Skip to main content

STAT Signaling in Cancer Prevention

  • Chapter
  • First Online:
Nutrition, Diet and Cancer

Abstract

Members of the signal transducer and activator of transcription (STAT) family of transcription factors are potential targets for the treatment and prevention of cancers. STAT proteins can be phosphorylated and activated by diverse upstream kinases including cytokine receptors and tyrosine kinases. STATs have been associated with inflammation, cellular transformation, survival, proliferation, invasion, angiogenesis, and metastasis of cancer. Various types of carcinogens, growth factors, oncogenes, radiation, viruses, and inflammatory cytokines have been found to activate STATs. Most STATs are constitutively active in cancer cells but not in normal cells. Phosphorylation of STATs causes dimerization, nuclear translocation, DNA binding, and gene transcription. STATs regulate the expression of genes that mediate cell survival, proliferation, invasion, and angiogenesis. STATs activation has also been associated with both radioresistance and chemoresistance. Furthermore, STATs have been shown to interact, directly or indirectly, with other transcription factors such as hypoxia-inducible factor-1, nuclear factor-kappa B, and peroxisome proliferator activated receptor-gamma. Several small molecule inhibitors, peptides and natural products are being developed for the prevention and treatment of cancer. Some chemopreventive agents have been shown to inhibit the IL6R-JAK/STAT pathway that is crucial for cell proliferation, survival, and inflammation. This suggests that chemopreventive agents might be candidates for cancer prevention because they reduce inflammation and prevent tumor growth, metastasis and angiogenesis. This review discusses the roles of various STATs in cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalinkeel R, Hu Z, Nair BB, Sykes DE, Reynolds JL, Mahajan SD, Schwartz SA (2010) Genomic analysis highlights the role of the JAK-STAT signaling in the anti-proliferative effects of dietary flavonoid-‘Ashwagandha’ in prostate cancer cells. Evid Based Complement Altern Med 7:177–187

    Article  Google Scholar 

  • Agarwal C, Tyagi A, Kaur M, Agarwal R (2007) Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis 28:1463–1470

    Article  CAS  PubMed  Google Scholar 

  • Ahn H-Y, Hadizadeh KR, Seul C, Yun Y-P, Vetter H, Sachinidis A (1999) Epigallocathechin-3 gallate selectively inhibits the PDGF-BB-induced intracellular signaling transduction pathway in vascular smooth muscle cells and inhibits transformation of sis-transfected NIH 3T3 fibroblasts and human glioblastoma cells (A172). Mol Biol Cell 10:1093–1104

    CAS  PubMed  Google Scholar 

  • Akaishi H, Takeda K, Kaisho T, Shineha R, Satomi S, Takeda J, Akira S (1998) Defective IL-2-mediated IL-2 receptor alpha chain expression in Stat3-deficient T lymphocytes. Int Immunol 10:1747–1751

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Nishio Y, Inoue M, Wang X-J, We S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63–71

    Article  CAS  PubMed  Google Scholar 

  • Banninger G, Reich NC (2004) STAT2 nuclear trafficking. J Biol Chem 279:39199–39206

    Article  CAS  PubMed  Google Scholar 

  • Battle TE, Lynch RA, Frank DA (2006) Signal transducer and activator of transcription 1 activation in endothelial cells Is a negative regulator of angiogenesis. Cancer Res 66:3649–3657

    Article  CAS  PubMed  Google Scholar 

  • Bettelli E, Sullivan B, Szabo SJ, Sobel RA, Glimcher LH, Kuchroo VK (2004) Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med 200:79–87

    Article  CAS  PubMed  Google Scholar 

  • Blasius R, Reuter S, Henry E, Dicato M, Diederich M (2006) Curcumin regulates signal transducer and activator of transcription (STAT) expression in K562 cells. Biochem Pharmacol 72:1547–1554

    Article  CAS  PubMed  Google Scholar 

  • Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  CAS  PubMed  Google Scholar 

  • Bluyssen HAR, Levy DE (1997) Stat2 is a transcriptional activator that requires sequence-specific contacts provided by Stat1 and p48 for stable interaction with DNA. J Biol Chem 272:4600–4605

    Article  CAS  PubMed  Google Scholar 

  • Boothby M, Gravallese E, Liou HC, Glimcher LH (1988) A DNA binding protein regulated by IL-4 and by differentiation in B cells. Science 242:1559–1562

    Article  CAS  PubMed  Google Scholar 

  • Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell JE (1996) Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc Natl Acad Sci USA 93:7673–7678

    Article  CAS  PubMed  Google Scholar 

  • Bromberg J, Fan Z, Brown C, Mendelsohn J, Darnell J Jr (1998) Epidermal growth factor-induced growth inhibition requires Stat1 activation. Cell Growth Differ 9:505–512

    CAS  PubMed  Google Scholar 

  • Campbell CL, Jiang Z, Savarese DMF, Savarese TM (2001) Increased expression of the interleukin-11 receptor and evidence of STAT3 activation in prostate carcinoma. Am J Pathol 158:25–32

    Article  CAS  PubMed  Google Scholar 

  • Chai S, Nichols G, Rothman P (1997) Constitutive activation of JAKs and STATs in BCR-Abl-expressing cell lines and peripheral blood cells derived from leukemic patients. J Immunol 159:4720–4728

    CAS  PubMed  Google Scholar 

  • Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, Akira S, Clarke AR, Watson CJ (1999) Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 13:2604–2616

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi P, Reddy MR, Reddy EP (1998) Src kinases and not JAKs activate STATs during IL-3 induced myeloid cell proliferation. Nature Publishing Group, Basingstoke

    Google Scholar 

  • Chitnis T, Najafian N, Benou C, Salama AD, Grusby MJ, Sayegh MH, Khoury SJ (2001) Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J Clin Invest 108:739–747

    CAS  PubMed  Google Scholar 

  • Cho S, Bacon C, Sudarshan C, Rees R, Finbloom D, Pine R, O’Shea J (1996) Activation of STAT4 by IL-12 and IFN-alpha: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J Immunol 157:4781–4789

    CAS  PubMed  Google Scholar 

  • Choi EA, Lei H, Maron DJ, Wilson JM, Barsoum J, Fraker DL, El-Deiry WS, Spitz FR (2003) Stat1-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand and the cell-surface death signaling pathway by interferon β in human cancer cells. Cancer Res 63:5299–5307

    CAS  PubMed  Google Scholar 

  • Darnell JE (1997) STATs and gene regulation. Science 277:1630–1635

    Article  CAS  PubMed  Google Scholar 

  • Darnell J, Kerr I, Stark G (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Dumoutier L, Tounsi A, Michiels T, Sommereyns C, Kotenko SV, Renauld J-C (2004) Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-λ1. J Biol Chem 279:32269–32274

    Article  CAS  PubMed  Google Scholar 

  • Duncan SA, Zhong Z, Wen Z, Darnell JE (1997) STAT signaling is active during early mammalian development. Dev Dyn 208:190–198

    Article  CAS  PubMed  Google Scholar 

  • Dupuis S, Dargemont C, Fieschi C, Thomassin N, Rosenzweig S, Harris J, Holland SM, Schreiber RD, Casanova J-L (2001) Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293:300–303

    Article  CAS  PubMed  Google Scholar 

  • Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, Yang K, Chapgier A, Eidenschenk C, Eid P, Ghonaium AA, Tufenkeji H, Frayha H, Al-Gazlan S, Al-Rayes H, Schreiber RD, Gresser I, Casanova J-L (2003) Impaired response to interferon-[alpha]/[beta] and lethal viral disease in human STAT1 deficiency. Nat Genet 33:388–391

    Article  CAS  PubMed  Google Scholar 

  • Durbin JE, Hackenmiller R, Simon MC, Levy DE (1996) Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84:443–450

    Article  CAS  PubMed  Google Scholar 

  • Farrar JD, Smith JD, Murphy TL, Murphy KM (2000) Recruitment of Stat4 to the human interferon-alpha/beta receptor requires activated Stat2. J Biol Chem 275:2693–2697

    Article  CAS  PubMed  Google Scholar 

  • Finbloom D, Winestock K (1995) IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J Immunol 155:1079–1090

    CAS  PubMed  Google Scholar 

  • Fu XY, Schindler C, Improta T, Aebersold R, Darnell JE (1992) The proteins of ISGF-3, the interferon alpha-induced transcriptional activator, define a gene family involved in signal transduction. Proc Natl Acad Sci 89:7840–7843

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Jiang M, Pernis AB (1999) IFN-α activates stat6 and leads to the formation of Stat2:Stat6 complexes in B cells. J Immunol 163:3834–3841

    CAS  PubMed  Google Scholar 

  • Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007:45673

    Article  PubMed  CAS  Google Scholar 

  • Heim M, Kerr I, Stark G, Darnell J (1995) Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science 267:1347–1349

    Article  CAS  PubMed  Google Scholar 

  • Holz A, Bot A, Coon B, Wolfe T, Grusby MJ, von Herrath MG (1999) Disruption of the STAT4 signaling pathway protects from autoimmune diabetes while retaining antiviral immune competence. J Immunol 163:5374–5382

    CAS  PubMed  Google Scholar 

  • Hou J, Schindler U, Henzel W, Ho T, Brasseur M, McKnight S (1994) An interleukin-4-induced transcription factor: IL-4 Stat. Science 265:1701–1706

    Article  CAS  PubMed  Google Scholar 

  • Huber AK, Jacobson EM, Jazdzewski K, Concepcion ES, Tomer Y (2008) Interleukin (IL)-23 receptor is a major susceptibility gene for Graves’ ophthalmopathy: the IL-23/T-helper 17 axis extends to thyroid autoimmunity. J Clin Endocrinol Metabol 93:1077–1081

    Article  CAS  Google Scholar 

  • Kagami S, Nakajima H, Suto A, Hirose K, Suzuki K, Morita S, Kato I, Saito Y, Kitamura T, Iwamoto I (2001) Stat5a regulates T helper cell differentiation by several distinct mechanisms. Blood 97:2358–2365

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MH, Sun Y-L, Hoey T, Grusby MJ (1996) Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382:174–177

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MH, Wurster AL, Grusby MJ (1998) A signal transducer and activator of transcription (Stat)4-independent pathway for the development of T helper type 1 cells. J Exp Med 188:1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Kohler I, Rieber EP (1993) Allergy-associated Iε and Fcε receptor II (CD23b) genes activated via binding of an interleukin-4-induced transcription factor to a novel responsive element. Eur J Immunol 23:3066–3071

    Article  CAS  PubMed  Google Scholar 

  • Kortylewski M, Jove R, Yu H (2005) Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev 24:315–327

    Article  CAS  PubMed  Google Scholar 

  • Kotanides H, Reich N (1993) Requirement of tyrosine phosphorylation for rapid activation of a DNA binding factor by IL-4. Science 262:1265–1267

    Article  CAS  PubMed  Google Scholar 

  • Kotenko SV (2002) The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev 13:223–240

    Article  CAS  PubMed  Google Scholar 

  • Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H, Donnelly RP (2003) IFN-[lambda]s mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4:69–77

    Article  CAS  PubMed  Google Scholar 

  • Kovarik P, Stoiber D, Novy M, Decker T (1998) Stat1 combines signals derived from IFN-[gamma] and LPS receptors during macrophage activation. EMBO J 17:3660–3668

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Seo NJ, Jeong SJ, Park Y, Jung DB, Koh W, Lee EO, Ahn KS, Lu J, Kim SH (2011) Oral administration of penta-O-galloyl-beta-D-glucose suppresses triple-negative breast cancer xenograft growth and metastasis in strong association with JAK1-STAT3 inhibition. Carcinogenesis 32:804–811

    Article  CAS  PubMed  Google Scholar 

  • Lesinski GB, Anghelina M, Zimmerer J, Bakalakos T, Badgwell B, Parihar R, Hu Y, Becknell B, Abood G, Chaudhury AR, Magro C, Durbin J, Carson WE (2003) The antitumor effects of IFN-α are abrogated in a STAT1-deficient mouse. J Clin Invest 112:170–180

    CAS  PubMed  Google Scholar 

  • Leung S, Qureshi S, Kerr I, Darnell J Jr, Stark G (1995) Role of STAT2 in the alpha interferon signaling pathway. Mol Cell Biol 15:1312–1317

    CAS  PubMed  Google Scholar 

  • Li X, Leung S, Qureshi S, Darnell JE, Stark GR (1996) Formation of STAT1-STAT2 heterodimers and their role in the activation of IRF-1 gene transcription by interferon. J Biol Chem 271:5790–5794

    Article  CAS  PubMed  Google Scholar 

  • Li G, Miskimen KL, Wang Z, Xie XY, Brenzovich J, Ryan JJ, Tse W, Moriggl R, Bunting KD (2010a) STAT5 requires the N-domain for suppression of miR15/16, induction of bcl-2, and survival signaling in myeloproliferative disease. Blood 115:1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Li H, Takai N, Yuge A, Furukawa Y, Tsuno A, Tsukamoto Y, Kong S, Moriyama M, Narahara H (2010b) Novel target genes responsive to the anti-growth activity of triptolide in endometrial and ovarian cancer cells. Cancer Lett 297:198–206

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zeng J, Gao Y, He D (2010c) Targeting silibinin in the antiproliferative pathway. Expert Opin Investig Drugs 19:243–255

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yu C, Zhu WM, Xie Y, Qi X, Li N, Li JS (2010d) Triptolide ameliorates IL-10-deficient mice colitis by mechanisms involving suppression of IL-6/STAT3 signaling pathway and down-regulation of IL-17. Mol Immunol 47:2467–2474

    Article  CAS  PubMed  Google Scholar 

  • Lievens PM-J, Liboi E (2003) The thanatophoric dysplasia type II mutation hampers complete maturation of Fibroblast Growth Factor Receptor 3 (FGFR3), which activates signal transducer and activator of transcription 1 (STAT1) from the endoplasmic reticulum. J Biol Chem 278:17344–17349

    Article  CAS  PubMed  Google Scholar 

  • Lin J-X, Migone T-S, Tseng M, Friedmann M, Weatherbee JA, Zhou L, Yamauchi A, Bloom ET, Mietz J, John S, Leonard WJ (1995) The role of shared receptor motifs and common stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2:331–339

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L (1995) Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci 92:8831–8835

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L (1997) Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11:179–186

    Article  CAS  PubMed  Google Scholar 

  • Lou Y-J, Pan X-R, Jia P-M, Li D, Xiao S, Zhang Z-L, Chen S-J, Chen Z, Tong J-H (2009) IFR-9/STAT2 functional interaction drives retinoic acid–induced gene G expression independently of STAT1. Cancer Res 69:3673–3680

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zhang T, Novotny-Diermayr V, Tan ALC, Cao X (2003) A Novel sequence in the coiled-coil domain of Stat3 essential for its nuclear translocation. J Biol Chem 278:29252–29260

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie GG, Queisser N, Wolfson ML, Fraga CG, Adamo AM, Oteiza PI (2008) Curcumin induces cell-arrest and apoptosis in association with the inhibition of constitutively active NF-kappaB and STAT3 pathways in Hodgkin’s lymphoma cells. Int J Cancer 123:56–65

    Article  CAS  PubMed  Google Scholar 

  • Malin S, McManus S, Busslinger M (2010) STAT5 in B cell development and leukemia. Curr Opin Immunol 22:168–176

    Article  CAS  PubMed  Google Scholar 

  • Masuda A, Matsuguchi T, Yamaki K, Hayakawa T, Kubo M, Larochelle WJ, Yoshikai Y (2000) Interleukin-15 induces rapid tyrosine phosphorylation of STAT6 and the expression of interleukin-4 in mouse mast cells. J Biol Chem 275:29331–29337

    Article  CAS  PubMed  Google Scholar 

  • Masuda A, Matsuguchi T, Yamaki K, Hayakawa T, Yoshikai Y (2001) Interleukin-15 prevents mouse mast cell apoptosis through STAT6-mediated Bcl-xL expression. J Biol Chem 276:26107–26113

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A, Seki Y, Kubo M, Ohtsuka S, Suzuki A, Hayashi I, Tsuji K, Nakahata T, Okabe M, Yamada S, Yoshimura A (1999) Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice. Mol Cell Biol 19:6396–6407

    CAS  PubMed  Google Scholar 

  • Meraz MA, White JM, Sheehan KCF, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D, Carver-Moore K, DuBois RN, Clark R, Aguet M, Schreiber RD (1996) Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84:431–442

    Article  CAS  PubMed  Google Scholar 

  • Mui A, Wakao H, Harada N, O’Farrell A, Miyajima A (1995) Interleukin-3, granulocyte-macrophage colony-stimulating factor, and interleukin-5 transduce signals through two forms of STAT5. J Leukoc Biol 57:799–803

    CAS  PubMed  Google Scholar 

  • Murata T, Puri RK (1997) Comparison of IL-13- and IL-4-induced signaling in EBV-immortalized human B cells. Cell Immunol 175:33–40

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KB, Cousens LP, Doughty LA, Pien GC, Durbin JE, Biron CA (2000) Interferon [alpha]/[beta]-mediated inhibition and promotion of interferon [gamma]: STAT1 resolves a paradox. Nat Immunol 1:70–76

    CAS  PubMed  Google Scholar 

  • Ni Z, Lou W, Leman ES, Gao AC (2000) Inhibition of constitutively activated Stat3 signaling pathway suppresses growth of prostate cancer cells. Cancer Res 60:1225–1228

    CAS  PubMed  Google Scholar 

  • Park C, Li S, Cha E, Schindler C (2000) Immune response in Stat2 knockout mice. Immunity 13:795–804

    Article  CAS  PubMed  Google Scholar 

  • Patel BK, Keck CL, Leary RSO, Popescu NC, LaRochelle WJ (1998) Localization of the human stat6 gene to chromosome 12q13.3-q14.1, a region implicated in multiple solid tumors. Genomics 52:192–200

    Article  CAS  PubMed  Google Scholar 

  • Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386

    Article  CAS  PubMed  Google Scholar 

  • Quelle F, Shimoda K, Thierfelder W, Fischer C, Kim A, Ruben S, Cleveland J, Pierce J, Keegan A, Nelms K (1995) Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in responses to IL-4 and IL-3 but are not required for mitogenesis. Mol Cell Biol 15:3336–3343

    CAS  PubMed  Google Scholar 

  • Richards M, Katz D (1994) Regulation of the murine Fc epsilon RII (CD23) gene. Functional characterization of an IL-4 enhancer element. J Immunol 152:3453–3466

    CAS  PubMed  Google Scholar 

  • Rolling C, Treton D, Pellegrini S, Galanaud P, Richard Y (1996) IL4 and IL13 receptors share the [gamma]c chain and activate STAT6, STAT3 and STAT5 proteins in normal human B cells. FEBS Lett 393:53–56

    Article  CAS  PubMed  Google Scholar 

  • Sahni M, Raz R, Coffin JD, Levy D, Basilico C (2001) STAT1 mediates the increased apoptosis and reduced chondrocyte proliferation in mice overexpressing FGF2. Development 128:2119–2129

    CAS  PubMed  Google Scholar 

  • Sano S, Itami S, Takeda K, Tarutani M, Yamaguchi Y, Miura H, Yoshikawa K, Akira S, Takeda J (1999) Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO J 18:4657–4668

    Article  CAS  PubMed  Google Scholar 

  • Sartor CI, Dziubinski ML, Yu C-L, Jove R, Ethier SP (1997) Role of epidermal growth factor receptor and STAT-3 activation in autonomous proliferation of SUM-102PT human breast cancer cells. Cancer Res 57:978–987

    CAS  PubMed  Google Scholar 

  • Schaffer A, Cerutti A, Shah S, Zan H, Casali P (1999) The evolutionarily conserved sequence upstream of the human Ig heavy chain Sγ3 region is an inducible promoter: synergistic activation by CD40 ligand and IL-4 via cooperative NF-κB and STAT-6 binding sites. J Immunol 162:5327–5336

    CAS  PubMed  Google Scholar 

  • Schindler C, Darnell JE (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 64:621–652

    Article  CAS  PubMed  Google Scholar 

  • Schindler C, Shuai K, Prezioso V, Darnell J (1992) Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 257:809–813

    Article  CAS  PubMed  Google Scholar 

  • Selvendiran K, Koga H, Ueno T, Yoshida T, Maeyama M, Torimura T, Yano H, Kojiro M, Sata M (2006) Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids. Cancer Res 66:4826–4834

    Article  CAS  PubMed  Google Scholar 

  • Shimoda K, van Deursent J, Sangster MY, Sarawar SR, Carson RT, Tripp RA, Chu C, Quelle FW, Nosaka T, Vignali DAA, Doherty PC, Grosveld G, Paul WE, Ihle JN (1996) Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted State6 gene. Nature 380:630–633

    Article  CAS  PubMed  Google Scholar 

  • Shuai K, Horvath CM, Huang LHT, Qureshi SA, Cowburn D, Darnell JE (1994) Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76:821–828

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui IA, Shukla Y, Adhami VM, Sarfaraz S, Asim M, Hafeez BB, Mukhtar H (2008) Suppression of NFkappaB and its regulated gene products by oral administration of green tea polyphenols in an autochthonous mouse prostate cancer model. Pharm Res 25:2135–2142

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Raina K, Deep G, Chan D, Agarwal R (2009) Silibinin suppresses growth of human prostate carcinoma PC-3 orthotopic xenograft via activation of extracellular signal-regulated kinase 1/2 and inhibition of signal transducers and activators of transcription signaling. Clin Cancer Res 15:613–621

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12):1807–1821

    Article  CAS  PubMed  Google Scholar 

  • Soldaini E, John S, Moro S, Bollenbacher J, Schindler U, Leonard WJ (2000) DNA binding site selection of dimeric and tetrameric Stat5 proteins reveals a large repertoire of divergent tetrameric Stat5a binding sites. Mol Cell Biol 20:389–401

    Article  CAS  PubMed  Google Scholar 

  • Spiekermann K, Pau M, Schwab R, Schmieja K, Franzrahe S, Hiddemann W (2002) Constitutive activation of STAT3 and STAT5 is induced by leukemic fusion proteins with protein tyrosine kinase activity and is sufficient for transformation of hematopoietic precursor cells. Exp Hematol 30:262–271

    Article  CAS  PubMed  Google Scholar 

  • Stephanou A, Scarabelli TM, Brar BK, Nakanishi Y, Matsumura M, Knight RA, Latchman DS (2001) Induction of apoptosis and fas receptor/fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701. J Biol Chem 276:28340–28347

    Article  CAS  PubMed  Google Scholar 

  • Takatori H, Nakajima H, Hirose K, Kagami S, Tamachi T, Suto A, Suzuki K, Saito Y, Iwamoto I (2005) Indispensable role of Stat5a in Stat6-independent Th2 cell differentiation and allergic airway inflammation. J Immunol 174:3734–3740

    CAS  PubMed  Google Scholar 

  • Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci 94:3801–3804

    Article  CAS  PubMed  Google Scholar 

  • Testoni B, Völlenkle C, Guerrieri F, Gerbal-Chaloin S, Blandino G, Levrero M (2011) Chromatin dynamics of gene activation and repression in response to Interferon α (IFNα) reveal new roles for phosphorylated and unphosphorylated forms of the transcription factor STAT2. J Biol Chem 286:20217–20227

    Article  CAS  PubMed  Google Scholar 

  • Thierfelder WE, van Deursen JM, Yamamoto K, Tripp RA, Sarawar SR, Carson RT, Sangster MY, Vignali DAA, Doherty PC, Grosveld GC, Ihle JN (1996) Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382:171–174

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Lamb P, Seidel H, Stein R, Rosen J (1994) Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood 84:1760–1764

    CAS  PubMed  Google Scholar 

  • Tomita Y, Bilim V, Hara N, Kasahara T, Takahashi K (2003) Role of IRF-1 and caspase-7 in IFN-γ enhancement of Fas-mediated apoptosis in ACHN renal cell carcinoma cells. Int J Cancer 104:400–408

    Article  CAS  PubMed  Google Scholar 

  • Tyagi A, Singh RP, Ramasamy K, Raina K, Redente EF, Dwyer-Nield LD, Radcliffe RA, Malkinson AM, Agarwal R (2009) Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappaB and signal transducers and activators of transcription 3. Cancer Prev Res (Phila) 2:74–83

    Article  CAS  Google Scholar 

  • Tyagi A, Agarwal C, Dwyer-Nield LD, Singh RP, Malkinson AM, Agarwal R (2011) Silibinin modulates TNF-alpha and IFN-gamma mediated signaling to regulate COX2 and iNOS expression in tumorigenic mouse lung epithelial LM2 cells. Mol Carcinog. doi:10.1002/mc.20851

    Google Scholar 

  • Udy GB, Towers RP, Snell RG, Wilkins RJ, Park S-H, Ram PA, Waxman DJ, Davey HW (1997) Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 94:7239–7244

    Article  CAS  PubMed  Google Scholar 

  • Vaisse C, Halaas JL, Horvath CM, Darnell JE, Stoffel M, Friedman JM (1996) Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 14:95–97

    Article  CAS  PubMed  Google Scholar 

  • Veals SA, Schindler C, Leonard D, Fu XY, Aebersold R, Darnell JE Jr, Levy DE (1992) Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins. Mol Cell Biol 12:3315–3324

    CAS  PubMed  Google Scholar 

  • Wakao H, Gouilleux F, Groner B (1994) Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J 13:2182–2191

    CAS  PubMed  Google Scholar 

  • Welte T, Zhang SSM, Wang T, Zhang Z, Hesslein DGT, Yin Z, Kano A, Iwamoto Y, Li E, Craft JE, Bothwell ALM, Fikrig E, Koni PA, Flavell RA, Fu X-Y (2003) STAT3 deletion during hematopoiesis causes Crohn’s disease-like pathogenesis and lethality: A critical role of STAT3 in innate immunity. Proc Natl Acad Sci USA 100:1879–1884

    Article  CAS  PubMed  Google Scholar 

  • Wenta N, Strauss H, Meyer S, Vinkemeier U (2008) Tyrosine phosphorylation regulates the partitioning of STAT1 between different dimer conformations. Proc Natl Acad Sci 105:9238–9243

    Article  CAS  PubMed  Google Scholar 

  • Wung BS, Hsu MC, Wu CC, Hsieh CW (2005) Resveratrol suppresses IL-6-induced ICAM-1 gene expression in endothelial cells: effects on the inhibition of STAT3 phosphorylation. Life Sci 78:389–397

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Quelle FW, Thierfelder WE, Kreider BL, Gilbert DJ, Jenkins NA, Copeland NG, Silvennoinen O, Ihle JN (1994) Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. Mol Cell Biol 14:4342–4349

    CAS  PubMed  Google Scholar 

  • Yamauchi-Takihara K, Kishimoto T (2000) A novel role for STAT3 in cardiac remodeling. Trends Cardiovasc Med 10:298–303

    Article  CAS  PubMed  Google Scholar 

  • Yao Z, Cui Y, Watford WT, Bream JH, Yamaoka K, Hissong BD, Li D, Durum SK, Jiang Q, Bhandoola A, Hennighausen L, O’Shea JJ (2006) Stat5a/b are essential for normal lymphoid development and differentiation. Proc Natl Acad Sci USA 103:1000–1005

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Kee WH, Seow KT, Fung W, Cao X (2000) The coiled-coil domain of Stat3 is essential for its SH2 domain-mediated receptor binding and subsequent activation induced by epidermal growth factor and interleukin-6. Mol Cell Biol 20:7132–7139

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Chen Y, Li R, Liu Y, Wen L, Zhang C (2010) Triptolide alters histone H3K9 and H3K27 methylation state and induces G0/G1 arrest and caspase-dependent apoptosis in multiple myeloma in vitro. Toxicology 267:70–79

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Wen Z, Darnell J (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264:95–98

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, He S, Li Y, Qiu P, Shu M, Ou Y, Zhou Y, Leng T, Xie J, Zheng X, Xu D, Su X, Yan G (2010) Anti-angiogenic activity of triptolide in anaplastic thyroid carcinoma is mediated by targeting vascular endothelial and tumor cells. Vascul Pharmacol 52:46–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the grants from the National Institutes of Health (R01CA125262, RO1CA114469 and RO1CA125262-02S1), Susan G. Komen Breast Cancer Foundation, and Kansas Bioscience Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tang, SN., Shankar, S., Srivastava, R.K. (2012). STAT Signaling in Cancer Prevention. In: Shankar, S., Srivastava, R. (eds) Nutrition, Diet and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2923-0_7

Download citation

Publish with us

Policies and ethics