Skip to main content

Heterotrophic Model Protocells

  • Chapter
  • First Online:
Genesis - In The Beginning

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

  • 2069 Accesses

Abstract

Heterotrophic model protocells are easier to build in the laboratory than autotrophic protocells. Advancements have shown that model heterotrophic systems can grow, divide, copy nucleic acids, and compete for resources. The required component molecules of the system are few and simple, in the sense that only a small number of monomeric species are needed. Polymerization and noncovalent forces under prebiotically plausible conditions result in the assembly of a system that begins to exhibit life-like properties. The data suggest that similar processes may have occurred on prebiotic Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apel CL, Deamer DW (2005) The formation of glycerol monodecanoate by a dehydration condensation reaction: increasing the chemical complexity of amphiphiles on the early earth. Orig Life Evol Biosph 35:323–332

    Article  PubMed  CAS  Google Scholar 

  • Baaske P, Weinert FM, Duhr S, Lemke KH, Russel MJ, Braun D (2007) Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc Natl Acad Sci USA 104:9346–9351

    Article  PubMed  CAS  Google Scholar 

  • Biondi E, Branciamore S, Maurel MC, Gallori E (2007) Montmorillonite protection of an UV-irradiated hairpin ribozyme: evolution of the RNA world in a mineral environment. BMC Evol Biol 7(Suppl 2):S2

    Article  PubMed  Google Scholar 

  • Budin I, Szostak JW (2010) Expanding roles for diverse physical phenomena during the origin of life. Annu Rev Biophys 39:245–263

    Article  PubMed  CAS  Google Scholar 

  • Budin I, Bruckner RJ, Szostak JW (2009) Formation of protocell-like vesicles in a thermal diffusion column. J Am Chem Soc 131:9628–9629

    Article  PubMed  CAS  Google Scholar 

  • Chen IA, Szostak JW (2004a) A kinetic study of the growth of fatty acid vesicles. Biophys J 87:988–998

    Article  PubMed  CAS  Google Scholar 

  • Chen IA, Szostak JW (2004b) Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. Proc Natl Acad Sci USA 101:7965–7970

    Article  PubMed  CAS  Google Scholar 

  • Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476

    Article  PubMed  CAS  Google Scholar 

  • Chen IA, Salehi-Ashtiani K, Szostak JW (2005) RNA catalysis in model protocell vesicles. J Am Chem Soc 127:13213–13219

    Article  PubMed  CAS  Google Scholar 

  • Deamer DW (1997) The first living systems: a bioenergetic perspective. Microbiol Mol Biol Rev 61:239–261

    PubMed  CAS  Google Scholar 

  • Ferris JP, Ertem G, Agarwal VK (1989) The adsorption of nucleotides and polynucleotides on montmorillonite clay. Orig Life Evol Biosph 19:153–164

    Article  PubMed  CAS  Google Scholar 

  • Ferris JP, Hill AR, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61

    Article  PubMed  CAS  Google Scholar 

  • Gebicki JM, Hicks M (1973) Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 243:232–234

    Article  PubMed  CAS  Google Scholar 

  • Gebicki JM, Hicks M (1976) Preparation and properties of vesicles enclosed by fatty acid membranes. Chem Phys Lipids 16:142–146

    Article  PubMed  CAS  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    Article  PubMed  CAS  Google Scholar 

  • Gil R, Silva FJ, Pereto J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68:518–537

    Article  PubMed  CAS  Google Scholar 

  • Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103:425–430

    Article  PubMed  CAS  Google Scholar 

  • Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–622

    Article  PubMed  CAS  Google Scholar 

  • Hanczyc MM, Mansy SS, Szostak JW (2007) Mineral surface directed membrane assembly. Orig Life Evol Biosph 37:67–82

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves WR, Deamer DW (1978) Liposomes from ionic, single-chain amphiphiles. Biochemistry 17:3759–3768

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves WR, Mulvihill SJ, Deamer DW (1977) Synthesis of phospholipids and membranes in prebiotic conditions. Nature 266:78–80

    Article  PubMed  CAS  Google Scholar 

  • Kuo CH, Ochman H (2009) Deletional bias across the three domains of life. Genome Biol Evol 1:145–152

    Article  PubMed  Google Scholar 

  • Lohrmann R (1977) Formation of nucleoside 5′-phosphoramidates under potentially prebiological conditions. J Mol Evol 10:137–154

    Article  PubMed  CAS  Google Scholar 

  • Lohrmann R, Bridson PK, Orgel LE (1980) Efficient metal-ion catalyzed template-directed oligonucleotide synthesis. Science 208:1464–1465

    Article  PubMed  CAS  Google Scholar 

  • Lorsch JR, Szostak JW (1996) Chance and necessity in the selection of nucleic acid catalysts. Acc Chem Res 29:103–110

    Article  PubMed  CAS  Google Scholar 

  • Luisi PL (2003) Autopoiesis: a review and a reappraisal. Naturwissenschaften 90:49–59

    PubMed  CAS  Google Scholar 

  • Mansy SS (2010) Membrane transport in primitive cells. Cold Spring Harb Perspect Biol 2:a002188

    Article  PubMed  Google Scholar 

  • Mansy SS, Szostak JW (2008) Thermostability of model protocell membranes. Proc Natl Acad Sci USA 105:13351–13355

    Article  PubMed  CAS  Google Scholar 

  • Mansy SS, Szostak JW (2009) Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harb Symp Quant Biol 74:47–54

    Article  PubMed  CAS  Google Scholar 

  • Mansy SS, Schrum JP, Krishnamurthy M, Tobe S, Treco DA, Szostak JW (2008) Template-directed synthesis of a genetic polymer in a model protocell. Nature 454:122–125

    Article  PubMed  CAS  Google Scholar 

  • Maurer SE, Deamer DW, Boncella JM, Monnard PA (2009) Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 9:979–987

    Article  PubMed  CAS  Google Scholar 

  • McCollom TM, Ritter G, Simoneit BR (1999) Lipid synthesis under hydrothermal conditiosn by Fischer-Tropsch-type reactions. Orig Life Evol Biosph 29:153–166

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA 104:19392–19397

    Article  PubMed  CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  PubMed  CAS  Google Scholar 

  • Monnard PA, Apel CL, Kanavarioti A, Deamer DW (2002) Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2:139–152

    Article  PubMed  CAS  Google Scholar 

  • Monnard PA, Kanavarioti A, Deamer DW (2003) Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. J Am Chem Soc 125:13734–13740

    Article  PubMed  CAS  Google Scholar 

  • Morowitz HJ (1992) Beginnings of cellular life. Metabolism recapitulates biogenesis. Yale University Press, New Haven

    Google Scholar 

  • Oparin AI (2003) The origin of life, 2nd edn. Dover Publications, Inc, Mineola

    Google Scholar 

  • Oro J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191:1193–1194

    Article  PubMed  CAS  Google Scholar 

  • Pizzarello S, Shock E (2010) The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harb Perspect Biol 2:a002105

    Article  PubMed  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  PubMed  CAS  Google Scholar 

  • Rajamani S, Ichida JK, Antal T, Treco DA, Leu K, Nowak MA, Szostak JW, Chen IA (2010) Effect of stalling after mismatches on the error catastrophe in nonenzymatic nucleic acid replication. J Am Chem Soc 132:5880–5885

    Article  PubMed  CAS  Google Scholar 

  • Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196

    Article  PubMed  CAS  Google Scholar 

  • Schrum JP, Ricardo A, Krishnamurthy M, Blain JC, Szostak JW (2009) Efficient and rapid template-directed nucleic acid copying using 2′-amino-2′,3′-dideoxyribonucleoside-5′-phosphorimidazolide monomers. J Am Chem Soc 131:14560–14570

    Article  PubMed  CAS  Google Scholar 

  • Shew RL, Deamer DW (1985) A novel method for encapsulation of macromolecules in liposomes. Biochim Biophys Acta 816:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sleeper HL, Orgel LE (1979) The catalysis of nucleotide polymerization by compounds of divalent lead. J Mol Evol 12:357–364

    Article  PubMed  CAS  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Kageyama Y, Kurihara K, Takakura K, Murata S, Sugawara T (2010) Autocatalytic membrane-amplification on a pre-existing vesicular surface. Chem Commun 46:8791–8793

    Article  CAS  Google Scholar 

  • Walde P (2006) Surfactant assemblies and their varioius possible roles for the origin(s) of life. Orig Life Evol Biosph 36:109–150

    Article  PubMed  CAS  Google Scholar 

  • Woese C (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    Article  PubMed  CAS  Google Scholar 

  • Zepik HH, Blochliger E, Luisi PL (2001) A chemical model of homeostasis. Angew Chem Int Ed Engl 40:199–202

    Article  PubMed  CAS  Google Scholar 

  • Zhu TF, Szostak JW (2009) Coupled growth and division of model protocell membranes. J Am Chem Soc 131:5705–5713

    Article  PubMed  CAS  Google Scholar 

  • Zielinski WS, Orgel LE (1985) Oligomerization of activated derivatives of 3′-amino-3′-deoxyguanosine on poly(C) and poly(dC) templates. Nucleic Acids Res 13:2469–2484

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Del Bianco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Del Bianco, C., Mansy, S.S. (2012). Heterotrophic Model Protocells. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_35

Download citation

Publish with us

Policies and ethics