Skip to main content

Habitable Environments by Extremophiles on Earth, the Solar System, and Elsewhere

  • Chapter
  • First Online:
Genesis - In The Beginning

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

Abstract

Life on Earth is ubiquitous. Most of the organisms that we know thrive in normal environments that we consider to be ambient habitats. Extremophiles are among the microorganisms living on the edge of life under severe conditions. In recent years, microorganisms have been discovered living in extreme environments, such as very high temperature (up to 115°C) and also at very low temperature (∼ −20°C). In addition, they can also withstand a variety of stresses, among them we mention both ends of the pH range, very strong acidity vs. high alkalinity, saturated salt solutions, and high hydrostatic pressure. Astrobiology considers the possibility that extraterrestrial civilizations may be present in some exoplanets in the large suite that has been discovered so far. The instruments of research are radio telescopes. Astrobiology also raises the possibility of life elsewhere in the Solar System. (The most promising examples are Mars, Europa, and possibly Titan and Enceladus.) We suggest that if microbial communities can thrive under extreme conditions on Earth, they could also emerge on extraterrestrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam D (2000) Hardcore hibernation. Published online (19 October), Nature. doi:10.1038/news 001019–9

    Google Scholar 

  • Allen MB (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol (Berlin, Heidelberg) 32:270–277

    Google Scholar 

  • Arahal DR, Marquex MC, Volcani BE, Schleifer KH, Ventosa A (1999) Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea, Int J Syst Evol Microbiol 49:521–530

    Google Scholar 

  • Atreya SK, Mahaffy PR, Wong AS (2007) Methane and related trace species on Mars: origin, loss, implications for life, and habitability. Planet Space Sci 55:358–369

    Article  CAS  Google Scholar 

  • Bertolani R, Guidetti R, Jönsson KI, Altiero T, Boschini D, Rebecchi L (2004) Experiences with dormancy in tardigrades. J Limnol 63(Suppl 1):16–25

    Google Scholar 

  • Cano R, Borucki M (1995) Revival and identification of bacterial spores in 25 to 40 million year old Dominican amber. Science 268:1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Chela-Flores J (1998) A search for extraterrestrial eukaryotes: physical and biochemical aspects of exobiology. Orig Life Evol Biosph 28:583–596. http://www.ictp.trieste.it/~chelaf/searching_for_extraterr.html

  • Chela-Flores J (2000) Testing the Drake Equation in the solar system. In: Lemarchand GA, Meech K (eds) A new era in astronomy. ASP conference series, vol 213. Astronomical society of the Pacific, San Francisco, pp 402–410. http://www.ictp.trieste.it/~chelaf/TestingDrakeEq.html

  • Chela-Flores J (2010) Instrumentation for the search of habitable ecosystems in the future exploration of Europa and Ganymede. Int J Astrobiol 9:101–108. http://www.ictp.it/~chelaf/jcf_IJA_2010.pdf

  • Chela-Flores J, Kumar N (2008) Returning to Europa: can traces of surficial life be detected? Int J Astrobiol 7:263–269 (copyright holder: Cambridge University Press). http://www.ictp.it/~chelaf/JCFKumar.pdf

    Google Scholar 

  • Coustenis A, Taylor FW (2008) Titan exploring an earthlike world, 2nd edn. WSP, Singapore, 412 pp

    Book  Google Scholar 

  • Doran PT, Stone W, Priscu J, McKay Ch, Johnson A, Chen B (2007) Environmentally Non-Disturbing Under-Ice Robotic ANtarctiC Explorer (ENDURANCE), American Geophysical Union, Fall meeting, abstract #P52A-05

    Google Scholar 

  • Ekers RD, Kent Cullers D, Billingham J, Scheffer LK (2002) SETI 2020: a roadmap for the search for extraterrestrial intelligence. SETI Press, Mountain View, 549 pp

    Google Scholar 

  • Fewer D, Friedl T, Büdel B (2002) Chroococcidiopsis and heterocyst differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23:82–90

    Article  PubMed  CAS  Google Scholar 

  • Goldstein B, Blaxter M (2002) Quick guide: Tardigrades. Curr Biol 12:R475

    Article  PubMed  CAS  Google Scholar 

  • Gowen RA, Smith A, Fortes AD, Barber S, Brown P, Church P, Collinson G, Coates AJ, Collins G, Crawford IA, Dehant V, Chela-Flores J, Griffiths AD, Grindrod PM, Gurvits LI, Hagermann A, Hussmann H, Jaumann R, Jones AP, Joy A, Sephton KH, Karatekin O, Miljkovic K, Palomba E, Pike WT, Prieto-Ballesteros O, Raulin F, Sephton MA, Sheridan MS, Sims M, Storrie-Lombardi MC, Ambrosi R, Fielding J, Fraser G, Gao Y, Jones GH, Kargl G, Karl WJ, Macagnano A, Mukherjee A, Muller JP, Phipps A, Pullan D, Richter L, Sohl F, Snape J, Sykes J, Wells N (2010) Penetrators for in situ sub-surface investigations of Europa. Adv Space Res 48(4):725–742

    Article  CAS  Google Scholar 

  • Grasset O, Lebreton J-P, Blanc M, Dougherty M, Erd C, Greeley R, Pappalardo B, the Joint Science Definition Team (2009) The Jupiter Ganymede Orbiter as part of the E J. SA/NASA Europa Jupiter System Mission (EJSM), EPSC abstracts, 4: EPSC2009–784, European Planetary Science Congress

    Google Scholar 

  • Grom J (2009) Ancient ecosystem discovered beneath Antarctic glacier. Science Now Daily News 16 April

    Google Scholar 

  • Horikawa DD (2008) The Tradigrade Ramazzottium varieornatus as a model animal for Astrobiological studies. Biol Sci Space 22(3):93–98

    Article  Google Scholar 

  • Horvath J, Carsey F, Cutts J, Jones J, Johnson E, Landry B, Lane L, Lynch G, Jezek K, Chela-Flores J, Jeng T-W, Bradley A (1997) Searching for ice and ocean biogenic activity on Europa and Earth. In: Hoover RB (ed) Instruments, methods and missions for investigation of extraterrestrial microorganisms. Proceedings of SPIE, vol 3111. SPIE, Bellingham, pp 490–500. http://www.ictp.it/~chelaf/searching_for_ice.html

  • Hoyle B (2001) Ancient bacteria may be oldest life form. Am Soc Microbiol News 67. http://newsarchive.asm.org/jan01/topic4.asp

  • Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low earth orbit. Curr Biol 18(17):R729–R731

    Article  PubMed  Google Scholar 

  • Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147

    Article  PubMed  CAS  Google Scholar 

  • Kipping D (2009) Transit timing effects due to an exomoon. Mon Not R Astron Soc 392:181–189

    Article  CAS  Google Scholar 

  • Lefèvre F, Forget F (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460:720–723

    Article  PubMed  Google Scholar 

  • Mikucki JA, Priscu JC (2007) Bacterial diversity associated with blood falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 73:4029–4039

    Article  PubMed  CAS  Google Scholar 

  • Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag D, Panbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous ‘ocean’. Science 324:397–400

    Article  PubMed  CAS  Google Scholar 

  • Nickle DC, Learn GH, Rain MW, Mullins JI, Mittler JE (2002) Curiously modern DNA for a ‘250 million-year-old’ bacterium. J Mol Evol 54:134–137

    Article  PubMed  CAS  Google Scholar 

  • Oard MJ (2001) Aren’t 250 million year old live bacteria a bit much? Creation Ministries International, article 2415

    Google Scholar 

  • Oren A (1988) The microbial ecology of the Dead Sea. In: Marshall KC (ed) Advances in microbial ecology, vol 10. Plenum Publishing Company, New York, pp 193–229

    Chapter  Google Scholar 

  • Postberg F, Kempe S, Schmidt J, Brilliantov N, Beinsen A, Abel B, Buck U, Srama R (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459:1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Seckbach J (2010) Overview of Cyanidian biology. In: Seckbach J, Chapman D (eds) Red algae in genome age. Cellular Origin, Life in Extreme Habitats and Astrobioloy. Springer, Dordrecht, 13:343–356

    Chapter  Google Scholar 

  • Siegert MJ, Ellis-Evans JC, Tranter M, Mayer C, Petit J, Salamantin A, Priscu JC (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature (London) 414:603–609

    Article  CAS  Google Scholar 

  • Singer E (2003) Vital clues from Europa. New Sci Mag 2414:22–23. http://www.ictp.it/~chelaf/VitalClues.pdf

  • Sleep NH (1994) Martian plate tectonics. J Geophys Res 99:5639–5655

    Article  Google Scholar 

  • Smith A, Crawford IA, Gowen RA, Ball AJ, Barber SJ, Church P, Coates AJ, Gao Y, Griffiths AD, Hagermann A, Joy KH, Phipps A, Pike WT, Scott R, Sheridan S, Sweeting M, Talboys D, Tong V, Wells N, Biele J, Chela-Flores J, Dabrowski B, Flannagan J, Grande M, Grygorczuk J, Kargl G, Khavroshkin OB, Klingelhoefer G, Knapmeyer M, Marczewski W, McKenna-Lawlor S, Richter L, Rothery DA, Seweryn K, Ulamec S, Wawrzaszek R, Wieczorek M, Wright IP, Sims M (2008) LunarEX – a proposal to cosmic vision. Exp Astron.doi: 10.1007/s10686–008–9109–6. http://www.ictp.it/~chelaf/Penetrator.pdf

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 470:1075–1077

    Google Scholar 

Download references

Acknowledgment

The senior author (JS) thanks the Israeli and Hungarian Academies of Sciences and Humanities for their kindly support towards and during the conference of Astronomy and Civilization in Budapest (Aug. 2009). Special appreciation is due to Anna-Teresa Tymieniecka—President of The World Phenomenology Institute—for permission to reprint this chapter in the forthcoming volume Origins: Genesis, Evolution and Diversity of Life (2nd Edition) Springer 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Seckbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Seckbach, J., Chela-Flores, J. (2012). Habitable Environments by Extremophiles on Earth, the Solar System, and Elsewhere. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_43

Download citation

Publish with us

Policies and ethics