol 42:8283–8289

    Article  PubMed  CAS  Google Scholar 

  • Ventura W, Watanabe I, Castillo MB, Delacruz A (1981) Involvement of nematodes in the soil sickness of a dryland rice-based cropping system. Soil Sci Plant Nutr 27:305–315

    Google Scholar 

  • Violante A, Pigna M (2002) Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci Soc Am J 66:1788–1796

    Article  CAS  Google Scholar 

  • Waltham CA, Eick MJ (2002) Kinetics of arsenic adsorption on goethite in the presence of sorbed silicic acid. Soil Sci Soc Am J 66:818–825

    Article  CAS  Google Scholar 

  • Warwick P, Inam E, Evans N (2005) Arsenic’s interaction with humic acid. Environ Chem 2:119–124

    Article  CAS  Google Scholar 

  • Wenzel WW, Brandstetter A, Wutte H, Lombi E, Prohaska T, Stingeder G, Adriano DC (2002) Arsenic in field-collected soil solutions and extracts of contaminated soils and its implication to soil standards. J Plant Nutr Soil Sci 165:221–228

    Article  CAS  Google Scholar 

  • Williams PN, Zhang H, Davison W, Meharg AA, Hossain M, Norton GJ, Brammer H, Islam MR (2011) Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environ Sci Technol 45:6080–6087

    Article  PubMed  CAS  Google Scholar 

  • Woolson EA, Kearney PC (1973) Persistence and reactions of 14C-cacodylic acid in soils. Environ Sci Technol 7:47–50

    Article  CAS  Google Scholar 

  • Woolson EA, Aharonson N, Iadevaia R (1982) Application of the high-performance liquid-­chromatography flameless atomic-absorption method to the study of alkyl arsenical herbicide metabolism in soil. J Agric Food Chem 30:580–584

    Article  CAS  Google Scholar 

  • Xu H, Allard B, Grimvall A (1988) Influence of pH and organic substance on the adsorption of As(V) on geologic materials. Water Air Soil Pollut 40:293–305

    CAS  Google Scholar 

  • Xu H, Allard B, Grimvall A (1991) Effects of acidification and natural organic materials on the mobility of arsenic in the environment. Water Air Soil Pollut 57–8:269–278

    Article  Google Scholar 

  • Xu XY, McGrath SP, Meharg A, Zhao FJ (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T (2011) Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83:925–932

    Article  PubMed  CAS  Google Scholar 

  • Yang JK, Barnett MO, Jardine PM, Basta NT, Casteel SW (2002) Adsorption, sequestration, and bioaccessibility of As(V) in soils. Environ Sci Technol 36:4562–4569

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga M, Cai Y, Rosen BP (2011) Demethylation of methylarsonic acid by a microbial ­community. Environ Microbiol 13:1205–1215

    Article  PubMed  CAS  Google Scholar 

  • Yuan CG, Lu XF, Qin J, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. Environ Sci Technol 42:3201–3206

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Selim HM (2008) Reaction and transport of arsenic in soils: equilibrium and kinetic modeling. Adv Agron 98:45–115

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Ann Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Meharg, A.A., Zhao, FJ. (2012). Biogeochemistry of Arsenic in Paddy Environments. In: Arsenic & Rice. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2947-6_5

Download citation

Publish with us

Policies and ethics