Skip to main content

Chemical Models for the Origin of Biological Homochirality

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

Abstract

Chirality is the property of a molecule to be nonsuperimposable with its mirror image. In biology, basically all chiral molecules exist in only one mirror-image form, or enantiomer, a phenomenon called biological homochirality. For example, chiral amino acids occur nearly exclusively in the l-form and carbohydrates in the d-form. In contrast, chiral molecules on the early Earth should have been racemic, i.e., consisting of equal amounts of both enantiomers, before life came into existence. The emergence of biological homochirality is therefore directly linked with the origin of life but remains an intriguing and unanswered puzzle for scientists. To chemists, it poses a challenge to create model systems for the emergence of homochirality from a racemic state. This chapter gives an overview of such chemical models as well as other experiments and observations that might explain how biological homochirality was achieved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amedjkouh M, Brandberg M (2008) Asymmetric autocatalytic Mannich reaction in the presence of water and its implication in prebiotic chemistry. Chem Commun 44:3043–3045

    Google Scholar 

  • Ávalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC (2010) Chirality and life. Tetrahedron Asymmetry 21:1030–1040

    Article  Google Scholar 

  • Bailey J, Chrysostomou A, Hough JH, Gledhill TM, McCall A, Clark S, Ménard F, Tamura M (1998) Circular polarization in star-formation regions: implications for biomolecular homochirality. Science 281:672–674

    Article  CAS  Google Scholar 

  • Barron LD (2008) Chirality and life. Space Sci Rev 135:187–201

    Article  CAS  Google Scholar 

  • Blackmond DG (2004) Asymmetric autocatalysis and its implications for the origin of homochirality. Proc Natl Acad Sci USA 101:5732–5736

    Article  PubMed  CAS  Google Scholar 

  • Blackmond DG (2007) “Chiral amnesia” as a driving force for solid-phase homochirality. Chem Eur J 13:3290–3295

    Article  PubMed  CAS  Google Scholar 

  • Blackmond DG, Klussmann M (2007) Spoilt for choice: assessing phase behavior models for the evolution of homochirality. Chem Commun 43:3990–3996

    Google Scholar 

  • Blackmond DG, McMillan CR, Ramdeehul S, Schorm A, Brown JM (2001) Origins of asymmetric amplification in autocatalytic alkylzinc additions. J Am Chem Soc 123:10103–10104

    Article  PubMed  CAS  Google Scholar 

  • Blair NE, Bonner WA (1981) A model for the enantiomeric enrichment of polypeptides on the primitive Earth. Orig Life Evol Biosph 11:331–335

    Article  CAS  Google Scholar 

  • Bonner WA (1991) The origin and amplification of biomolecular chirality. Orig Life Evol Biosph 21:59–111

    Article  PubMed  CAS  Google Scholar 

  • Bonner WA, Kavasmaneck PR, Martin FS, Flores JJ (1974) Asymmetric adsorption of alanine by quartz. Science 186:143–144

    Article  PubMed  CAS  Google Scholar 

  • Brack A (2007) From interstellar amino acids to prebiotic catalytic peptides: a review. Chem Biodivers 4:665–679

    Article  PubMed  CAS  Google Scholar 

  • Breslow R (2011) A likely possible origin of homochirality in amino acids and sugars on prebiotic earth. Tetrahedron Lett 52:2028–2032

    Article  CAS  Google Scholar 

  • Budin I, Szostak JW (2010) Expanding roles for diverse physical phenomena during the origin of life. Annu Rev Biophys 39:245–263

    Article  PubMed  CAS  Google Scholar 

  • Cintas P (2002) Chirality of living systems: a helping hand from crystals and oligopeptides. Angew Chem Int Ed 41:1139–1145

    Article  CAS  Google Scholar 

  • Córdova A, Zou W, Dziedzic P, Ibrahem I, Reyes E, Xu Y (2006) Direct asymmetric intermolecular aldol reactions catalyzed by amino acids and small peptides. Chem Eur J 12:5383–5397

    Article  PubMed  Google Scholar 

  • Crossley R (1992) The relevance of chirality to the study of biological activity. Tetrahedron 48:8155–8178

    Article  CAS  Google Scholar 

  • Fletcher SP, Jagt RBC, Feringa BL (2007) An astrophysically-relevant mechanism for amino acid enantiomer enrichment. Chem Commun 43:2578–2580

    Google Scholar 

  • Flores JJ, Bonner WA, Massey GA (1977) Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. J Am Chem Soc 99:3622–3625

    Article  PubMed  CAS  Google Scholar 

  • Frank FC (1953) On spontaneous asymmetric synthesis. Biochim Biophys Acta 11:459–463

    Article  PubMed  CAS  Google Scholar 

  • Fuß W (2009) Does life originate from a single molecule? Chirality 21:299–304

    Article  PubMed  Google Scholar 

  • Green M, Jain V (2010) Homochirality in life: two equal runners, one tripped. Orig Life Evol Biosph 40:111–118

    Article  PubMed  Google Scholar 

  • Green MM, Park J-W, Sato T, Teramoto A, Lifson S, Selinger RLB, Selinger JV (1999) The macromolecular route to chiral amplification. Angew Chem Int Ed 38:3138–3154

    Article  Google Scholar 

  • Griesbeck AG, Meierhenrich UJ (2002) Asymmetric photochemistry and photochirogenesis. Angew Chem Int Ed 41:3147–3154

    Article  Google Scholar 

  • Hazen RM, Filley TR, Goodfriend GA (2001) Selective adsorption of L- and D-amino acids on calcite: implications for biochemical homochirality. Proc Natl Acad Sci USA 98:5487–5490

    Article  PubMed  CAS  Google Scholar 

  • Hitz TH, Luisi PL (2004) Spontaneous onset of homochirality in oligopeptide chains generated in the polymerization of N-carboxyanhydride amino acids in water. Orig Life Evol Biosph 34:93–110

    Article  PubMed  CAS  Google Scholar 

  • Jacques J, Collet A, Wilen SH (1981) Enantiomers, racemates and resolution. Wiley, New York

    Google Scholar 

  • Kawasaki T, Matsumura Y, Tsutsumi T, Suzuki K, Ito M, Soai K (2009) Asymmetric autocatalysis triggered by carbon isotope (13C/12C) chirality. Science 324:492–495

    Article  PubMed  CAS  Google Scholar 

  • Klussmann M, Iwamura H, Mathew SP, Wells DH Jr, Pandya U, Armstrong A, Blackmond DG (2006a) Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 441:621–623

    Article  PubMed  CAS  Google Scholar 

  • Klussmann M, White AJP, Armstrong A, Blackmond DG (2006b) Rationalisation and prediction of solution enantiomeric excess in ternary phase systems. Angew Chem Int Ed 45:7985–7989

    Article  Google Scholar 

  • Kondepudi DK, Kaufman RJ, Singh N (1990) Chiral symmetry breaking in sodium chlorate crystallization. Science 250:975–976

    Article  PubMed  CAS  Google Scholar 

  • Kricheldorf HR (2006) Polypeptides and 100 years of chemistry of a-amino acid N-carboxyanhydrides. Angew Chem Int Ed 45:5752–5784

    Article  CAS  Google Scholar 

  • Lahav M, Weissbuch I, Shavit E, Reiner C, Nicholson GJ, Schurig V (2006) Parity violating energetic difference and enantiomorphous crystals-caveats; reinvestigation of tyrosine crystallization. Orig Life Evol Biosph 36:151–170

    Article  PubMed  CAS  Google Scholar 

  • Leitereg TJ, Guadagni DG, Harris J, Mon TR, Teranishi R (1971) Evidence for the difference between the odors of the optical isomers (+)- and (-)-carvone. Nature 230:455–456

    Article  PubMed  CAS  Google Scholar 

  • Lente G (2006) Stochastic analysis of the parity-violating energy differences between enantiomers and its implications for the origin of biological chirality. J Phys Chem A 110:12711–12713

    Article  PubMed  CAS  Google Scholar 

  • Luisi PL (2006) The emergence of life: from chemical origins to synthetic biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mauksch M, Tsogoeva SB, Martynova IM, Wei S (2007) Evidence of asymmetric autocatalysis in organocatalytic reactions. Angew Chem Int Ed 46:393–396

    Article  CAS  Google Scholar 

  • Meinert C, Filippi JJ, Nahon L, Hoffmann SV, d’Hendecourt L, de Marcellus P, Bredehöft JH, Thiemann WHP, Meierhenrich UJ (2010) Photochirogenesis: photochemical models on the origin of biomolecular homochirality. Symmetry 2:1055–1080

    Article  CAS  Google Scholar 

  • Morowitz HJ (1969) A mechanism for the amplification of fluctuations in racemic mixtures. J Theor Biol 25:491–494

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Yang JW, Hoffmann S, List B (2007) Asymmetric enamine catalysis. Chem Rev 107:5471–5569

    Article  PubMed  CAS  Google Scholar 

  • Noorduin WL, Izumi T, Millemaggi A, Leeman M, Meekes H, Enckevort WJPV, Kellogg RM, Kaptein B, Vlieg E, Blackmond DG (2008) Emergence of a single solid chiral state from a nearly racemic amino acid derivative. J Am Chem Soc 130:1158–1159

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  PubMed  CAS  Google Scholar 

  • Pasek M, Lauretta D (2008) Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth. Orig Life Evol Biosph 38:5–21

    Article  PubMed  CAS  Google Scholar 

  • Patzke V, Kiedrowski GV (2007) Self replicating systems. ARKIVOC 293–310

    Google Scholar 

  • Perry RH, Wu C, Nefliu M, Cooks RG (2007) Serine sublimes with spontaneous chiral amplification. Chem Commun 43:1071–1073

    Google Scholar 

  • Pizzarello S, Cronin JR (2000) Non-racemic amino acids in the Murray and Murchison meteorites. Geochim Cosmochim Acta 64:329–338

    Article  PubMed  CAS  Google Scholar 

  • Pizzarello S, Weber AL (2004) Prebiotic amino acids as asymmetric catalysts. Science 303:1151

    Article  PubMed  CAS  Google Scholar 

  • Pizzarello S, Zolensky M, Turk KA (2003) Nonracemic isovaline in the Murchison meteorite: chiral distribution and mineral association. Geochim Cosmochim Acta 67:1589–1595

    Article  CAS  Google Scholar 

  • Pizzarello S, Huang Y, Fuller M (2004) The carbon isotopic distribution of Murchison amino acids. Geochim Cosmochim Acta 68:4963–4969

    Article  CAS  Google Scholar 

  • Podlech J (2001) Origin of organic molecules and biomolecular homochirality. Cell Mol Life Sci 58:44–60

    Article  PubMed  CAS  Google Scholar 

  • Robertson A, Sinclair AJ, Philp D (2000) Minimal self-replicating systems. Chem Soc Rev 29:141–152

    Article  CAS  Google Scholar 

  • Rubinstein I, Eliash R, Bolbach G, Weissbuch I, Lahav M (2007) Racemic beta sheets in biochirogenesis. Angew Chem Int Ed 46:3710–3713

    Article  CAS  Google Scholar 

  • Saghatelian A, Yokobayashi Y, Soltani K, Ghadiri MR (2001) A chiroselective peptide replicator. Nature 409:797–801

    Article  PubMed  CAS  Google Scholar 

  • Sato I, Omiya D, Saito T, Soai K (2000) Highly enantioselective synthesis induced by chiral primary alcohols due to deuterium substitution. J Am Chem Soc 122:11739–11740

    Article  CAS  Google Scholar 

  • Sato I, Yamashima R, Kadowaki K, Yamamoto J, Shibata T, Soai K (2001) Asymmetric induction by helical hydrocarbons: [6]- and [5]helicenes. Angew Chem Int Ed 40:1096–1098

    Article  CAS  Google Scholar 

  • Satyanarayana T, Abraham S, Kagan HB (2009) Nonlinear effects in asymmetric catalysis. Angew Chem Int Ed 48:456–494

    Article  CAS  Google Scholar 

  • Siegel JS (1998) Homochiral imperative of molecular evolution. Chirality 10:24–27

    CAS  Google Scholar 

  • Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767–768

    Article  CAS  Google Scholar 

  • Soai K, Osanai S, Kadowaki K, Yonekubo S, Shibata T, Sato I (1999) d- and l-quartz-promoted highly enantioselective synthesis of a chiral organic compound. J Am Chem Soc 121:11235–11236

    Article  CAS  Google Scholar 

  • Soai K, Shibata T, Sato I (2004) Discovery and development of asymmetric autocatalysis. Bull Chem Soc Jpn 77:1063–1073

    Article  CAS  Google Scholar 

  • Stoeffler C, Darquie B, Shelkovnikov A, Daussy C, Amy-Klein A, Chardonnet C, Guy L, Crassous J, Huet TR, Soulard P, Asselin P (2011) High resolution spectroscopy of methyltrioxorhenium: towards the observation of parity violation in chiral molecules. Phys Chem Chem Phys 13:854–863

    Article  PubMed  CAS  Google Scholar 

  • Strasdeit H (2005) New studies on the Murchison meteorite shed light on the pre-RNA world. Chembiochem 6:801–803

    Article  PubMed  CAS  Google Scholar 

  • Triggle DJ (1997) Stereoselectivity of drug action. Drug Discov Today 2:138–147

    Article  CAS  Google Scholar 

  • Viedma C (2005) Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys Rev Lett 94:065504

    Article  PubMed  Google Scholar 

  • Viedma C, Ortiz JE, de Torres T, Izumi T, Blackmond DG (2008) Evolution of solid phase homochirality for a proteinogenic amino acid. J Am Chem Soc 130:15274–15275

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhang Y, Tan H, Wang Y, Han P, Wang DZ (2010) Enantioselective organocatalytic Mannich reactions with autocatalysts and their mimics. J Org Chem 75:2403–2406

    Article  PubMed  CAS  Google Scholar 

  • Weber AL, Pizzarello S (2006) The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution. Proc Natl Acad Sci USA 103:12713–12717

    Article  PubMed  CAS  Google Scholar 

  • Weissbuch I, Leiserowitz L, Lahav M (2005) Stochastic “mirror symmetry breaking” via self-assembly, reactivity and amplification of chirality: relevance to abiotic conditions. Top Curr Chem 259:123–165

    Article  CAS  Google Scholar 

  • Welch CJ (2001) Formation of highly enantioenriched microenvironments by stochastic sorting of conglomerate crystals: a plausible mechanism for generation of enantioenrichment on the prebiotic earth. Chirality 13:425–427

    Article  PubMed  CAS  Google Scholar 

  • Wesendrup R, Laerdahl JK, Compton RN, Schwerdtfeger P (2003) Biomolecular homochirality and electroweak interactions. I. The Yamagata hypothesis. J Phys Chem A 107:6668–6673

    Article  CAS  Google Scholar 

  • Wu CS, Ambler E, Hayward RW, Hoppes DD, Hudson RP (1957) Experimental test of parity con­servation in beta decay. Phys Rev 105:1413–1415

    Article  CAS  Google Scholar 

  • Yamagata Y (1966) A hypothesis for the asymmetric appearance of biomolecules on earth. J Theor Biol 11:495–498

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Klussmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Klussmann, M. (2012). Chemical Models for the Origin of Biological Homochirality. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_26

Download citation

Publish with us

Policies and ethics