Skip to main content

Hypothesized Microenvironments for the Origin of Microbial Life on Earth

  • Chapter
  • First Online:
Genesis - In The Beginning

Abstract

The origin of life is still an enigma (Trevors, 2011; Trevors and Masson, 2011). Moreover, there is no generally accepted definition of life, which makes a delineation of the abiotic and biotic world difficult (Cleland and Chyba, 2002). A suite of characteristics is often used to define life. These include the ability of life to synthesize its own biomacromolecules, to generate and convert energy to various forms of cellular work, to perform informational biosynthetic processes to ensure storage of genetic instructions and reproduction; the ability to insulate the internal milieu and control exchanges with the external environment; and the ability to regulate activities and reproduce or multiply (De Duve, 1991). The transition from a lifeless chemosphere on Earth to the beginning of the living biosphere occurred about 4 billion years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almdal K, Dyre J, Hvidt S, Kramer O (1993) Towards a phenomenological definition of the term “gel”. Polym Gels Netw 1:5–17

    Article  CAS  Google Scholar 

  • Arrhenius G, Bada JL, Gerald FJ, Lazcano A, Miller S, Orgel LE (1999) Origin and ancestor: separate environments. Science, New Series 283:792

    CAS  Google Scholar 

  • Bach W, Paulick H, Garrido CJ (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15 degree N (ODP Leg 209, Site 1274). Geophys Res Lett 33:L13306

    Article  Google Scholar 

  • Bada JL, Lazcano A (2002) Origin of life. Some like it hot, but not the first biomolecules. Science 296:1982–1983

    Article  PubMed  CAS  Google Scholar 

  • Bada JL, Bigham C, Miller SL (1994) Impact melting of frozen oceans on the early earth: implications for the origin of life. Proc Natl Acad Sci USA 91:1248–1250

    Article  PubMed  CAS  Google Scholar 

  • Bebie J, Schoonen MAA (1999) Pyrite and phosphate in anoxia and an origin-of-life hypothesis. Earth Planet Sci Lett 171:1–5

    Article  CAS  Google Scholar 

  • Bej AK, Mojib N (2009) Cold adaptation in Antarctic biodegradative microorganisms. In: Bej AK, Aislabie J, Atlas RM (eds) Polar Microbiology:The ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments. CRC Press (Taylor & Francis Group), Boca Raton, pp 157–177

    Chapter  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold tolerance of alkane-degrading bacteria isolated from soil near Scott Base. Antarct Polar Biol 23:100–105

    Article  Google Scholar 

  • Brochier C, Philippe H (2002) Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417:244

    Article  PubMed  CAS  Google Scholar 

  • Bromberg LE, Ron ES (1998) Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev 31:197–221

    Article  PubMed  CAS  Google Scholar 

  • Cairns-Smith AG (1985) Seven clues to the origin of life: a scientific detective story. Cambridge University Press, Cambridge

    Google Scholar 

  • Chakrabarti AC, Deamer DW (1992) Permeability of lipid bilayers to amino acids and phosphate. Biochim Biophys Acta 1111:171–177

    Article  PubMed  CAS  Google Scholar 

  • Chapelle FH, O’NeillK BPM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Article  PubMed  Google Scholar 

  • Cleland CE, Chyba CF (2002) Defining life. Orig Life Evol Biosph 32:387–393

    Article  PubMed  CAS  Google Scholar 

  • De Duve C (1991) Blueprint for a cell. Neil Patterson Publishers, Burlington

    Google Scholar 

  • De Duve C (2002) Life evolving: molecules mind and meaning. Oxford University Press, New York

    Google Scholar 

  • De Duve C (2005) Singularities: landmarks on the pathways of life. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Deamer DW (1997) The first living systems: a bioenergetic perspective. Microbiol Mol Biol Rev 61:239–261

    PubMed  CAS  Google Scholar 

  • DiGiulio M (2003) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57:721–730

    Article  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129

    Article  PubMed  CAS  Google Scholar 

  • Fyfe WS (1994) The water inventory of the earth: fluids and tectonics. Geol Soc Lond (Special Publications) 78:1–7

    Article  Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Gold T (2001) The deep hot biosphere. Copernicus Books, New York

    Google Scholar 

  • Goltsov AN, Barsukov LI (2002) Synergetics of the membrane self-assembly: a micelle-to-vesicle transition. J Biol Phys 26:27–41

    Article  Google Scholar 

  • Haldane JBS (1929) The origin of life. Ration Annu 3:3–10

    Google Scholar 

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF, Catling D (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41:429–463

    Article  CAS  Google Scholar 

  • Kelley DS, Karson JA, Blackman DK (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature 412:145–149

    Article  PubMed  CAS  Google Scholar 

  • Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 32:271–280

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Park KS, Park S, Park H, Song YH, Kang SH, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222–228

    Article  PubMed  CAS  Google Scholar 

  • Luisi PL, Walde P, Oberholzer T (1999) Lipid vesicles as possible intermediates in the origin of life. Curr Opin Colloids Interface Sci 4:33–39

    Article  CAS  Google Scholar 

  • Martin W, Russell M (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B 358:59–85

    Article  CAS  Google Scholar 

  • Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B 367:1887–1925

    Article  Google Scholar 

  • Massana R, Taylor LT, Murray AE, Wu KY, Jeffrey WH, DeLong FF (1998) Vertical distribution and temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring. Limnol Oceanogr 43:607–617

    Article  CAS  Google Scholar 

  • Matthews CN (2004) The HCN world. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  • Matthews CN, Moser RE (1966) Prebiological proteins synthesis. Proc Natl Acad Sci USA 56:1087–1094

    Article  PubMed  CAS  Google Scholar 

  • McCledon JH (1999) The origin of life. Earth Sci Rev 47:71–93

    Article  Google Scholar 

  • Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117:528

    Article  PubMed  CAS  Google Scholar 

  • Miller SL, Lazcano A (1995) The origin of life – did it occur at high temperatures? J Mol Evol 41:689–692

    Article  PubMed  CAS  Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245

    Article  PubMed  CAS  Google Scholar 

  • Minard RD, Hatcher PG, Gourley RC, Matthews CN (1998) Structural investigations of hydrogen cyanide polymers: new insights using TMAH thermochemolysis/GC-MS. Orig Life Evol Biosph 28:461–473

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa H, Celeaves HJ, Miller S (2002a) The cold origin of life: A. Implications based on the hydrologic stabilities of hydrogen cyanide and formamide. Orig Life Evol Biosph 32:195–208

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa S, Cleaves H, Miller S (2002b) The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218

    Article  PubMed  CAS  Google Scholar 

  • Moazed H, Viraraghavan T (2002) Coalescence/filtration of an oil-in-water emulsion in a granular organo-clay/anthracite mixture bed. Water Air Soil Pollut 138:253–270

    Article  CAS  Google Scholar 

  • Morchio R, Traverso S (1999) The hydrophobic superficial layer: the primordial cradle of life. Biol Forum 92:105–117

    Google Scholar 

  • Morita RY (2000) Is H2 the universal energy source for long-term survival? Microb Ecol 38:307–320

    Article  Google Scholar 

  • Moulton V, Gardner PP, Pointon RF, Creamer LK, Jameson GB, Penny D (2000) RNA folding argues against a hot-start origin of life. J Mol Evol 51:416–421

    PubMed  CAS  Google Scholar 

  • Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish MW, Griffith M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12–2. J Bacteriol 186:5661–5671

    Article  PubMed  CAS  Google Scholar 

  • Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol (NY) 7:253–271

    Article  CAS  Google Scholar 

  • Nicholson WL (2009) Ancient micronauts: interplanetary transport a microbe’s cosmic impacts. Trends Microbiol 17:243–250

    Article  PubMed  CAS  Google Scholar 

  • Nisbet EG, Fowler CMR (1999) Archaean metabolic evolution of microbial mats. Proc R Soc Lond 266:2375–2382

    Article  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Nitschke W, Russell MJ (2009) Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo, Co, S and Se forced life to emerge. J Mol Evol 69:481–496

    Article  PubMed  CAS  Google Scholar 

  • Oro J, Holzer G, Lazcano-Araujo A (1980) The role of HCN and its derivatives in prebiotic evolution. In: Vennesland B, Conn EE, Knowles CJ, Westley J, Wissing F (eds) Cyanide in biology. Academic, New York, pp 517–541

    Google Scholar 

  • Panicker G, Aislabie J, Saul D, Bej AK (2002) Cold tolerance of Pseudomonas sp. 30–3 isolated from oil-contaminated soil. Antarct Polar Biol 25:5–11

    Article  Google Scholar 

  • Panicker G, Aislabie J, Bej AK (2006) Analysis of aggregative behavior of Pseudomonas sp. 30–3 isolated from Antarctic soil. Soil Biol Biochem 38:3152–3157

    Article  CAS  Google Scholar 

  • Panicker G, Mojib N, Nakatsuji T, Aislabie J, Bej AK (2010) Occurrence and distribution of capB in Antarctic microorganisms and study of its structure and regulation in the Antarctic biodegradative Pseudomonas sp. 30/3. Extremophiles 14:171–183

    Article  PubMed  CAS  Google Scholar 

  • Perreault NN, Greer CW, Andersen DT, Tille S, Lacrampe-Couloume G, Lollar BS, Whyte LG (2008) Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic. Appl Environ Microbiol 74:6898–6907

    Article  PubMed  CAS  Google Scholar 

  • Pflüger E (1875) Arch Ges Physiol 10:641 (see Oro et al., 1980)

    Google Scholar 

  • Pollack GH (2001) Cells, gels and the engines of life: a new, unifying approach to cell function. Ebner & Sons, Seattle

    Google Scholar 

  • Price PB (2009) Microbial genesis, life and death in glacial ice. Can J Microbiol 55:1–11

    Article  PubMed  CAS  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial diversity and bioprospecting. American Society for Microbiology, Washington, DC, pp 130–145

    Google Scholar 

  • Raymond JA, Christner BC, Schuster SC (2008) A bacterial ice-binding protein from the Vostok ice core. Extremophiles 12:713–717

    Article  PubMed  CAS  Google Scholar 

  • Ricardo A, Szostak JW (2009) Life on earth. Sci Am 9:54–61

    Article  Google Scholar 

  • Rice CV, Harrison W, Kirkpatrick K, Brown ED (2009) Cryoprotection from bacterial teichoic acid. Proc SPIE 7441:74410M

    Article  Google Scholar 

  • Russell MJ (2007) The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 55:133–179

    Article  PubMed  Google Scholar 

  • Russell MJ, Arndt NT (2005) Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2:97–111

    Article  CAS  Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc (Lond) 154:377–402

    Article  CAS  Google Scholar 

  • Schopf JW (1999) Cradle of life. Princeton University Press, Princeton

    Google Scholar 

  • Seydel T, Wiegart L, Juranyi F, Struth B, Schober H (2008) Unaffected microscopic dynamics of macroscopically arrested water in dilute clay gels. Phys Rev E 78:061403

    Article  Google Scholar 

  • Sleep NH, Meibom A, Fridriksson T (2004) H2-rich fluids from serpentinization: geochemical and biotic implications. Proc Natl Acad Sci USA 101:12818–12823

    Article  PubMed  CAS  Google Scholar 

  • Souzu H (1989) Changes in chemical structure and function in Escherichia coli cell membranes caused by freeze-thawing. I. Change of lipid state in bilayer vesicles and in the and in the original membrane fragments depending on rate of freezing. Biochim Biohys Acta 978:105–111

    Article  CAS  Google Scholar 

  • Tasaki I (1999) Evidence for phase-transition in nerve fibers, cells and synapses. Ferroelectrics 220:305–316

    Article  CAS  Google Scholar 

  • Tessera M (2009) Life began when evolution began. a lipidic vesicle-based scenario. Orig Life Evol Biosph 39:559–564

    Article  CAS  Google Scholar 

  • Trevors JT (2004) Evolution of cell division in bacteria. Theory Biosci 123:3–15

    Article  PubMed  CAS  Google Scholar 

  • Trevors JT (2006) The Big Bang, Superstring Theory and the origin of life on the earth. Theory Biosci 124:403–412

    Article  PubMed  CAS  Google Scholar 

  • Trevors JT (2011) Hypothesized origin of microbial life in a prebiotic gel and the transition to a living biofilm and microbial mats. C R Biol 334:269–272

    Article  PubMed  CAS  Google Scholar 

  • Trevors JT, Masson L (2011) Quantum microbiology. Curr Issues Mol Biol 13:43–50

    PubMed  CAS  Google Scholar 

  • Trevors JT, Pollack GH (2005) Hypothesis: the origin of life in a hydrogel environment. Prog Biophys Mol Biol 89:1–8

    Article  PubMed  CAS  Google Scholar 

  • Venketesh S, Dayananda C (2008) Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotechnol 28:57–82

    Article  PubMed  CAS  Google Scholar 

  • Verdugo P, Deyrup-Olsen I, Martin AW, Luchtel DL (1992) Polymer gel-phase transition: the molecular mechanism of product release in mucin secretion? In: Karalis TK (ed) Mechanics of swelling, vol H64, NATO ASI series. Springer, Berlin

    Google Scholar 

  • Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Heidelberg, pp 287–301

    Chapter  Google Scholar 

  • Vincent WF, Gibson JA, Pienitz R, Villeneuve V, Broady PA, Hamilton PB, Howard-Williams C (2000) Ice shelf microbial ecosystems in the High Arctic and implications for life on snowball earth. Naturwissenschaften 87:137–141

    Article  PubMed  CAS  Google Scholar 

  • Vincent WF, Mueller DR, Bonilla S (2004a) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the High Arctic. Cryobiology 48:103–112

    Article  PubMed  Google Scholar 

  • Vincent WF, Mueller D, Van Hove P, Howard-Williams C (2004b) Glacial periods on early earth and implications for the evolution of life. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Kluwer Academic Publishers, Dordrecht, pp 481–501

    Google Scholar 

  • Vogel G (1999) RNA study suggests cool cradle of life. Science, New Series 283:155–157

    CAS  Google Scholar 

  • Washington J (2000) The possible role of volcanic aquifers in prebiological genesis of organic compound and RNA. Orig Life Evol Biosph 30:53–79

    Article  PubMed  CAS  Google Scholar 

  • Woese C (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277:394–403

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Cech TR (1997) Peptide bond formation by in vitro selected ribozymes. Nature 390:96–100

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Cech TR (1998) Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features. Chem Biol 5:539–553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research by J.T.T. is supported by the NSERC (Canada) Discovery Program; A. Bej’s work was supported by the UAB Faculty Development Award; Tawani Foundation (Col. James Pritzker), Chicago; NASA/NSSTC/VCSI Antarctic expedition (Marty Kress); NCAOR, India (Rasik Ravindra) and AARI/RAE, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack T. Trevors .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Trevors, J.T., Bej, A.K., van Elsas, J.D. (2012). Hypothesized Microenvironments for the Origin of Microbial Life on Earth. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_39

Download citation

Publish with us

Policies and ethics