Skip to main content

Energy-Driven Evolution of Prebiotic Chiral Order (Lessons from Dynamic Systems Modeling)

  • Chapter
  • First Online:
Genesis - In The Beginning

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

Abstract

The evolution of biochirality was very long and too complex of a problem to be solved by experimental chemistry alone. We developed an explicit computer model that can be used to produce simulations of prebiotic chiral evolution as a platform for constructing more complex models and also a means to obtain insight in the origin of prebiotic order. This model monitors changes in chiral order in systems that are coupled through feedbacks with an external energy flow. To illustrate the functioning of the model, we analyzed changes in information capacity and used the energy equivalent of a unit of chiral order (E bit) and the half-life of chiral intermediates to determine the external energy flux needed to produce and maintain chiral disequilibrium (E ee). Comparisons of E ee with three energy sources that were common to the environment of protocells (solar light, chemiosmosis, and diffusion combined with redox chemistry) suggest that before complex chiral catalysts have originated, energy was not a limiting factor of chiral evolution. During this phase in the origin of life, the evolution of chiral order was rate limited, and its pace was lower or equal to the rate of abiotic racemization. This limitation, combined with the postulate that biomolecular systems cannot function without large enantiomeric excess, is used to hypothesize that the catalysis of interconversion of enantiomers is a prerequisite of the origin of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnaut LR (1997) Chirality in multi-dimensional space with application to electromagnetic characterisation of multi-dimensional chiral and semi-chiral media. J Electromagn Waves Appl 11:1459–1482

    Article  Google Scholar 

  • Bada JL (1985) Racemization of amino acids. In: Barrett GC (ed) Chemistry and biochemistry of the amino acids. Chapman and Hall, London, pp 399–414

    Chapter  Google Scholar 

  • Bada JL (1991) Amino-acid cosmogeochemistry. Philos Trans R Soc Lond B Biol Sci 333:349–358

    Article  CAS  Google Scholar 

  • Bada JL, McDonald GD (1995) Amino acid racemization on Mars: implications for the preservation of biomolecules from an extinct Martian biota. Icarus 114:139–143

    Article  PubMed  CAS  Google Scholar 

  • Bada JL, Miller SL (1987) Racemization and the origin of optically active organic compounds in living organisms. Biosystems 20:21–26

    Article  CAS  Google Scholar 

  • Barabas B, Caglioti L, Micskei K, Palyi G (2009) Data-based stochastic approach to absolute asymmetric synthesis by autocatalysis. Bull Chem Soc Jpn 82:1372–1376

    Article  CAS  Google Scholar 

  • Bennett CH (1982) The thermodynamics of computation – a review. Int J Theor Phys 21:905–940

    Article  CAS  Google Scholar 

  • Bennett CH (2003) Notes on Landauer’s principle, reversible computation and Maxwell’s demon. Stud Hist Philos Mod Phys 34:501–510

    Article  Google Scholar 

  • Blackmond DG, Matar OK (2008) Re-examination of reversibility in reaction models for the spontaneous emergence of homochirality. J Phys Chem B 112:5098–5104

    Article  PubMed  CAS  Google Scholar 

  • Boltzmann L (1866) Ãœber die Mechanische Bedeutung des Zweiten Hauptsatzes der Wärmetheorie. Wiener Berichte 53:195–220

    Google Scholar 

  • Buhse T, Lavabre D, Micheau JC, Thiemann W (1993) Chiral-symmetry breaking – experimental results and computer-analysis of a liquid-phase autoxidation. Chirality 5:341–345

    Article  CAS  Google Scholar 

  • Caglioti L, Hajdu C, Holczknecht O, Zekany L, Zucchi C, Micskei K, Palyi G (2006) The concept of racemates and the Soai reaction. Viva Origino 34:62–80

    CAS  Google Scholar 

  • Comley JW, Dowe DL (2005) Minimum message length, MDL and generalised bayesian networks with asymmetric languages. In: Grünwald P, Myung IJ, Pitt MA (eds) Advances in minimum description length: theory and applications. MIT Press, Cambridge

    Google Scholar 

  • Cronin JR, Pizzarello S (1983) Amino acids in meteorites. Adv Space Res 3:5–18

    Article  PubMed  CAS  Google Scholar 

  • Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955

    Article  PubMed  CAS  Google Scholar 

  • Eliel EL, Wilen SH, Mander LN (eds) (1994) Stereochemistry of organic compounds. Wiley, New York, pp 153–295

    Google Scholar 

  • Galimov EM (2006) Phenomenon of life: between equilibrium and non-linearity. Origin and principles of evolution. Geochem Int 44:1–95

    Article  Google Scholar 

  • Gibbs W (1875–1876; 1877–1878) On the equilibrium of heterogeneous substances. Transactions of the Connecticut Academy III. pp 108–248, Oct. 1875–May 1876, and pp 343–524, May 1877–July 1878

    Google Scholar 

  • Gilat G (1999) On the biological advantage of chirality. arXiv:physics/9911041v1

    Google Scholar 

  • Gilat G (2002) Physical chirality, it feeds on negative entropy. In: Pályi G, Zucchi C, Caglioti L (eds) Fundamentals of life. Elsevier, Paris, pp 369–377

    Google Scholar 

  • Gonzalez JA, Calbo J (2002) Modeled and measured ratio of PAR to global radiation under cloudless skies. Agric Forest Meteorol 110:319–325

    Article  Google Scholar 

  • Gough P (2008) Information equation of state. Entropy 10:150–159

    Article  Google Scholar 

  • Grant RH, Slusser JR (2004) Estimation of photosynthetic photon flux density from 368-nm spectral irradiance. J Atmos Ocean Technol 21:481–487

    Article  Google Scholar 

  • Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693

    Article  CAS  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  • Joshi P, Wilkinson AR, Koike T, Fossan DB, Finnigan S, Paul ES, Raddon PM, Rainovski G, Starosta K, Simons AJ, Vaman C, Wadsworth R (2005a) First evidence for chirality in Tc isotopes: spectroscopy of 100Tc. Eur Phys J A 24:23–29

    Article  CAS  Google Scholar 

  • Joshi P, Finnigan S, Fossan DB, Koike T, Paul ES, Rainovski G, Starosta K, Vaman C, Wadsworth R (2005b) Evidence for a new region of chirality around A 104. J Phys G: Nucl Part Phys 31:S1895–S1898

    Article  CAS  Google Scholar 

  • Kauffman SA (ed) (1993) The origins of order. Oxford University Press, New York

    Google Scholar 

  • Ladyman J, Presnell S, Short AJ, Groisman B (2007) The connection between logical and thermodynamic irreversibility. Stud Hist Philos Mod Phys 38:58–79

    Article  Google Scholar 

  • Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5:183–191

    Article  Google Scholar 

  • Lee K, Shin S, Ka J (2004) Tunneling dynamics of amino-acid: model for chiral evolution? J Mol Struct THEOCHEM 679:59–63

    Article  CAS  Google Scholar 

  • Lindgren K (1988) Microscopic and macroscopic entropy. Phys Rev A 38:4794–4798

    Article  PubMed  Google Scholar 

  • Maroney OJE (2005) The (absence of a) relationship between thermodynamic and logical reversibility. Stud Hist Philos Mod Phys 36:355–374

    Article  Google Scholar 

  • Micskei K, Pota G, Caglioti L, Palyi G (2006a) Empirical description of chiral autocatalysis. J Phys Chem A 110:5982–5984

    Article  PubMed  CAS  Google Scholar 

  • Micskei K, Maioli M, Zucchi C, Caglioti L, Palyi G (2006b) Generalization possibilities of autocatalytic absolute enantioselective synthesis. Tetrahedron Asym 17:2960–2962

    Article  CAS  Google Scholar 

  • Mislow K, Bickart P (1977) An epistemological note on chirality. Isr J Chem 15:1–6

    CAS  Google Scholar 

  • Nicolis G, Prigogine I (eds) (1977) Self organization in nonequilibrium systems. Wiley, New York

    Google Scholar 

  • Norton JD (2005) Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Stud Hist Philos Mod Phys 36:375–411

    Article  Google Scholar 

  • Osipov MA, Stelzer J (2003) Orientational ordering and chiral symmetry breaking in organic monolayers composed of disklike mesogenic molecules: molecular theory and computer simulations. Phys Rev E Stat Nonlin Soft Matter Phys 67(6 Pt 1):061707

    Google Scholar 

  • Palyi G, Micskei K, Zekany L, Zucchi C, Caglioti L (2005) Racemates and the Soai reaction. Magy Kem Lapja 60:17–24

    CAS  Google Scholar 

  • Pearson K (1898) Chance or vitalism. Nature 58:495–496

    Article  Google Scholar 

  • Popa R, Cimpoiasu VM, Scorei RI (2010) Consequences of expanding chirality to include spin isomery (The dilemma of broadening chirality into handedness). Phys AUC 20:64–72

    Google Scholar 

  • Reza FM (ed) (1994) An introduction to information theory. Dover Publications Inc., New York

    Google Scholar 

  • Schroeder RA (ed) (1974) Kinetics, mechanism and geochemical applications of amino acid racemization of various fossils. Ph.D. thesis, University of California, San Diego

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–424):623–659

    Google Scholar 

  • Shinitzky M, Shvalb A, Elitzur AC, Mastai Y (2007) Entrapped energy in chiral solutions: quantification and information capacity. J Phys Chem 111:11004–11008

    Article  CAS  Google Scholar 

  • Shvalb A, Mastai Y, Shinitzky M (2010) Chiral configuration of the hydration layers of d- and l-alanine in water implied from dilution calorimetry. Chirality 22:587–592

    PubMed  CAS  Google Scholar 

  • Soai K (2002) Asymmetric autocatalysis and the origin of chiral homogeneity of biologically relevant molecules. In: Pályi G, Zucchi C, Caglioti L (eds) Fundamentals of life. Elsevier, Oxford, pp 426–435

    Google Scholar 

  • Soai K (2004) Asymmetric autocatalysis, absolute asymmetric synthesis and origin of homochirality of biomolecules. In: Pályi G, Zucchi C, Caglioti L (eds) Progress in biological chirality. Elsevier, Oxford, pp 355–364

    Chapter  Google Scholar 

  • Soai K, Shibata T, Marioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767–768

    Article  CAS  Google Scholar 

  • Soai K, Sato I, Shibata T (2004) Asymmetric autocatalysis and the origin of homochirality of biomolecules. In: Malhotra SV (ed) Methodologies in asymmetric catalysis, vol 880, ACS symposium series. American Chemical Society, Washington, DC, pp 85–102

    Chapter  Google Scholar 

  • Stella TM (2009) http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx (last accessed date Jan 2 2012)

  • Toyabe S, Sagawa T, Ueda M, Muneyuki E, Sano M (2010) Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat Phys 6:988–992

    Article  CAS  Google Scholar 

  • Wolf C (ed) (2008) Dynamic stereochemistry of chiral compounds: principles and applications. RSF Publishing, Cambridge

    Google Scholar 

Download references

Acknowledgment

The authors contributed equally to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Popa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Popa, R., Cimpoiasu, V.M. (2012). Energy-Driven Evolution of Prebiotic Chiral Order (Lessons from Dynamic Systems Modeling). In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_28

Download citation

Publish with us

Policies and ethics