Advertisement

Introduction

  • Dirk Spreemann
  • Yiannos Manoli
Chapter
  • 2.4k Downloads
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 35)

Abstract

In our daily life smart sensors have become an essential part increasing comfort, security and efficiency in many industrial and civilian application areas such as automotive, aircraft and plant industry, industrial and home automation or machine and health monitoring. Going one step further it does not come as a big surprise that there is a steady increase of wireless sensor networks (WSN) following the paradigm of ubiquitous computing. Many of nowadays applications would not be possible without the advance in miniaturizing the size and reducing the power consumption of electronics and the progress in wireless technologies. As a further advance smart sensors and WSN will tend to be even more embedded and mobile in the future. With a higher level of integration numerous new applications become possible.

Keywords

Sensor Node Wireless Sensor Network Output Performance Excitation Amplitude Vibration Energy Harvest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 4.
    Available in the internet: http://www.batteryuniversity.com/, state April 2010
  2. 5.
    Available in the internet: http://www.ferrosi.com/, state April 2010
  3. 6.
    Available in the internet: http://www.kcftech.com/, state April 2010
  4. 7.
    Available in the internet: http://www.lumedynetechnologies.com/, state April 2010
  5. 8.
    Available in the internet: http://www.perpetuum.com/, state April 2010
  6. 11.
    B. Yang et al., Electromagnetic energy harvesting from vibrations of multiple freuquencies. J. Micromech. Microeng. 19(3), 035001 (2009)ADSCrossRefGoogle Scholar
  7. 14.
    C. Serre, A. Perez-Rodriguez, N. Fondevilla, E. Martincic, S. Martinez et al., Design and implementation of mechanical resonators for optimized inertial electromagnetic microgenerators. Microsyst. Technol. 14(4–5), 653–658 (2008)CrossRefGoogle Scholar
  8. 15.
    C.B. Williams, R.B. Yates, Analysis of a micro–electric generator for microsystems, in Proceedings of Transducers’95: Eurosensors IX. The 8th International Conference on Solid–State Sensors and Actuators, and Eurosensors IX, Stockholm, June 1995, pp. 369–372Google Scholar
  9. 17.
    C.R. Saha, T. O’Donnel, N. Wang, P. Mc Closkey, Electromagnetic generator for harvesting energy from human motion. Sens. Act., A 147, 248–253 (2008)CrossRefGoogle Scholar
  10. 18.
    D. Hoffmann, C. Kallenbach, M. Dobmaier, B. Folkmer and Y. Manoli, Flexible polyimide film technology for vibration energy harvesting, in Proceedings of PowerMEMS 2009, Washington, DC, USA, December 2009, pp. 455–458Google Scholar
  11. 25.
    D. Zhu, S. Roberts, J. Tudor, S. Beeby, Design and experimental characterization of a tunable vibration–based electromagnetic micro–generator. Sens. Act., A 158(2), 284–293 (2010)CrossRefGoogle Scholar
  12. 26.
    D.J. Domme, Experimental and analytical characterization of a transducer for energy harvesting through electromagnetic induction, Master book, Virginia State University, 2008Google Scholar
  13. 27.
    D.P. Arnold, Review of microscale magnetic power generation. Trans. Magn. 43(11), 3940–3951 (2007)ADSCrossRefGoogle Scholar
  14. 29.
    E. Bouendeu, A. Greiner, P.J. Smith and J.G. Korvink, An efficient low cost electromagnetic vibration harvester, in Proceedings of PowerMEMS 2009, Washington, DC, USA, December 2009, pp. 320–323Google Scholar
  15. 31.
    E. Koukharenko et al., Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Microsyst. Technol. 12, 1071–1077 (2006)CrossRefGoogle Scholar
  16. 34.
    G. Naumann, Energiewandlersystem für den Betrieb von autarken Sensoren in Fahrzeugen, PhD book, Technische Universität Dresden, 2003 (in German)Google Scholar
  17. 36.
    H. Toepfer et al., Electromechanical design and performance of a power supply for energy–autonomous electronic control units, in Proceedings of 51st IWK – Internationales Wissenschaftliches Kolloquium, TU Illmenau, September 2006Google Scholar
  18. 37.
    H.A. Sodano, D.J. Inman, Comparison of piezoelectric energy harvesting devices for recharging batteries. J. Intell. Mater. Syst. Struct. 16(10), 799–807 (2005)CrossRefGoogle Scholar
  19. 39.
    I. Karaman et al., Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl. Phys. Lett. 90(17), 172505 (2007)ADSCrossRefGoogle Scholar
  20. 41.
    I. Sari, T. Balkan, H. Kulah, A micro power generator with planar coils on parylene cantilevers, IEEE Ph.D. Research in Microelectronics and Electronics (PRIME) Conference, Istanbul, June 2008Google Scholar
  21. 42.
    J.K. Ward, S. Behrens, Adaptive learning algorithms for vibration energy harvesting. Smart Mater. Struct. 17(3), 035025 (2008)ADSCrossRefGoogle Scholar
  22. 43.
    J.O. Mur Miranda, Electrostatic vibration to electric energy conversion, PhD book, Massachusetts Institute of Technology MIT, 2004Google Scholar
  23. 46.
    K. Takahara, S. Ohsaki, H. Kawaguchi, Y. Itoh, Development of linear power generator: conversion of vibration energy of a vehicle to electric power. J. Asian Electric Vehicles 2(2), 639–643 (2004)CrossRefGoogle Scholar
  24. 49.
    L. Wang, F.G. Yuan, Vibration energy harvesting by magnetostrictive material. Smart. Mater. Struct. 17(4), 045009 (2008)ADSCrossRefGoogle Scholar
  25. 50.
    L. Zuo, B. Scully, J. Shestani, Y. Zhou, Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart. Mater. Struct. 19(4), 045003 (2010)ADSCrossRefGoogle Scholar
  26. 52.
    M. Mizuno, D.G. Chetwynd, Investigation of a resonance microgenerator. J. Micromech. Microeng. 13, 209–216 (2003)ADSCrossRefGoogle Scholar
  27. 53.
    M. Pereyma, Overview of the Modern State of the Vibration Energy Harvesting Devices, in Proceedings of MEMSTECH 2007, pp. 107–112, ISBN: 978-966-553-614-7, 2007Google Scholar
  28. 55.
    M. Ruellan, S. Turri, H.B. Ahmed, B. Multon, Electromagnetic resonant generator, in Proceedings of 40th Industry Applications Conference Annual Meeting, October 2005, pp. 1540–1547Google Scholar
  29. 56.
    M.S.M. Soliman, E.M. Abdel–Rahman, E.F. El–Saadany, R.R. Mansour, A wideband vibration–based energy harvester. J. Micromech. Microeng. 18(11), 115021 (2008)ADSCrossRefGoogle Scholar
  30. 59.
    N.N.H. Ching, H.Y. Wong, W.J. Li, P.H.W. Leong, Z. Wen, A laser–micromachined multi–modal resonating power transducer for wireless sensing system. Sens. Act., A 97–98, 685–690 (2002)CrossRefGoogle Scholar
  31. 60.
    P. Niu, P. Chapman, L. DiBerardino and E. Hsiao–Wecksler, Design and optimization of a biomechanical energy harvesting device, Power Electronics Specialists Conference PESC, June 2008, pp. 4062–4069
  32. 61.
    P. Wang, X. Dai, X. Zhao, G. Ding, A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst. Technol. 15(6), 941–951 (2009)CrossRefGoogle Scholar
  33. 62.
    P. Wang, X. Dai, X. Zhao and G. Ding, A micro electromagnetic vibration energy harvester with sandwiched structure and air channel for high energy conversion efficiency, in Proceedings of PowerMEMS 2009, Washington, DC, 2009, pp. 296–299Google Scholar
  34. 65.
    R. Amirtharajah, Design of low power VLSI systems powered by ambient mechanical vibration, PhD book, Massachusetts Institute of Technology, 1999Google Scholar
  35. 67.
    S. Cheng, D.P. Arnold, A study of a multi–pole magnetic generator for low–frequency vibrational energy harvesting. J. Micromech. Microeng. 20(2), 25015–25024 (2010)CrossRefGoogle Scholar
  36. 68.
    S. Cheng, N. Wang, D.P. Arnold, Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. J. Micromech. Microeng. 17, 2328–2335 (2007)ADSCrossRefGoogle Scholar
  37. 70.
    S. Roundy, On the effectiveness of vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 16(10), 809–823 (2005)CrossRefGoogle Scholar
  38. 74.
    S.P. Beeby et al., A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17(7), 1257–1265 (2007)ADSCrossRefGoogle Scholar
  39. 76.
    T. Lai, C. Huang and C. Tsou, Design and fabrication of acoustic wave actuated microgenerator for portable electronic devices, Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, April 2008, pp. 28–33
  40. 78.
    T. von Büren, G. Tröster, Design and optimization of a linear vibration–driven electromagnetic micro–power generator. Sens. Act., A 135, 765–775 (2007)CrossRefGoogle Scholar
  41. 81.
    X. Cao, W.J. Chiang, Y.C. King, Y.K. Lee, Electromagnetic energy harvesting circuit with feedforward and feedback DC-DC PWM boost converter for vibration power generator system. Trans. Power Electron. 22(2), 679–685 (2007)CrossRefGoogle Scholar
  42. 83.
    Z. Hadas, C. Ondrusek, V. Singule, Power sensitivity of vibration energy harvester. Microsyst. Technol. 16(5), 691–702 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dirk Spreemann
    • 1
  • Yiannos Manoli
    • 2
  1. 1.Institut für Mikro and InformationstechnikHSG-IMITVillingen-SchwenningenGermany
  2. 2.IMTEKUniversity of FreiburgFreiburgGermany

Personalised recommendations