Skip to main content

Plastid Transformation in Flowering Plants

  • Chapter
  • First Online:
Genomics of Chloroplasts and Mitochondria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 35))

Summary

The plastid genome of higher plants is relatively small, 120–230-kb in size, and present in up to 10,000 copies per cell. Standard protocols for the introduction of transforming DNA employ biolistic DNA delivery or polyethylene glycol treatment. Genetically stable, transgenic plants are obtained by modification of the plastid genome by homologous recombination, followed by selection for the transformed genome copy by the expression of marker genes that protect the cells from selective agents. Commonly used selective agents are antibiotics, including spectinomycin, streptomycin, kanamycin and chloramphenicol. Selection for resistance to amino acid analogues has also been successful. The types of plastid genome manipulations include gene deletion, gene insertion, and gene replacement, facilitated by specially designed transformation vectors. Methods are also available for post-transformation removal of marker genes. The model species for plastid genetic manipulation is Nicotiana tabacum, in which most protocols have been tested. Plastid transformation is also available in several solanaceous crops (tomato, potato, eggplant) and ornamental species (petunia, Nicotiana sylvestris). Significant progress has been made with Brasssicaceae including cabbage, oilseed rape and Arabidopsis. Recent additions to the crops in which plastid transformation is reproducibly obtained are lettuce, soybean and sugar beet. The monocots are a taxonomic group recalcitrant to plastid transformation; initial inroads have been made only in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAD –:

Aminoglycoside 3″-adenylyltransferase;

AS –:

Anthranilate synthase;

ASA2 –:

Anthranilate synthase alpha-subunit;

BA:

Betaine aldehyde;

BADH –:

Betaine aldehyde dehydrogenase enzyme;

CAT –:

Chloramphenicol acetyltransferase;

GFP –:

Green fluorescent protein;

GUS –:

b-glucuronidase;

NPTII –:

Neomycin phosphotransferase II;

PEG –:

Polyethylene glycol;

PIG –:

Particle inflow gun;

PPT –:

Phosphinothricin herbicide;

ptDNA –:

Plastid DNA, plastid genome

References

  • Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66

    Article  PubMed  CAS  Google Scholar 

  • Barkan A (2011) Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol 155:1520–1532

    Article  PubMed  CAS  Google Scholar 

  • Barone P, Zhang XH, Widholm JM (2009) Tobacco plastid transformation using the feedback-insensitive anthranilate synthase [alpha]-subunit of tobacco (ASA2) as a new selectable marker. J Exp Bot 60:3195–3202

    Article  PubMed  CAS  Google Scholar 

  • Blowers AD, Bogorad L, Shark KB, Sanford JC (1989) Studies on Chlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome. Plant Cell 1:123–132

    PubMed  CAS  Google Scholar 

  • Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  PubMed  CAS  Google Scholar 

  • Bock R, Hermann M, Kössel H (1996) In vivo dissection of cis-acting determinants for plastid RNA editing. EMBO J 15:5052–5059

    PubMed  CAS  Google Scholar 

  • Boyhan D, Daniell H (2011) Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol J 9:585–598

    Article  PubMed  CAS  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  PubMed  CAS  Google Scholar 

  • Cardi T, Lenzi P, Maliga P (2010) Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 9:893–911

    Article  PubMed  CAS  Google Scholar 

  • Carrer H, Maliga P (1995) Targeted insertion of foreign genes into the tobacco plastid genome without physical linkage to the selectable marker gene. Biotechnology 13:791–794

    Article  CAS  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri S, Maliga P (1996) Sequences directing C to U editing of the plastid psbL mRNA are located within a 22 nucleotide segment spanning the editing site. EMBO J 15:5958–5964

    PubMed  CAS  Google Scholar 

  • Cheng L, Li HP, Qu B, Huang T, Tu JX, Fu TD, Liao YC (2010) Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep 29:371–381

    Article  PubMed  CAS  Google Scholar 

  • Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J 72:171–178

    Article  Google Scholar 

  • Cornelissen M, Vandewiele M (1989) Nuclear transcriptional activity of the tobacco plastid psbA promoter. Nucleic Acids Res 17:19–29

    Article  PubMed  CAS  Google Scholar 

  • Cui C, Song F, Tan Y, Zhou X, Zhao W, Ma F, Liu Y, Hussain J, Wang Y, Yang G, He G (2011) Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.). Acta Biochim Biophys Sin (Shanghai) 43:284–291

    Article  CAS  Google Scholar 

  • Daniell H, Vivekananda J, Nielsen BL, Ye GN, Tewari KK, Sanford JC (1990) Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc Natl Acad Sci USA 87:88–92

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Muthukumar B, Lee SB (2001) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet 39:109–116

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679

    Article  PubMed  CAS  Google Scholar 

  • Davarpanah SJ, Jung SH, Kim YJ, Park YI, Min SR, Liu JR, Jeong WJ (2009) Stable plastid transformation in Nicotiana benthamiana. J Plant Biol 52:244–250

    Article  CAS  Google Scholar 

  • Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553

    Article  PubMed  CAS  Google Scholar 

  • De Marchis F, Wang Y, Stevanato P, Arcioni S, Bellucci M (2009) Genetic transformation of the sugar beet plastome. Transgenic Res 18:17–30

    Article  PubMed  CAS  Google Scholar 

  • Dix PJ, Kavanagh TA (1995) Transforming the plastome: genetic markers and DNA delivery systems. Euphytica 85:29–34

    Article  CAS  Google Scholar 

  • Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489

    Article  PubMed  CAS  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    Article  PubMed  CAS  Google Scholar 

  • Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F, Job C, Kay E, Wisniewski JP, Ferullo JM, Pelissier B, Sailland A, Tissot G (2007) Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol J 5:118–133

    Article  PubMed  CAS  Google Scholar 

  • Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop HU (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333–345

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-San Millan A, Obregon P, Veramendi J (2011) Over-expression of peptide deformylase in chloroplasts confers actinonin resistance, but is not a suitable selective marker system for plastid transformation. Transgenic Res 20:613–624

    Article  PubMed  CAS  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328

    Article  CAS  Google Scholar 

  • Fromm H, Edelman M, Aviv D, Galun E (1987) The molecular basis for rDNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J 6:3233–3237

    PubMed  CAS  Google Scholar 

  • Gerats T, Vandenbussche M (2005) A model system comparative for research: Petunia. Trends Plant Sci 10:251–256

    Article  PubMed  CAS  Google Scholar 

  • Gillman JD, Bentolila S, Hanson MR (2009) Cytoplasmic male sterility in Petunia. In: Gerats T, Strommer J (eds) Petunia. Springer Science+Business Media, LLC, New York, pp 107–129

    Chapter  Google Scholar 

  • Golds T, Maliga P, Koop HU (1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Biotechnology 11:95–97

    Article  CAS  Google Scholar 

  • Greer LF 3rd, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–74

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz PTJ, Gilbertson L, Staub JM (2001) Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J 27:161–170

    Article  PubMed  CAS  Google Scholar 

  • Hibberd JM, Linley PJ, Khan MS, Gray JC (1998) Transient expression of green fluorescent protein in various plastid types following microprojectile bombardment. Plant J 16:627–632

    Article  CAS  Google Scholar 

  • Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114

    Article  PubMed  CAS  Google Scholar 

  • Huang FC, Klaus SMJ, Herz S, Zuo Z, Koop HU, Golds TJ (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Genet Genomics 268:19–27

    Article  PubMed  CAS  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  PubMed  CAS  Google Scholar 

  • Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240:1538–1541

    Article  PubMed  CAS  Google Scholar 

  • Kahlau S, Aspinall S, Gray JC, Bock R (2006) Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Mol Evol 63:194–207

    Article  PubMed  CAS  Google Scholar 

  • Kanagaraj AP, Verma D, Daniell H (2011) Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts. Plant Mol Biol 76:323–333

    Article  PubMed  CAS  Google Scholar 

  • Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa K (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217

    Article  PubMed  CAS  Google Scholar 

  • Kanevski I, Maliga P, Rhoades DF, Gutteridge S (1999) Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and a tobacco small subunit hybrid. Plant Physiol 119:133–141

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horváth EM, Dix PJ, Medgyesy P (1999) Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 152:1111–1122

    PubMed  CAS  Google Scholar 

  • Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker to track plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  PubMed  CAS  Google Scholar 

  • Kittiwongwattana C, Lutz KA, Clark M, Maliga P (2007) Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol Biol 64:137–143

    Article  PubMed  CAS  Google Scholar 

  • Klaus SMJ, Huang FC, Eibl C, Koop HU, Golds TJ (2003) Rapid and proven production of transplastomic tobacco plants by restoration of pigmentation and photosynthesis. Plant J 35:811–821

    Article  PubMed  CAS  Google Scholar 

  • Klaus SMJ, Huang FC, Golds TJ, Koop H-U (2004) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol 22:225–229

    Article  PubMed  CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids in living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  • Klein TM, Gradziel T, Fromm ME, Sanford JM (1988a) Factors influencing gene delivery into Zea mays cell by high-velocity microprojectiles. Biotechnology 6:559–563

    Article  CAS  Google Scholar 

  • Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P (1988b) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci USA 85:8502–8505

    Article  PubMed  CAS  Google Scholar 

  • Kode V, Mudd E, Iamtham S, Day A (2006) Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. Plant J 46:901–909

    Article  PubMed  CAS  Google Scholar 

  • Koop HU, Steinmüller K, Wagner H, Rössler C, Eibl C, Sacher L (1996) Integration of foreign sequences into the tobacco plastome via PEG-mediated protoplast transformation. Planta 199:193–201

    Article  PubMed  CAS  Google Scholar 

  • Krichevsky A, Meyers B, Vainstein A, Maliga P, Citovsky V (2010) Autoluminescent plants. PLoS One 5:e15461

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004a) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004b) Plastid-expressed betaine aldehyde deydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  PubMed  CAS  Google Scholar 

  • Kuroda H, Maliga P (2002) Over-expression of the clpP 5′-UTR in a chimeric context causes a mutant phenotype suggesting competition for a clpP-specific RNA maturation factor in tobacco chloroplasts. Plant Physiol 129:1600–1606

    Article  PubMed  CAS  Google Scholar 

  • Langbecker CL, Ye GN, Broyles DL, Duggan LL, Xu CW, Hajdukiewicz PT, Armstrong CL, Staub JM (2004) High-frequency transformation of undeveloped plastids in tobacco suspension cells. Plant Physiol 135:39–46

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1–13

    Article  CAS  Google Scholar 

  • Lee SM, Kang KS, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410

    PubMed  CAS  Google Scholar 

  • Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19:47–56

    Article  PubMed  CAS  Google Scholar 

  • Li W, Ruf S, Bock R (2011) Chloramphenicol acetyltransferase as selectable marker for plastid transformation. Plant Mol Biol 76:443–451

    Article  PubMed  CAS  Google Scholar 

  • Lim S, Ashida H, Watanabe R, Inai K, Kim YS, Mukougawa K, Fukuda H, Tomizawa K, Ushiyama K, Asao H, Tamoi M, Masutani H, Shigeoka S, Yodoi J, Yokota A (2011) Production of biologically active human thioredoxin 1 protein in lettuce chloroplasts. Plant Mol Biol 76:335–344

    Article  PubMed  CAS  Google Scholar 

  • Liu CW, Lin CC, Chen JJ, Tseng MJ (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744

    Article  PubMed  CAS  Google Scholar 

  • Liu CW, Lin CC, Yiu JC, Chen JJ, Tseng MJ (2008) Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor Appl Genet 117:75–88

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Maliga P (2007a) Transformation of the plastid genome to study RNA editing. Methods Enzymol 424:501–518

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Maliga P (2007b) Construction of marker-free transplastomic plants. Curr Opin Biotechnol 18:107–114

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Maliga P (2008) Plastid genomes in a regenerating tobacco shoot derive from a small number of copies selected through a stochastic process. Plant J 56:975–983

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590

    Article  PubMed  CAS  Google Scholar 

  • Lutz K, Corneille S, Azhagiri AK, Svab Z, Maliga P (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 37:906–913

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Bosacchi MH, Maliga P (2006a) Plastid marker gene excision by transiently expressed CRE recombinase. Plant J 45:447–456

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Svab Z, Maliga P (2006b) Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nat Protoc 1:900–910

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Azhagiri AK, Tungsuchat-Huang T, Maliga P (2007) A guide to choosing vectors for transformation of the plastid genome of higher plants. Plant Physiol 145:1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Azhagiri A, Maliga P (2011) Transplastomics in Arabidopsis: progress towards developing an efficient method. In: Jarvis RP (ed) Chloroplast research in arabidopsis. Springer Science+Business Media, LLC, New York

    Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Maliga P, Bock R (2011) Plastid biotechnology: food, fuel and medicine for the 21st century. Plant Physiol 155:1501–1510

    Article  PubMed  CAS  Google Scholar 

  • Maliga P, Svab Z (2011) Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. In: Birchler JJ (ed) Plant chromosome engineering: methods and protocols. Springer Science+Business Media, LLC, New York, pp 37–50

    Chapter  Google Scholar 

  • McCabe MS, Klaas M, Gonzalez-Rabade N, Poage M, Badillo-Corona JA, Zhou F, Karcher D, Bock R, Gray JC, Dix PJ (2008) Plastid transformation of high-biomass tobacco variety Maryland Mammoth for production of human immunodeficiency virus type 1 (HIV-1) p24 antigen. Plant Biotechnol J 6:914–929

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TT, Nugent GD, Cardi T, Dix PJ (2005) Generation of homoplasmic plastid transformants of a commercial cultivar of potato (Solanum tuberosum L.). Plant Sci 168:1495–1500

    Article  CAS  Google Scholar 

  • Nock CJ, Waters DLE, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ (2011) Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J 9:328–333

    Article  PubMed  CAS  Google Scholar 

  • Nugent GD, Ten Have M, van der Gulik A, Dix PJ, Uijtewaal BA, Mordhorst AP (2005) Plastid transformants of tomato selected using mutations affecting ribosome structure. Plant Cell Rep 24:341–349

    Article  PubMed  CAS  Google Scholar 

  • Nugent GD, Coyne S, Nguyen TT, Kavanagh TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake into protoplasts. Plant Sci 170:135–142

    Article  CAS  Google Scholar 

  • O’Neill C, Horvath GV, Horvath E, Dix PJ, Medgyesy P (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J 3:729–738

    Article  PubMed  Google Scholar 

  • Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637–646

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3:2717–2722

    PubMed  CAS  Google Scholar 

  • Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry RJ (ed) Diversity and evolution of plants – genotypic and phenotypic variation in higher plants. CABI, Wallingford, pp 45–68

    Chapter  Google Scholar 

  • Reed ML, Hanson MR (1997) A heterologous maize rpoB editing site is recognized by transgenic tobacco chloroplasts. Mol Cell Biol 17:6948–6952

    PubMed  CAS  Google Scholar 

  • Reed ML, Wilson SK, Sutton CA, Hanson MR (2001) High-level expression of a synthetic red-shifted GFP coding region incorporated into the chloroplasts. Plant J 27:257–265

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids: foreign protein expression in fruit. Nat Biotechnol 19:870–875

    Article  PubMed  CAS  Google Scholar 

  • Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts – oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5:495–510

    Article  PubMed  CAS  Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    Article  PubMed  CAS  Google Scholar 

  • Rumeau D, Becuwe-Linka N, Beyly A, Louwagie M, Garin J, Peltier G (2005) New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid NDH complex functioning in higher plants. Plant Cell 17:219–232

    Article  PubMed  CAS  Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509

    Article  PubMed  CAS  Google Scholar 

  • Serino G, Maliga P (1997) A negative selection scheme based on the expression of cytosine deaminase in plastids. Plant J 12:697–701

    Article  PubMed  CAS  Google Scholar 

  • Sheppard AE, Ayliffe MA, Blatch L, Day A, Delaney SK, Khairul-Fahmy N, Li Y, Madesis P, Pryor AJ, Timmis JN (2008) Transfer of plastid DNA to the nucleus is elevated during male gametogenesis in tobacco. Plant Physiol 148:328–336

    Article  PubMed  CAS  Google Scholar 

  • Shiina T, Hayashi K, Ishii N, Morikawa K, Toyoshima Y (2000) Chloroplast tubules visualized in transplastomic plants expressing green fluorescent protein. Plant Cell Physiol 41:367–371

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Goto M, Hanai M, Shimizu T, Izawa N, Kanamoto H, Tomizawa K, Yokota A, Kobayashi H (2008) Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco. Plant Physiol 147:1976–1983

    Article  PubMed  CAS  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  PubMed  CAS  Google Scholar 

  • Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24

    Article  CAS  Google Scholar 

  • Sinagawa-Garcia SR, Tungsuchat-Huang T, Paredes-Lopez O, Maliga P (2009) Next generation synthetic vectors for transformation of the plastid genome of higher plants. Plant Mol Biol 70:487–498

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Verma SS, Bansal KC (2010) Plastid transformation in eggplant (Solanum melongena L.). Transgenic Res 19:113–119

    Article  PubMed  CAS  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–122

    Article  PubMed  CAS  Google Scholar 

  • Sporlein B, Streubel M, Dahlfeld G, Westhoff P, Koop HU (1991) PEG-mediated plastid transformation: a new system for transient gene expression assays in chloroplasts. Theor Appl Genet 82:717–722

    Article  Google Scholar 

  • Sriraman P, Silhavy D, Maliga P (1998) Transcription from heterologous rRNA operon promoters in chloroplasts reveals requirement for specific activating factors. Plant Physiol 117:1495–1499

    Article  PubMed  CAS  Google Scholar 

  • Staub JM, Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4:39–45

    PubMed  CAS  Google Scholar 

  • Staub JM, Maliga P (1993) Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J 12:601–606

    PubMed  CAS  Google Scholar 

  • Staub JM, Maliga P (1994) Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J 6:547–553

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Bock R (2009) Exchange of genetic material between cells in plant tissue grafts. Science 324:649–651

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M (1989) The chloroplast chromosomes in land plants. Annu Rev Cell Biol 5:51–70

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JY, Sriraman P, Svab Z, Maliga P (2003) Unique architecture of the plastid ribosomal RNA operon promoter recognized by the multisubunit RNA polymerase (PEP) in tobacco and other higher plants. Plant Cell 15:195–205

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Xia H, Cao M, Zhang X, Zeng W, Hu S, Tong W, Wang J, Wang J, Yu J, Yang H, Zhu L (2004) A comparison of rice chloroplast genomes. Plant Physiol 135:412–420

    Article  PubMed  CAS  Google Scholar 

  • Tungsuchat-Huang T, Sinagawa-Garcia SR, Paredes-Lopez O, Maliga P (2010) Study of plastid genome stability in tobacco reveals that the loss of marker genes is more likely by gene conversion than by recombination between 34-bp loxP repeats. Plant Physiol 153:252–259

    Article  PubMed  CAS  Google Scholar 

  • Tungsuchat-Huang T, Slivinski KM, Sinagawa-Garcia SR, Maliga P (2011) Visual spectinomycin resistance gene for facile identification of transplastomic sectors in tobacco leaves. Plant Mol Biol 76:453–461

    Article  PubMed  CAS  Google Scholar 

  • Valkov VT, Gargano D, Manna C, Formisano G, Dix PJ, Gray JC, Scotti N, Cardi T (2011) High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5′ and 3′ regulatory sequences. Transgenic Res 20:137–151

    Article  PubMed  CAS  Google Scholar 

  • Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143

    Article  PubMed  CAS  Google Scholar 

  • Wei Z, Liu Y, Lin C, Wang Y, Cai Q, Dong Y, Xing S (2011) Transformation of alfalfa chloroplasts and expression of green fluorescent protein in a forage crop. Biotechnol Lett 33:2487–2494

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Sharwood RE (2008) Construction of a tobacco master line to improve Rubisco engineering in chloroplasts. J Exp Bot 59(7):1909–1921

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature’s CO2 sequestering enzyme, Rubisco. Plant Physiol 155:27–35

    Article  PubMed  CAS  Google Scholar 

  • Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    Article  PubMed  CAS  Google Scholar 

  • Ye GN, Daniell H, Sanford JC (1990) Optimization of delivery of foreign DNA into higher-plant chloroplasts. Plant Mol Biol 15:809–819

    Article  PubMed  CAS  Google Scholar 

  • Ye GN, Colburn S, Xu CW, Hajdukiewicz PTJ, Staub JM (2003) Persistence of unselected transgenic DNA during a plastid transformation and segregation approach to herbicide resistance. Plant Physiol 133:402–410

    Article  PubMed  CAS  Google Scholar 

  • Yu LX, Gray BN, Rutzke CJ, Walsker LP, Wilson DB, Hanson MR (2007) Expression of thermostable microbial cellulases in the chloroplast of nicotine-free tobacco. J Biotechnol 131:362–369

    Article  PubMed  CAS  Google Scholar 

  • Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genomics 275:367–373

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AM, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6:897–913

    Article  PubMed  CAS  Google Scholar 

  • Zou Z, Eibl C, Koop HU (2003) The stem-loop structure of the tobacco psbA 5′UTR is an important determinant of mRNA stability and translation efficiency. Mol Genet Genomics 269:340–349

    Article  PubMed  CAS  Google Scholar 

  • Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 22:3819–3824

    Article  PubMed  CAS  Google Scholar 

  • Zubko MK, Zubko EI, van Zuilen K, Mayer P, Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13:523–530

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research in the author’s laboratory was supported by grants from the USDA National Institute of Food and Agriculture Biotechnology Risk Assessment Research Grant Program Award No. 2005-33120-16524, 2008-03012 and 2010-2716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Maliga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Maliga, P. (2012). Plastid Transformation in Flowering Plants. In: Bock, R., Knoop, V. (eds) Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2920-9_17

Download citation

Publish with us

Policies and ethics