Skip to main content

What Can Life on Earth Tell Us About Life in the Universe?

  • Chapter
  • First Online:
Genesis - In The Beginning

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

Abstract

We review the most fundamental features common to all terrestrial life. We argue that the ubiquity of these features makes them the best candidates for being features of extraterrestrial life. Other frequently espoused candidates are less secure because they are based on subjective notions of universal fitness, not on features common to all terrestrial life. For example, major transitions in the evolutionary pathway that led to Homo sapiens are sometimes considered to be fundamental transitions in the evolution of all life. However, these “major transitions” are largely arbitrary because a series of different major transitions can be identified along the evolutionary pathway to any extant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amelin Y, Krot A (2007) Pb isotopic age of the Allende chondrules. Meteorit Planet Sci 42:1321–1335

    Article  CAS  Google Scholar 

  • Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167

    Article  PubMed  CAS  Google Scholar 

  • Battistuzzi FU, Hedges SB (2009a) Archaebacteria. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford/New York, pp 101–105

    Google Scholar 

  • Battistuzzi FU, Hedges SB (2009b) Eubacteria. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford/New York, pp 106–115

    Google Scholar 

  • Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672–689

    Article  PubMed  CAS  Google Scholar 

  • Brown JR, Doolittle WF (1995) Root of the universal tree of life base on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci USA 92:2441–2445

    Article  PubMed  CAS  Google Scholar 

  • Catling DC, Bergsman DS (2010) On detecting exoplanet biospheres from atmospheric chemical disequilibrium. Astrobiology science conference 2010 abstract #5533

    Google Scholar 

  • Cech TR (1985) Self-splicing RNA: implications for evolution. In: Bourne GH, Danielli JF, Jeon KW (eds) Int Rev Cytol Acad Press 93:3–22

    Google Scholar 

  • Chen X, Li N, Ellington A (2007) Ribozyme catalysis of metabolism in the RNA world. Chem Biodivers 4:633–655

    Article  PubMed  CAS  Google Scholar 

  • Chopra A, Lineweaver CH, Brocks JJ, Ireland TR (2010) Palaeoecophylostoichiometrics: searching for the elemental composition of the last universal common ancestor. In: Short W,. Cairns I (eds) Australian space science conference series: 9th conference proceedings. NSSA full refereed proceedings CD, National Space Society of Australia Ltd, Sydney

    Google Scholar 

  • Cleland C, Chyba C (2002) Defining life. Orig Life Evol Biosph 32:387–393

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  PubMed  CAS  Google Scholar 

  • Davies PCW, Lineweaver CH (2005) Finding a second sample of life on earth. Astrobiology 5:154–163

    Article  PubMed  CAS  Google Scholar 

  • Davies PCW, Benner SA, Cleland CE, Lineweaver CH, McKay CP, Wolfe-Simon F (2009) Signatures of a shadow biosphere. Astrobiology 9:241–249

    Article  PubMed  Google Scholar 

  • Dawkins R (2004) The ancestor’s tale: a pilgrimage to the dawn of life. Weidenfeld and Nicholson, London

    Google Scholar 

  • De Duve C (1995) Vital dust: the origin and evolution of life on earth. Basic Books, New York

    Google Scholar 

  • De Duve C (2007) Chemistry and selection. Chem Divers 4:574–583

    Google Scholar 

  • Feinberg G, Shapiro R (1980) Life beyond earth: the intelligent earthling’s guide to life in the universe. William Morrow, New York

    Google Scholar 

  • Freeland SJ, Knight RD, Landweber LF, Hurst LD (2000) Early fixation of an optimal genetic code. Mol Biol Evol 17:511–518

    PubMed  CAS  Google Scholar 

  • Gatland KW, Dempster DD (1957) The inhabited universe: an enquiry staged on the frontiers of knowledge. McKay, New York

    Google Scholar 

  • Gaucher EA, Kratzer JT, Randall RN (2010) Deep phylogeny – how a tree can help characterize early life on earth. Cold Spring Harb Perspect Biol 2:a002238

    Article  PubMed  Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319:618

    Article  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge

    Google Scholar 

  • Gould SJ (1989) Implications of an iconography. In: Wonderful life: the burgess shale and the nature of history. Norton & Company, New York

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge

    Google Scholar 

  • Halliday AN (2008) A young moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the earth. Philos Trans R Soc A 366:4163–4181

    Article  CAS  Google Scholar 

  • Hedges SB (2009) Life. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford/New York, pp 89–98

    Google Scholar 

  • Hubbard GS, Naderi FM, Garvin JB (2002) Following the water, the new program for mars exploration. Acta Astron 51:337–350

    Article  Google Scholar 

  • Ida S, Lin DNC (2004) Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. Astrophys J 604:388–413

    Article  Google Scholar 

  • Iwabe N, Kuma K-I, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359

    Article  PubMed  CAS  Google Scholar 

  • Joyce GF (2002) The antiquity of RNA based evolution. Nat Insight 418:214–221

    Article  CAS  Google Scholar 

  • Joyce GF (1994) In: Deamer DW, Fleischacker GR (eds) Origins of life: the central concepts. Jones and Bartlett Publishers, Boston, pp xi–xii

    Google Scholar 

  • Kleidon A (2010) Life, hierarchy, and the thermodynamic machinery of planet earth. Phys Life Rev 7(4):424–460

    Article  PubMed  Google Scholar 

  • Kuchner MJ (2003) Volatile-rich earth-mass planets in the habitable zone. Astrophys J 596: L105–L108

    Article  Google Scholar 

  • Léger A, Selsis F, Sotin C et al (2004) A new family of planets? “Ocean-planets”. Icarus 169:499–504

    Article  Google Scholar 

  • Lineweaver CH (2005) Intelligent life in the universe book review of “Intelligent life in the universe: from common origins to the future of humanity” by Peter Ulmschneider, review published in Astrobiology 5:658–661

    Google Scholar 

  • Lineweaver CH (2006) We have not detected extraterrestrial life, or have we? In: Seckbach J, Walsh M (eds) Life as we know it: cellular origins and life in extreme habitats and astrobiology. Springer Life Sciences, Dordrecht, p 445

    Google Scholar 

  • Lineweaver CH (2009) Paleontological tests: human-like intelligence is not a convergent feature of evolution. In: Seckbach J, Walsh M (eds) From fossils to astrobiology, cellular origins and life in extreme habitats and astrobiology, vol 12. Springer, Dordrecht, pp 353–368

    Google Scholar 

  • Lineweaver CH, Egan C (2008) Life, gravity and the second Law of thermodynamics. Phys Life Rev 5:225–242

    Article  Google Scholar 

  • Lineweaver CH, Grether D (2003) What fraction of sun-like stars have planets? Astrophys J 598:1350–1360

    Article  Google Scholar 

  • Lineweaver CH, Schwartzman (2005) Cosmic thermobiology: thermal constraints on the origin and evolution of life in the universe. In: Seckbach J (ed) Origins: cellular origins and life in extreme habitats and astrobiology, vol 6. Springer, Dordrecht, pp 233–248

    Google Scholar 

  • Lodders K, Palme H, Gail H-P (2009) Abundances of the elements in the solar system. In: JE Trumper (ed) Landolt-Bornstein, new series, astronomy and astrophysics. vol VI/4B, Chapter 4.4, Springer, Berlin, pp 560–630

    Google Scholar 

  • Lovelock JE (1975) Thermodynamics and the recognition of alien biospheres. Proc R Soc Lond B 189:167–181

    Article  CAS  Google Scholar 

  • Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci 358:59–83

    Article  PubMed  CAS  Google Scholar 

  • McKay CP (2004) What is life – and how do we search for it on other worlds? PLoS Biol 2:1260–1263

    Article  CAS  Google Scholar 

  • McShea DW, Brandon RN (2010) Biology’s first law: the tendency for diversity and complexity to increase in evolutionary systems. University of Chicago Press, Chicago

    Google Scholar 

  • Mordasini C, Alibert Y, Benz W, Naef D (2009) Extrasolar planet population synthesis. II. Statistical comparison with observations. Astron Astrophys 501:1161–1184

    Article  CAS  Google Scholar 

  • Morris RM, Rappe MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  PubMed  CAS  Google Scholar 

  • Pace N (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Pace N (2001) The universal nature of biochemistry. Proc Natl Acad Sci USA 98:805–808

    Article  PubMed  CAS  Google Scholar 

  • Pizzarello S (2007) The chemistry that preceded life’s origin: a study guide from meteorites. Chem Biodivers 4:680–693

    Article  PubMed  CAS  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivations in sea water and their relation to the composition of plankton. In: Daniel James RJ (ed) Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 177–192

    Google Scholar 

  • Robles JA, Lineweaver CH, Grether D et al (2008) A comprehensive comparison of the sun to other stars: searching for self-selection effects. Astrophys J 684:691–706

    Article  Google Scholar 

  • Sagan C (1970) “Life” in the encyclopedia britannica. 14th edition

    Google Scholar 

  • Schmitt-Kopplin P, Gabelica Z, Gougeon RD et al (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci USA 107:2763–2768

    Article  PubMed  CAS  Google Scholar 

  • Schneider ED, Sagan D (2005) Into the cool: energy flow, thermodynamics, and life. The University of Chicago Press, Chicago/London

    Google Scholar 

  • Sleep NH, Zanhnle KJ, Kasting JF, Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early earth. Nature 342:139–142

    Article  PubMed  CAS  Google Scholar 

  • Smith JM, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Tlusty T (2010) A colorful origin for the genetic code: information theory, statistical mechanics and the emergence of molecular codes. Phys Life Rev 7:362–376

    Article  PubMed  Google Scholar 

  • Wong JT-F, Chen J, Mat W-K, Ng S-K, Xue H (2007) Polyphasic evidence delineating the root of life and roots of biological domains. Gene 403:39–52

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. Lineweaver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lineweaver, C.H., Chopra, A. (2012). What Can Life on Earth Tell Us About Life in the Universe?. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_40

Download citation

Publish with us

Policies and ethics