Skip to main content

Intracellular Signaling Network as a Prime Chemotherapy Target of Green Tea Catechin, (–)-Epigallocatechin-3-gallate

  • Chapter
  • First Online:
  • 3027 Accesses

Abstract

Chemoprevention is an attempt to use either naturally occurring or synthetic substances or their mixtures to intervene in the progress of carcinogenesis. Recently, it has been shown that green tea phytochemicals alter gene expression, directly or indirectly, thereby regulating the carcinogenic processes. Epigallocatechin-3-gallate (EGCG), the major antioxidant polyphenolic compound present in green tea, is a promising chemopreventive agent. EGCG has been shown to exert growth-inhibitory potential of various cancer cells in culture and antitumor activity in vivo models. EGCG could interact with various molecules like proteins, transcription factors, and enzymes, which block multiple stages of carcinogenesis. Moreover, much of the cancer chemopreventive effects of EGCG that regulates cell proliferation and apoptosis effects by altering the expression of cell cycle regulatory proteins, activating killer caspases, induction of phase II enzymes, mediation of anti-oxidative, anti-inflammation responses, and suppressing oncogenic transcription factors and pluripotency maintain factors. In vitro and in vivo studies have demonstrated that EGCG blocks carcinogenesis by affecting a wide array of signal transduction pathways involved in cell proliferation, transformation, inflammation, apoptosis, metastasis and invasion. EGCG stimulates telomere fragmentation through inhibiting telomerase activity. Recent reports demonstrated that EGCG inhibits DNA methyltransferases, proteases, and dihydrofolate reductase activities, which would affect transcription of tumor suppressor genes and protein synthesis. To develop EGCG as an anticarcinogenic agent, more clear understanding of the cell signaling pathways and the molecular targets responsible for chemopreventive and chemotherapeutic effects are needed. This review summarizes recent preclinical and clinical research on the EGCG-induced cellular signal transduction events which implicate in prevention and therapy of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

α-TNF:

Alpha-tumor necrosis factor

AMPK:

Adenosine monophosphate-activated protein kinase

AP1:

Activator protein 1

AREs:

Antioxidant responsive elements

Bcl-2:

B-cell lymphoma-2

CAT:

Catalase

CDKN2A:

Cyclin dependent kinase 2A

Cdks:

Cyclin-dependent kinases

c-IAP1:

Cellular inhibitor of apoptosis protein1

COX-2:

Cyclooxygenase-2

CpG:

Cytosine-phosphate-guanine

CSCs:

Cancer stem cells

CYP:

Cytochrome P450

DHFR:

Dihydrofolate reductase

DIABLO:

Direct inhibitor of apoptosis-binding protein with low pI

DNMTs:

DNA methyltransferases

EGCG:

(-)-Epigallocatechin-3-gallate

EGFR:

Epidermal growth factor receptor

EpRE:

Electrophile-responsive element

ERK:

Extracellular signal-regulated kinase

FAK:

Focal adhesion kinase

FKHR:

Forkhead homolog of rhabdosarcoma

GFRs:

Growth factor receptors

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GST:

Glutathione S-transferase

H2O2 :

Hydrogen peroxide

HATs:

Histone acetyl transferases

HDACs:

Histone deacetylases

HER:

Human epidermal receptor

HIF:

Hypoxia inducible factor

hTERT:

human telomerase reverse transcriptase

HUVEC:

Human vascular endothelial cell

IKK:

I kappa B kinase

IL-1:

Interleukin 1

JNK:

Jun NH2-terminal kinase

LPs:

Lipopolysaccharides

MAP:

Mitogen-activated protein

MBD:

Methyl-CpG binding domain

Mcl-1:

Myeloid cell leukemia 1

mdm2:

mouse double minute 2

MEKK1:

Mitogen-activated protein/ERK kinase 1

MLH1:

MutL homologue 1

MMPs:

Matrix metalloproteinases

MRLC:

Myosin regulatory light chain

MT1-MMP:

Membrane Type 1-matrix metalloproteinase

NFκB:

Nuclear factor kappaB

NQO:

NADPH quinone oxidoreductase

Nrf:

NF-E2 p45-related factor

O •−2 :

Superoxide anion radical

OH:

Hydroxyl radical

p90RSK:

90 kDa ribosomal S6 kinase

PCNA:

Proliferating cell nuclear antigen

PDGF:

Platelet-derived growth factor

PGE2:

Prostaglandins E2

PI3K:

Phosphatidylinositol- 3-kinase

PKA:

Protein kinase A

PPAR:

Peroxisome proliferator-activated receptor

pRb:

Retinoblastoma protein

PUMA:

P53 upregulated modulator of apoptosis

RAR:

Retinoic acid receptor

RECK:

Reversion-inducing cysteine-rich protein with Kazal motifs

RTK:

Receptor tyrosine kinase

RXRα:

Retinoid X receptor alpha

SAM:

S-adenosyl-methionine

siRNA:

Small-interfering RNA

Smac:

Second mitochondria-derived activator of caspase

SOD:

Superoxide dismutase

STAT:

Signal transducers and activators of transcription

TERT:

Telomerase reverse transcriptase

TIMP:

Tissue inhibitor of metalloproteinase

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TRAMP:

Transgenic adenocarcinoma of the mouse prostate

TSGs:

Tumor suppressor genes

uPA:

Urokinase plasminogen activator

VEGF:

Vascular endothelial growth factor

XIAP:

X-linked inhibitor of apoptosis protein

References

  • Adams J, Kauffman M (2004) Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest 22:304–311

    Article  CAS  PubMed  Google Scholar 

  • Adhami VM, Siddiqui IA, Ahmad N, Gupta S, Mukhtar H (2004) Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res 64:8715–8722

    Article  CAS  PubMed  Google Scholar 

  • Afaq F, Adhami VM, Ahmad N, Mukhtar H (2003a) Inhibition of ultraviolet B-mediated activation of nuclear factor kappaB in normal human epidermal keratinocytes by green tea Constituent (-)-epigallocatechin-3-gallate. Oncogene 22:1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Afaq F, Ahmad N, Mukhtar H (2003b) Suppression of UVB-induced phosphorylation of mitogen-activated protein kinases and nuclear factor kappa B by green tea polyphenol in SKH-1 hairless mice. Oncogene 22:9254–9264

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24:2783–2840

    CAS  PubMed  Google Scholar 

  • Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89:1881–1886

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N, Adhami VM, Gupta S, Cheng P, Mukhtar H (2002) Role of the retinoblastoma (pRb)-E2F/DP pathway in cancer chemopreventive effects of green tea polyphenol epigallocatechin-3-gallate. Arch Biochem Biophys 398:125–131

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S (2010) Green tea polyphenol epigallocatechin 3-gallate in arthritis: progress and promise. Arthritis Res Ther 12:208

    Article  PubMed  CAS  Google Scholar 

  • Ahmed S, Wang N, Lalonde M, Goldberg VM, Haqqi TM (2004) Green tea polyphenol epigallocatechin-3-gallate (EGCG) differentially inhibits interleukin-1 beta-induced expression of matrix metalloproteinase-1 and -13 in human chondrocytes. J Pharmacol Exp Ther 308:767–773

    Article  CAS  PubMed  Google Scholar 

  • Ahn WS, Huh SW, Bae SM, Lee IP, Lee JM, Namkoong SE, Kim CK, Sin JI (2003a) A major constituent of green tea, EGCG, inhibits the growth of a human cervical cancer cell line, CaSki cells, through apoptosis, G(1) arrest, and regulation of gene expression. DNA Cell Biol 22:217–224

    Article  CAS  PubMed  Google Scholar 

  • Ahn WS, Yoo J, Huh SW, Kim CK, Lee JM, Namkoong SE, Bae SM, Lee IP (2003b) Protective effects of green tea extracts (polyphenon E and EGCG) on human cervical lesions. Eur J Cancer Prev 12:383–390

    Article  PubMed  Google Scholar 

  • Anton S, Melville L, Rena G (2007) Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1a and elicits cellular responses in the presence and absence of insulin. Cell Signal 19:378–383

    Article  CAS  PubMed  Google Scholar 

  • Artandi SE (2002) Telomere shortening and cell fates in mouse models of neoplasia. Trends Mol Med 8:44–47

    Article  CAS  PubMed  Google Scholar 

  • Babich H, Zuckerbraun HL, Weinerman SM (2007) In vitro cytotoxicity of (-)-catechin gallate, a minor polyphenol in green tea. Toxicol Lett 171:171–180

    Article  CAS  PubMed  Google Scholar 

  • Babu PV, Sabitha KE, Shyamaladevi CS (2006) Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem Biol Interact 162:114–120

    Article  CAS  PubMed  Google Scholar 

  • Bakiri L, Lallemand D, Bossy-Wetzel E, Yaniv M (2000) Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J 19:2056–2068

    Article  CAS  PubMed  Google Scholar 

  • Barber CG, Dickinson RP, Fish PV (2004) Selective urokinase-type plasminogen activator (uPA) inhibitors. Part 3: 1-isoquinolinylguanidines. Bioorg Med Chem Lett 14:3227–3230

    Article  CAS  PubMed  Google Scholar 

  • Bartholome A, Kampkotter A, Tanner S, Sies H, Klotz LO (2010) Epigallocatechin gallate-induced modulation of FoxO signaling in mammalian cells and C. elegans: FoxO stimulation is masked via PI3K/Akt activation by hydrogen peroxide formed in cell culture. Arch Biochem Biophys 501:58–64

    Article  CAS  PubMed  Google Scholar 

  • Berger SJ, Gupta S, Belfi CA, Gosky DM, Mukhtar H (2001) Green tea constituent (–)-epigallocatechin-3-gallate inhibits topoisomerase I activity in human colon carcinoma cells. Biochem Biophys Res Commun 288:101–105

    Article  CAS  PubMed  Google Scholar 

  • Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A (2006) Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 66:1234–1240

    Article  CAS  PubMed  Google Scholar 

  • Campbell KJ, O’Shea JM, Perkins ND (2006) Differential regulation of NF-kappaB activation and function by topoisomerase II inhibitors. BMC Cancer 6:101

    Article  PubMed  CAS  Google Scholar 

  • Chacko SM, Thambi PT, Kuttan R, Nishigaki I (2010) Beneficial effects of green tea: a literature review. Chin Med 5:13

    Article  PubMed  CAS  Google Scholar 

  • Chan HY, Wang H, Tsang DS, Chen ZY, Leung LK (2003) Screening of chemopreventive tea polyphenols against PAH genotoxicity in breast cancer cells by a XRE-luciferase reporter construct. Nutr Cancer 46:93–100

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, De Mejia GE (2004) Polyphenolic compounds, antioxidant capacity, and quinone reductase activity of an aqueous extract of Ardisia compressa in comparison to mate (Ilex paraguariensis) and green (Camellia sinensis) teas. J Agric Food Chem 52:3583–3589

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zhu QY, Tsang D, Huang Y (2001) Degradation of green tea catechins in tea drinks. J Agric Food Chem 49:477–482

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Ganapathy S, Singh KP, Shankar S, Srivastava RK (2010a) Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS One 5:e15288

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Lu W, Zheng Y, Gu K, Chen Z, Zheng W, Shu XO (2010b) Exercise, tea consumption, and depression among breast cancer survivors. J Clin Oncol 28:991–998

    Article  PubMed  Google Scholar 

  • Chen NG, Lu CC, Lin YH, Shen WC, Lai CH, Ho YJ, Chung JG, Lin TH, Lin YC, Yang JS (2011) Proteomic approaches to study epigallocatechin gallate-provoked apoptosis of TSGH-8301 human urinary bladder carcinoma cells: roles of AKT and heat shock protein 27-modulated intrinsic apoptotic pathways. Oncol Rep 26:939–947

    CAS  PubMed  Google Scholar 

  • Choi JH, Rhee IK, Park KY, Kim JK, Rhee SJ (2003) Action of green tea catechin on bone metabolic disorder in chronic cadmium-poisoned rats. Life Sci 73:1479–1489

    Article  CAS  PubMed  Google Scholar 

  • Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS, Jones PA (2005) Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther 4:1515–1520

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21

    Article  CAS  PubMed  Google Scholar 

  • Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    Article  CAS  PubMed  Google Scholar 

  • Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Ma W, Huang C, Yang CS (1997) Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins. Cancer Res 57:4414–4419

    CAS  PubMed  Google Scholar 

  • Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    Article  CAS  PubMed  Google Scholar 

  • Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63:7563–7570

    CAS  PubMed  Google Scholar 

  • Fang JY, Tsai TH, Lin YY, Wong WW, Wang MN, Huang JF (2007) Transdermal delivery of tea catechins and theophylline enhanced by terpenes: a mechanistic study. Biol Pharm Bull 30:343–349

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    CAS  PubMed  Google Scholar 

  • Fujiki H, Suganuma M, Okabe S, Sueoka E, Suga K, Imai K, Nakachi K, Kimura S (1999) Mechanistic findings of green tea as cancer preventive for humans. Proc Soc Exp Biol Med 220:225–228

    Article  CAS  PubMed  Google Scholar 

  • Fujiki H, Suganuma M, Okabe S, Sueoka E, Sueoka N, Fujimoto N, Goto Y, Matsuyama S, Imai K, Nakachi K (2001) Cancer prevention with green tea and monitoring by a new biomarker, hnRNP B1. Mutat Res 480–481:299–304

    PubMed  Google Scholar 

  • Fujita Y, Yamane T, Tanaka M, Kuwata K, Okuzumi J, Takahashi T, Fujiki H, Okuda T (1989) Inhibitory effect of (-)-epigallocatechin gallate on carcinogenesis with N-ethyl-N′-nitro-N-nitrosoguanidine in mouse duodenum. Jpn J Cancer Res 80:503–505

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A, Servant N, Paccard C, Hupe P, Robert T, Ripoche H, Lazar V, Harel-Bellan A, Dessen P, Barillot E, Kroemer G (2010) miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res 70:1793–1803

    Article  CAS  PubMed  Google Scholar 

  • Gerhauser C, Klimo K, Heiss E, Neumann I, Gamal-Eldeen A, Knauft J, Liu GY, Sitthimonchai S, Frank N (2003) Mechanism-based in vitro screening of potential cancer chemopreventive agents. Mutat Res 523–524:163–172

    PubMed  Google Scholar 

  • Givant-Horwitz V, Davidson B, Reich R (2004) Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Cancer Res 64:3572–3579

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Yang S, Taylor C, Sonenshein GE (2005) Green tea polyphenol epigallocatechin-3 gallate (EGCG) affects gene expression of breast cancer cells transformed by the carcinogen 7,12-dimethylbenz[a]anthracene. J Nutr 135:2978S–2986S

    CAS  PubMed  Google Scholar 

  • Gupta S, Hussain T, Mukhtar H (2003) Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys 410:177–185

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Hastak K, Afaq F, Ahmad N, Mukhtar H (2004) Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. Oncogene 23:2507–2522

    Article  CAS  PubMed  Google Scholar 

  • Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML, Mukhtar H (2003) Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 22:4851–4859

    Article  CAS  PubMed  Google Scholar 

  • Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59:21–26

    Article  CAS  PubMed  Google Scholar 

  • Hibasami H, Achiwa Y, Fujikawa T, Komiya T (1996) Induction of programmed cell death (apoptosis) in human lymphoid leukemia cells by catechin compounds. Anticancer Res 16:1943–1946

    CAS  PubMed  Google Scholar 

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    Article  CAS  PubMed  Google Scholar 

  • Hou Z, Lambert JD, Chin KV, Yang CS (2004) Effects of tea polyphenols on signal transduction pathways related to cancer chemoprevention. Mutat Res 555:3–19

    CAS  PubMed  Google Scholar 

  • Hsu YC, Liou YM (2011) The anti-cancer effects of (-)-epigalocathine-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells. J Cell Physiol 226:2721–2730

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Zhou D, Chen Y (2009) Preparation and antioxidant activity of green tea extract enriched in epigallocatechin (EGC) and epigallocatechin gallate (EGCG). J Agric Food Chem 57:1349–1353

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Wu WB, Fang JY, Chiang HS, Chen SK, Chen BH, Chen YT, Hung CF (2007) (-)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes. Molecules 12:1845–1858

    Article  CAS  PubMed  Google Scholar 

  • Hussain T, Gupta S, Adhami VM, Mukhtar H (2005) Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. Int J Cancer 113:660–669

    Article  CAS  PubMed  Google Scholar 

  • Jankun J, Selman SH, Swiercz R, Skrzypczak-Jankun E (1997) Why drinking green tea could prevent cancer. Nature 387:561

    Article  CAS  PubMed  Google Scholar 

  • Jeong WS, Kim IW, Hu R, Kong AN (2004) Modulatory properties of various natural chemopreventive agents on the activation of NF-kappaB signaling pathway. Pharm Res 21:661–670

    Article  CAS  PubMed  Google Scholar 

  • Ju J, Hong J, Zhou JN, Pan Z, Bose M, Liao J, Yang GY, Liu YY, Hou Z, Lin Y, Ma J, Shih WJ, Carothers AM, Yang CS (2005) Inhibition of intestinal tumorigenesis in Apcmin/+ mice by (-)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res 65:10623–10631

    Article  CAS  PubMed  Google Scholar 

  • Katiyar SK, Mukhtar H (1996) Tea consumption and cancer. World Rev Nutr Diet 79:154–184

    CAS  PubMed  Google Scholar 

  • Katiyar SK, Agarwal R, Zaim MT, Mukhtar H (1993) Protection against N-nitrosodiethylamine and benzo[a]pyrene-induced forestomach and lung tumorigenesis in A/J mice by green tea. Carcinogenesis 14:849–855

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Long NK, Makita H, Toida M, Yamashita T, Hatakeyama D, Hara A, Mori H, Shibata T (2008) Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer 99:647–654

    Article  CAS  PubMed  Google Scholar 

  • Khafif A, Schantz SP, Chou TC, Edelstein D, Sacks PG (1998) Quantitation of chemopreventive synergism between (-)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 19:419–424

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Mukhtar H (2010) Cancer and metastasis: prevention and treatment by green tea. Cancer Metastasis Rev 29:435–445

    Article  PubMed  Google Scholar 

  • Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res 66:2500–2505

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Adhami VM, Mukhtar H (2010) Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocr Relat Cancer 17:R39–R52

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Yum KS, Sung JH, Rhie DJ, Kim MJ, Min DS, Hahn SJ, Kim MS, Jo YH, Yoon SH (2004a) Epigallocatechin-3-gallate increases intracellular [Ca2+] in U87 cells mainly by influx of extracellular Ca2+ and partly by release of intracellular stores. Naunyn Schmiedebergs Arch Pharmacol 369:260–267

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Kim MH, Jeong M, Hwang YS, Lim SH, Shin BA, Ahn BW, Jung YD (2004b) EGCG blocks tumor promoter-induced MMP-9 expression via suppression of MAPK and AP-1 activation in human gastric AGS cells. Anticancer Res 24:747–753

    CAS  PubMed  Google Scholar 

  • Kotani A, Ha D, Hsieh J, Rao PK, Schotte D, den Boer ML, Armstrong SA, Lodish HF (2009) miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood 114:4169–4178

    Article  CAS  PubMed  Google Scholar 

  • Kumaran G, Clamp AR, Jayson GC (2008) Angiogenesis as a therapeutic target in cancer. Clin Med 8:455–458

    PubMed  Google Scholar 

  • Kundu JK, Na HK, Chun KS, Kim YK, Lee SJ, Lee SS, Lee OS, Sim YC, Surh YJ (2003) Inhibition of phorbol ester-induced COX-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells. J Nutr 133:3805S–3810S

    CAS  PubMed  Google Scholar 

  • Lambert JD, Elias RJ (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501:65–72

    Article  CAS  PubMed  Google Scholar 

  • Lambert JD, Yang CS (2003) Mechanisms of cancer prevention by tea constituents. J Nutr 133:3262S–3267S

    CAS  PubMed  Google Scholar 

  • Lambert JD, Rice JE, Hong J, Hou Z, Yang CS (2005) Synthesis and biological activity of the tea catechin metabolites, M4 and M6 and their methoxy-derivatives. Bioorg Med Chem Lett 15:873–876

    Article  CAS  PubMed  Google Scholar 

  • Lee MJ, Prabhu S, Meng X, Li C, Yang CS (2000) An improved method for the determination of green and black tea polyphenols in biomatrices by high-performance liquid chromatography with coulometric array detection. Anal Biochem 279:164–169

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Yeo M, Choue JS, Jin JH, Park SJ, Cheong JY, Lee KJ, Kim JH, Hahm KB (2004) Protective mechanism of epigallocatechin-3-gallate against Helicobacter pylori-induced gastric epithelial cytotoxicity via the blockage of TLR-4 signaling. Helicobacter 9:632–642

    Article  CAS  PubMed  Google Scholar 

  • Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Shim JS, Lee JS, Kim JK, Yang IS, Chung MS, Kim KH (2006) Inhibition of pathogenic bacterial adhesion by acidic polysaccharide from green tea (Camellia sinensis). J Agric Food Chem 54:8717–8723

    Article  CAS  PubMed  Google Scholar 

  • Lim YC, Cha YY (2011) Epigallocatechin-3-gallate induces growth inhibition and apoptosis of human anaplastic thyroid carcinoma cells through suppression of EGFR/ERK pathway and cyclin B1/CDK1 complex. J Surg Oncol 104(7):776–780

    Article  CAS  PubMed  Google Scholar 

  • Lin JK (2002) Cancer chemoprevention by tea polyphenols through modulating signal transduction pathways. Arch Pharm Res 25:561–571

    Article  CAS  PubMed  Google Scholar 

  • Lin YL, Lin JK (1997) (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol Pharmacol 52:465–472

    CAS  PubMed  Google Scholar 

  • Lin SM, Wang SW, Ho SC, Tang YL (2010) Protective effect of green tea (-)-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains. Nutrition 26:1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Liu TT, Liang NS, Li Y, Yang F, Lu Y, Meng ZQ, Zhang LS (2003) Effects of long-term tea polyphenols consumption on hepatic microsomal drug-metabolizing enzymes and liver function in Wistar rats. World J Gastroenterol 9:2742–2744

    CAS  PubMed  Google Scholar 

  • Lopez-Lazaro M, Calderon-Montano JM, Burgos-Moron E, Austin CA (2011) Green tea constituents (-)-epigallocatechin-3-gallate (EGCG) and gallic acid induce topoisomerase I- and topoisomerase II-DNA complexes in cells mediated by pyrogallol-induced hydrogen peroxide. Mutagenesis 26(4):489–498

    Article  CAS  PubMed  Google Scholar 

  • Lu YP, Lou YR, Lin Y, Shih WJ, Huang MT, Yang CS, Conney AH (2001) Inhibitory effects of orally administered green tea, black tea, and caffeine on skin carcinogenesis in mice previously treated with ultraviolet B light (high-risk mice): relationship to decreased tissue fat. Cancer Res 61:5002–5009

    CAS  PubMed  Google Scholar 

  • Majima T, Tsutsumi M, Nishino H, Tsunoda T, Konishi Y (1998) Inhibitory effects of beta-carotene, palm carotene, and green tea polyphenols on pancreatic carcinogenesis initiated by N-nitorsobis(2-oxopropyl)amine in Syrian golden hamsters. Pancreas 16:13–18

    Article  CAS  PubMed  Google Scholar 

  • Maliakal PP, Coville PF, Wanwimolruk S (2001) Tea consumption modulates hepatic drug metabolizing enzymes in Wistar rats. J Pharm Pharmacol 53:569–577

    Article  CAS  PubMed  Google Scholar 

  • Manson MM (2003) Cancer prevention – the potential for diet to modulate molecular signalling. Trends Mol Med 9:11–18

    Article  CAS  PubMed  Google Scholar 

  • Masamune A, Kikuta K, Satoh M, Suzuki N, Shimosegawa T (2005) Green tea polyphenol epigallocatechin-3-gallate blocks PDGF-induced proliferation and migration of rat pancreatic stellate cells. World J Gastroenterol 11:3368–3374

    CAS  PubMed  Google Scholar 

  • Masuda M, Suzui M, Weinstein IB (2001) Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res 7:4220–4229

    CAS  PubMed  Google Scholar 

  • Masuda M, Suzui M, Lim JT, Deguchi A, Soh JW, Weinstein IB (2002) Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. J Exp Ther Oncol 2:350–359

    Article  CAS  PubMed  Google Scholar 

  • Masuda M, Suzui M, Lim JT, Weinstein IB (2003) Epigallocatechin-3-gallate inhibits activation of HER-2/neu and downstream signaling pathways in human head and neck and breast carcinoma cells. Clin Cancer Res 9:3486–3491

    CAS  PubMed  Google Scholar 

  • Masuda M, Wakasaki T, Toh S, Shimizu M, Adachi S (2011) Chemoprevention of head and neck cancer by green tea extract: EGCG-the role of EGFR signaling and “Lipid Raft”. J Oncol 2011:540148

    PubMed  Google Scholar 

  • Meeran SM, Mantena SK, Elmets CA, Katiyar SK (2006) (-)-Epigallocatechin-3-gallate prevents photocarcinogenesis in mice through interleukin-12-dependent DNA repair. Cancer Res 66:5512–5520

    Article  CAS  PubMed  Google Scholar 

  • Milligan SA, Burke P, Coleman DT, Bigelow RL, Steffan JJ, Carroll JL, Williams BJ, Cardelli JA (2009) The green tea polyphenol EGCG potentiates the antiproliferative activity of c-Met and epidermal growth factor receptor inhibitors in non-small cell lung cancer cells. Clin Cancer Res 15:4885–4894

    Article  CAS  PubMed  Google Scholar 

  • Morissette M, Samadi P, Hadj Tahar A, Belanger N, Di Paolo T (2010) Striatal Akt/GSK3 signaling pathway in the development of L-Dopa-induced dyskinesias in MPTP monkeys. Prog Neuropsychopharmacol Biol Psychiatry 34:446–454

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar H, Ahmad N (2000) Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr 71:1698S–1702S, discussion 1703S–1694S

    CAS  PubMed  Google Scholar 

  • Murakami C, Hirakawa Y, Inui H, Nakano Y, Yoshida H (2002) Effect of tea catechins on cellular lipid peroxidation and cytotoxicity in HepG2 cells. Biosci Biotechnol Biochem 66:1559–1562

    Article  CAS  PubMed  Google Scholar 

  • Muzolf-Panek M, Gliszczynska-Swiglo A, de Haan L, Aarts JM, Szymusiak H, Vervoort JM, Tyrakowska B, Rietjens IM (2008) Role of catechin quinones in the induction of EpRE-mediated gene expression. Chem Res Toxicol 21:2352–2360

    Article  CAS  PubMed  Google Scholar 

  • Naasani I, Seimiya H, Tsuruo T (1998) Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem Biophys Res Commun 249:391–396

    Article  CAS  PubMed  Google Scholar 

  • Nakae J, Biggs WH 3rd, Kitamura T, Cavenee WK, Wright CV, Arden KC, Accili D (2002) Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet 32:245–253

    Article  CAS  PubMed  Google Scholar 

  • Nam S, Smith DM, Dou QP (2001) Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 276:13322–13330

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar V, Vaid M, Katiyar SK (2011) (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 32(4):537–544

    Article  CAS  PubMed  Google Scholar 

  • Narisawa T, Fukaura Y (1993) A very low dose of green tea polyphenols in drinking water prevents N-methyl-N-nitrosourea-induced colon carcinogenesis in F344 rats. Jpn J Cancer Res 84:1007–1009

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Martinez MD, Navarro-Peran E, Cabezas-Herrera J, Ruiz-Gomez J, Garcia-Canovas F, Rodriguez-Lopez JN (2005) Antifolate activity of epigallocatechin gallate against Stenotrophomonas maltophilia. Antimicrob Agents Chemother 49:2914–2920

    Article  CAS  PubMed  Google Scholar 

  • Newton K, Strasser A (2000) Ionizing radiation and chemotherapeutic drugs induce apoptosis in lymphocytes in the absence of Fas or FADD/MORT1 signaling. Implications for cancer therapy. J Exp Med 191:195–200

    Article  CAS  PubMed  Google Scholar 

  • Oku N, Matsukawa M, Yamakawa S, Asai T, Yahara S, Hashimoto F, Akizawa T (2003) Inhibitory effect of green tea polyphenols on membrane-type 1 matrix metalloproteinase, MT1-MMP. Biol Pharm Bull 26:1235–1238

    Article  CAS  PubMed  Google Scholar 

  • Plass C, Soloway PD (2002) DNA methylation, imprinting and cancer. Eur J Hum Genet 10:6–16

    Article  CAS  PubMed  Google Scholar 

  • Plumb GW, Price KR, Williamson G (1999) Antioxidant properties of flavonol glycosides from tea. Redox Rep 4:13–16

    Article  CAS  PubMed  Google Scholar 

  • Prakash D, Suri S, Upadhyay G, Singh BN (2007) Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int J Food Sci Nutr 58:18–28

    Article  CAS  PubMed  Google Scholar 

  • Reiter CE, Kim JA, Quon MJ (2010) Green tea polyphenol epigallocatechin gallate reduces endothelin-1 expression and secretion in vascular endothelial cells: roles for AMP-activated protein kinase, Akt, and FOXO1. Endocrinology 151:103–114

    Article  CAS  PubMed  Google Scholar 

  • Rietveld A, Wiseman S (2003) Antioxidant effects of tea: evidence from human clinical trials. J Nutr 133:3285S–3292S

    CAS  PubMed  Google Scholar 

  • Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90:1507–1546

    Article  CAS  PubMed  Google Scholar 

  • Roy SK, Srivastava RK, Shankar S (2010) Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J Mol Signal 5:10

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Huerta V, Gutierrez-Sanchez L, Flores-Estrada J (2011) (-)-Epigallocatechin 3-gallate (EGCG) at the ocular surface inhibits corneal neovascularization. Med Hypotheses 76:311–313

    Article  CAS  PubMed  Google Scholar 

  • Sartippour MR, Shao ZM, Heber D, Beatty P, Zhang L, Liu C, Ellis L, Liu W, Go VL, Brooks MN (2002) Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J Nutr 132:2307–2311

    CAS  PubMed  Google Scholar 

  • Sazuka M, Itoi T, Suzuki Y, Odani S, Koide T, Isemura M (1996) Evidence for the interaction between (-)-epigallocatechin gallate and human plasma proteins fibronectin, fibrinogen, and histidine-rich glycoprotein. Biosci Biotechnol Biochem 60:1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Schwarz RE, Donohue CA, Sadava D, Kane SE (2003) Pancreatic cancer in vitro toxicity mediated by Chinese herbs SPES and PC-SPES: implications for monotherapy and combination treatment. Cancer Lett 189:59–68

    Article  CAS  PubMed  Google Scholar 

  • Senthil Kumaran V, Arulmathi K, Srividhya R, Kalaiselvi P (2008) Repletion of antioxidant status by EGCG and retardation of oxidative damage induced macromolecular anomalies in aged rats. Exp Gerontol 43:176–183

    Article  CAS  PubMed  Google Scholar 

  • Sergediene E, Jonsson K, Szymusiak H, Tyrakowska B, Rietjens IM, Cenas N (1999) Prooxidant toxicity of polyphenolic antioxidants to HL-60 cells: description of quantitative structure-activity relationships. FEBS Lett 462:392–396

    Article  CAS  PubMed  Google Scholar 

  • Shankar S, Suthakar G, Srivastava RK (2007) Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Front Biosci 12:5039–5051

    Article  CAS  PubMed  Google Scholar 

  • Shankar S, Chen Q, Srivastava RK (2008a) Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor. J Mol Signal 3:7

    Article  PubMed  CAS  Google Scholar 

  • Shankar S, Ganapathy S, Hingorani SR, Srivastava RK (2008b) EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13:440–452

    Article  PubMed  Google Scholar 

  • Shankar S, Nall D, Tang SN, Meeker D, Passarini J, Sharma J, Srivastava RK (2011) Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 6:e16530

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113:160–168

    CAS  PubMed  Google Scholar 

  • Shimizu M, Weinstein IB (2005) Modulation of signal transduction by tea catechins and related phytochemicals. Mutat Res 591:147–160

    CAS  PubMed  Google Scholar 

  • Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB (2005) (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res 11:2735–2746

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui IA, Asim M, Hafeez BB, Adhami VM, Tarapore RS, Mukhtar H (2010) Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J 25(4):1098–1207

    Google Scholar 

  • Sigler K, Ruch RJ (1993) Enhancement of gap junctional intercellular communication in tumor promoter-treated cells by components of green tea. Cancer Lett 69:15–19

    Article  CAS  PubMed  Google Scholar 

  • Silverman N, Maniatis T (2001) NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev 15:2321–2342

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Singh BR, Singh RL, Prakash D, Dhakarey R, Upadhyay G, Singh HB (2009a) Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem Toxicol 47:1109–1116

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Singh BR, Singh RL, Prakash D, Sarma BK, Singh HB (2009b) Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L. Food Chem Toxicol 47:778–786

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Singh BR, Singh RL, Prakash D, Singh DP, Sarma BK, Upadhyay G, Singh HB (2009c) Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potent antioxidant and antimutagenic activities. Food Chem Toxicol 47:1161–1167

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Singh BR, Singh RL, Prakash D, Singh DP, Sarma BK, Upadhyay G, Singh HB (2009d) Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potential antioxidant and antimutagenic activities. Food Chem Toxicol

    Google Scholar 

  • Singh BN, Zhang G, Hwa YL, Li J, Dowdy SC, Jiang SW (2010a) Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther 10:935–954

    Article  CAS  PubMed  Google Scholar 

  • Singh HB, Singh BN, Singh SP, Nautiyal CS (2010b) Solid-state cultivation of Trichoderma harzianum NBRI-1055 for modulating natural antioxidants in soybean seed matrix. Bioresour Technol 101:6444–6453

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Tyagi S, Bhui K, Prasad S, Shukla Y (2010c) Regulation of cell growth through cell cycle arrest and apoptosis in HPV 16 positive human cervical cancer cells by tea polyphenols. Invest New Drugs 28:216–224

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12):1807–1821

    Article  CAS  PubMed  Google Scholar 

  • Smith DM, Wang Z, Kazi A, Li LH, Chan TH, Dou QP (2002) Synthetic analogs of green tea polyphenols as proteasome inhibitors. Mol Med 8:382–392

    CAS  PubMed  Google Scholar 

  • Sonee M, Sum T, Wang C, Mukherjee SK (2004) The soy isoflavone, genistein, protects human cortical neuronal cells from oxidative stress. Neurotoxicology 25:885–891

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RK, Unterman TG, Shankar S (2010) FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Mol Cell Biochem 337:201–212

    Article  CAS  PubMed  Google Scholar 

  • Srividhya R, Jyothilakshmi V, Arulmathi K, Senthilkumaran V, Kalaiselvi P (2008) Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (-)-epigallocatechin-3-gallate. Int J Dev Neurosci 26:217–223

    Article  CAS  PubMed  Google Scholar 

  • Subbaramaiah K, Dannenberg AJ (2003) Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 24:96–102

    Article  CAS  PubMed  Google Scholar 

  • Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Tokino T, Shinomura Y, Imai K, Toyota M (2008) DNA methylation and cancer pathways in gastrointestinal tumors. Pharmacogenomics 9:1917–1928

    Article  CAS  PubMed  Google Scholar 

  • Syed DN, Afaq F, Kweon MH, Hadi N, Bhatia N, Spiegelman VS, Mukhtar H (2007) Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-kappaB activation in normal human bronchial epithelial cells. Oncogene 26:673–682

    Article  CAS  PubMed  Google Scholar 

  • Tachibana H, Fujimura Y, Yamada K (2004) Tea polyphenol epigallocatechin-3-gallate associates with plasma membrane lipid rafts: lipid rafts mediate anti-allergic action of the catechin. Biofactors 21:383–385

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nakae D, Horiguchi K, Akai H, Kobayashi Y, Satoh H, Tsujiuchi T, Denda A, Konishi Y (1997) Inhibition by green tea extract of diethylnitrosamine-initiated but not choline-deficient, L-amino acid-defined diet-associated development of putative preneoplastic, glutathione S-transferase placental form-positive lesions in rat liver. Jpn J Cancer Res 88:356–362

    Article  CAS  PubMed  Google Scholar 

  • Tang GQ, Yan TQ, Guo W, Ren TT, Peng CL, Zhao H, Lu XC, Zhao FL, Han X (2010a) (-)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells. J Cancer Res Clin Oncol 136:1179–1185

    Article  CAS  PubMed  Google Scholar 

  • Tang SN, Singh C, Nall D, Meeker D, Shankar S, Srivastava RK (2010b) The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J Mol Signal 5:14

    Article  PubMed  CAS  Google Scholar 

  • Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK (2011) Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer

    Google Scholar 

  • Teng B, Qin W, Ansari HR, Mustafa SJ (2005) Involvement of p38-mitogen-activated protein kinase in adenosine receptor-mediated relaxation of coronary artery. Am J Physiol Heart Circ Physiol 288:H2574–H2580

    Article  CAS  PubMed  Google Scholar 

  • Thawonsuwan J, Kiron V, Satoh S, Panigrahi A, Verlhac V (2010) Epigallocatechin-3-gallate (EGCG) affects the antioxidant and immune defense of the rainbow trout, Oncorhynchus mykiss. Fish Physiol Biochem 36:687–697

    Article  CAS  PubMed  Google Scholar 

  • Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21:140–146

    Article  CAS  PubMed  Google Scholar 

  • Tu SH, Ku CY, Ho CT, Chen CS, Huang CS, Lee CH, Chen LC, Pan MH, Chang HW, Chang CH, Chang YJ, Wei PL, Wu CH, Ho YS (2011) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits nicotine- and estrogen-induced alpha9-nicotinic acetylcholine receptor upregulation in human breast cancer cells. Mol Nutr Food Res 55:455–466

    Article  CAS  PubMed  Google Scholar 

  • Volate SR, Muga SJ, Issa AY, Nitcheva D, Smith T, Wargovich MJ (2009) Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Mol Carcinog 48:920–933

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Hong JY, Huang MT, Reuhl KR, Conney AH, Yang CS (1992) Inhibition of N-nitrosodiethylamine- and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorigenesis in A/J mice by green tea and black tea. Cancer Res 52:1943–1947

    CAS  PubMed  Google Scholar 

  • Wang Z, Li Y, Kong D, Ahmad A, Banerjee S, Sarkar FH (2010) Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett 292:141–148

    Article  CAS  PubMed  Google Scholar 

  • Wiseman SA, Balentine DA, Frei B (1997) Antioxidants in tea. Crit Rev Food Sci Nutr 37:705–718

    Article  CAS  PubMed  Google Scholar 

  • Yamane T, Takahashi T, Kuwata K, Oya K, Inagake M, Kitao Y, Suganuma M, Fujiki H (1995) Inhibition of N-methyl-N′-nitro-N-nitrosoguanidine-induced carcinogenesis by (-)-epigallocatechin gallate in the rat glandular stomach. Cancer Res 55:2081–2084

    CAS  PubMed  Google Scholar 

  • Yang TT, Koo MW (2000) Inhibitory effect of Chinese green tea on endothelial cell-induced LDL oxidation. Atherosclerosis 148:67–73

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Chung JY, Yang G, Chhabra SK, Lee MJ (2000) Tea and tea polyphenols in cancer prevention. J Nutr 130:472S–478S

    CAS  PubMed  Google Scholar 

  • Yang CS, Maliakal P, Meng X (2002) Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 42:25–54

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Lambert JD, Hou Z, Ju J, Lu G, Hao X (2006a) Molecular targets for the cancer preventive activity of tea polyphenols. Mol Carcinog 45:431–435

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Sang S, Lambert JD, Hou Z, Ju J, Lu G (2006b) Possible mechanisms of the cancer-preventive activities of green tea. Mol Nutr Food Res 50:170–175

    Article  CAS  PubMed  Google Scholar 

  • Yang SP, Wilson K, Kawa A, Raner GM (2006c) Effects of green tea extracts on gene expression in HepG2 and Cal-27 cells. Food Chem Toxicol 44:1075–1081

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Lambert JD, Ju J, Lu G, Sang S (2007) Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol Appl Pharmacol 224:265–273

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429–439

    Article  CAS  PubMed  Google Scholar 

  • Yuan JM, Gao YT, Yang CS, Yu MC (2007) Urinary biomarkers of tea polyphenols and risk of colorectal cancer in the Shanghai Cohort Study. Int J Cancer 120:1344–1350

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Weissfeld JL, Romkes M, Land SR, Grandis JR, Siegfried JM (2007) Association of the EGFR intron 1 CA repeat length with lung cancer risk. Mol Carcinog 46:372–380

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Stiegler AL, Boggon TJ, Kobayashi S, Halmos B (2010) EGFR-mutated lung cancer: a paradigm of molecular oncology. Oncotarget 1:497–514

    PubMed  Google Scholar 

  • Zhang CX, Wang SM, Jin HY (2011) Inhibitory effect and mechanism of (-)-epigallocatechin-3-gallate on HT29 and HCT-8 colorectal cancer cell lines and expression of HES1 and JAG1. Zhonghua Wei Chang Wai Ke Za Zhi 14:636–639

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank our lab members for critical reading of the manuscript. This work was supported in part by the grants from the National Institutes of Health (R01CA125262, RO1CA114469 and RO1CA125262-02S1) and Kansas Bioscience Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Singh, B.N., Shankar, S., Srivastava, R.K. (2012). Intracellular Signaling Network as a Prime Chemotherapy Target of Green Tea Catechin, (–)-Epigallocatechin-3-gallate. In: Shankar, S., Srivastava, R. (eds) Nutrition, Diet and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2923-0_15

Download citation

Publish with us

Policies and ethics