Skip to main content

Plastome Mutants of Higher Plants

  • Chapter
  • First Online:
Genomics of Chloroplasts and Mitochondria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 35))

Summary

This chapter provides an overview of higher plant plastome mutants and their application in molecular biology, cytoplasmic genetics and biotechnology. Starting from an outline on plastid inheritance, the sources of mutants, methods of their maintenance and molecular approaches to identify the underlying genetic changes are presented. Subsequently, the molecularly characterized plastome mutants and their impact on our current knowledge about plastids are summarized. Recent developments in genomics will likely overcome technical limitations connected with the elucidation of mutant loci in plastome mutants. The great potential of plastid mutants in future research, for example in studying plastid gene regulation, as well as suitable model plants and available genetic resources are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Amino acid;

accD – :

Acetyl co-enzyme A carboxylase subunit D gene;

aadA – :

Aminoglycoside 3-­adenylyltransferase gene;

AtMSH1:

Arabidopsis thaliana MutS homolog 1;

AtMsh1 – :

Arabidopsis thaliana MutS homolog 1 gene;

atp – :

ATP synthase subunit gene;

AtWhy – :

Arabidopsis thaliana whirly gene;

AtWHY:

Arabidopsis thaliana WHIRLY protein;

bp:

Base pair;

clpP – :

Chloroplast caseinolytic protease subunit P gene;

CMS:

Cytoplasmic male sterility;

cpRecA – :

Chloroplast RecA gene;

dsDNA:

Double-stranded DNA;

EMS:

Ethyl-methane-sulfonate;

IF1:

Translation initiation factor 1;

indel:

Insertion/deletion;

InfA:

Translation initiation factor A;

infA –:

Translation initiation factor A gene;

matK – :

Maturase K gene;

MNNG:

Methyl-nitro-nitroso-guanidine; N/A – not available;

NGS:

Next-generation Sequencing;

NMU:

N-nitroso-N-methyl-urea;

PEG:

Polyethylene glycol;

petB – :

Cytochrome b6/f subunit B gene;

PGI:

Plastome-genome incompatibility;

PQ:

Plastoquinone;

PS I:

Photosystem I;

PS II:

Photosystem II;

Psa:

Photosystem I subunit;

psa – :

Photosystem I subunit gene;

Psb:

Photosystem II subunit;

psb – :

Photosystem II subunit gene;

ptDNA:

Plastid DNA;

rbcL – :

Ribulose-1,5-bisphosphate carboxylase oxygenase large subunit gene;

RbcL:

Ribulose-1,5-bisphosphate carboxylase oxygenase large subunit;

RbcS:

Ribulose-1,5-bisphosphate carboxylase oxygenase small subunit;

RFLP:

Restriction length polymorphism;

rps12 – :

Ribosomal protein small subunit 12 gene;

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase oxygenase;

SAM:

Shoot apical meristem;

TILLING:

Targeting induced local lesions in genomes;

trnE(UUC) – :

tRNA-Glu (anticodon UUC);

UV:

Ultra-violet;

ycf – :

Hypothetical chloroplast reading frame;

ZmWhy – :

Zea mays whirly gene

References

  • Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci 100:5968–5973

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Wahab OAL, Tilney-Bassett RAE (1981) The role of plastid competition in the control of plastid inheritance in the zonal Pelargonium. Plasmid 6:7–16

    Article  PubMed  CAS  Google Scholar 

  • Archer EK, Bonnett HT (1987) Characterization of a virescent chloroplast mutant of tobacco. Plant Physiol 83:920–925

    Article  PubMed  CAS  Google Scholar 

  • Arntzen CJ, Duesing JH (1983) Chloroplast-encoded herbicide resistance. In: Downey K, Voellmy RW, Ahmad F, Shultz J (eds) Advances in gene technology: molecular genetics of plants and animals, vol 20. Academic, New York, pp 273–294

    Google Scholar 

  • Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA (2009) Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity. Genetics 183:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Atherton RA, McComish BJ, Shepherd LD, Berry LA, Albert NW, Lockhart PJ (2010) Whole genome sequencing of enriched chloroplast DNA using the Illumina GAII platform. Plant Methods 6:22

    Article  PubMed  CAS  Google Scholar 

  • Aviv D, Fluhr R, Edelman M, Galun E (1980) Progeny analysis of the interspecific somatic hybrids: Nicotiana tabacum (CMS)  +  Nicotiana sylvestris with respect to nuclear and chloroplast markers. Theor Appl Genet 56:145–150

    Article  CAS  Google Scholar 

  • Avni A, Edelman M, Rachailovich I, Aviv D, Fluhr R (1989) A point mutation in the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase affects holoenzyme assembly in Nicotiana tabacum. EMBO J 8:1915–1918

    PubMed  CAS  Google Scholar 

  • Azhagiri AK, Maliga P (2007) Exceptional paternal inheritance of plastids in Arabidopsis suggests that low-frequency leakage of plastids via pollen may be universal in plants. Plant J 52:817–823

    Article  PubMed  CAS  Google Scholar 

  • Babiychuk E, Schantz R, Cherep N, Weil J-H, Gleba Y, Kushnir S (1995) Alterations in chlorophyll a/b binding proteins in Solanaceae cybrids. Mol Gen Genet 249:648–654

    Article  PubMed  CAS  Google Scholar 

  • Barr CM, Neiman M, Taylor DR (2005) Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol 168:39–50

    Article  PubMed  CAS  Google Scholar 

  • Baur E (1909) Das Wesen und die Erblichkeitsverhältnisse der “varietates albomarginatae hort.” von Pelargonium zonale. Z Indukt Abstamm Vererbungs 1:330–351

    Google Scholar 

  • Baur E (1910) Untersuchungen über die Vererbung von Chromatophorenmerkmalen bei Melandrium, Antirrhinum und Aquilegia. Z Indukt Abstamm Vererbungs 4:81–102

    Google Scholar 

  • Beletskii YD, Razoriteleva EK, Zhdanov YA (1969) Cytoplasmic cunflower mutations induced by N-niuosomethylurea. Dokl Akad Nauk SSSR 186:1425–1426

    CAS  Google Scholar 

  • Beranek DT (1990) Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res 231:11–30

    Article  PubMed  CAS  Google Scholar 

  • Bidani A, Nouri-Ellouz O, Lakhoua L, Sihachakr D, Cheniclet C, Mahjoub A, Drira N, Gargouri-Bouzid R (2007) Interspecific potato somatic hybrids between Solanum berthaultii and Solanum tuberosum L. showed recombinant plastome and improved tolerance to salinity. Plant Cell Tissue Organ Cult 91:179–189

    Article  CAS  Google Scholar 

  • Birky CW (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci 92:11331–11338

    Article  PubMed  CAS  Google Scholar 

  • Birky CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125–148

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2007a) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2007b) Structure, function, and inheritance of plastid genomes. In: Bock R (ed) Cell and molecular biology of plastids, vol 19. Springer, Berlin/Heidelberg/New York, pp 29–63

    Chapter  Google Scholar 

  • Bock R, Timmis JN (2008) Reconstructing evolution: gene transfer from plastids to the nucleus. Bioessays 30:556–566

    Article  PubMed  CAS  Google Scholar 

  • Bollenbach T, Schuster G, Portnoy V, Stern D (2007) Processing, degradation, and polyadenylation of chloroplast transcripts. In: Bock R (ed) Cell and molecular biology of plastids, vol 19. Springer, Berlin/Heidelberg/New York, pp 175–211

    Chapter  Google Scholar 

  • Börner T, Sears B (1986) Plastome mutants. Plant Mol Biol Rep 4:69–92

    Article  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  PubMed  CAS  Google Scholar 

  • Boynton JE, Gillham NW, Newman SM, Harris EH (1992) Organelle genetics and transformation of Chlamydomonas. In: Herrmann RG (ed) Cell organelles. Springer, Vienna/New York, pp 3–64

    Chapter  Google Scholar 

  • Cappadocia L, Marechal A, Parent J-S, Lepage E, Sygusch J, Brisson N (2010) Crystal structures of DNA-Whirly complexes and their role in Arabidopsis organelle genome repair. Plant Cell 22:1849–1867

    Article  PubMed  CAS  Google Scholar 

  • Chang T-L, Stoike LL, Zarka D, Schewe G, Chiu W-L, Jarrell DC, Sears BB (1996) Characterization of primary lesions caused by the plastome mutator of Oenothera. Curr Genet 30:522–530

    Article  PubMed  CAS  Google Scholar 

  • Chia CP, Duesing JH, Arntzen CJ (1986) Developmental loss of photosystem II activity and structure in a chloroplast-encoded tobacco mutant, lutescens-1. Plant Physiol 82:19–27

    Article  PubMed  CAS  Google Scholar 

  • Chiu W-L, Sears BB (1985) Recombination between chloroplast DNAs does not occur in sexual crosses of Oenothera. Mol Gen Genet 198:525–528

    Article  PubMed  CAS  Google Scholar 

  • Chiu W-L, Sears BB (1993) Plastome-genome interactions affect plastid transmission in Oenothera. Genetics 133:989–997

    PubMed  CAS  Google Scholar 

  • Chiu W-L, Stubbe W, Sears BB (1988) Plastid inheritance in Oenothera: organelle genome modifies the extent of biparental plastid transmission. Curr Genet 13:181–189

    Article  CAS  Google Scholar 

  • Chiu W-L, Johnson EM, Kaplan SA, Blasko K, Sokalski MB, Wolfson R, Sears BB (1990) Oenothera chloroplast DNA polymorphisms associated with plastome mutator activity. Mol Gen Genet 221:59–64

    Article  CAS  Google Scholar 

  • Cho HS, Lee SS, Kim KD, Hwang I, Lim J-S, Park Y-I, Pai H-S (2004) DNA gyrase is involved in chloroplast nucleoid partitioning. Plant Cell 16:2665–2682

    Article  PubMed  CAS  Google Scholar 

  • Cleland RE (1935) Cyto-taxonomic studies on certain Oenotheras from California. Proc Am Philos Soc 75:339–429

    Google Scholar 

  • Colombo N, Rios RD, Prina AR (2006) Plastome analysis of barley chroloplast mutator-induced mutants. J Basic Appl Genet 17:5–9

    Google Scholar 

  • Colombo N, Emanuel C, Lainez V, Maldonado S, Prina A, Börner T (2008) The barley plastome mutant CL2 affects expression of nuclear and chloroplast housekeeping genes in a cell-age dependent manner. Mol Genet Genomics 279:403–414

    Article  PubMed  CAS  Google Scholar 

  • Correns C (1909) Vererbungsversuche mit blass (gelb) grünen und buntblättrigen Sippen bei Mirabilis Jalapa, Urtica pilulifera und Lunaria annua. Z Indukt Abstamm Vererbungs 1:291–329

    Google Scholar 

  • Cseplö A, Etzold T, Schell J, Schreier PH (1988) Point mutations in the 23S rRNA genes of four lincomycin resistant Nicotiana plumbaginifolia mutants could provide new selectable markers for chloroplast transformation. Mol Gen Genet 214:295–299

    Article  PubMed  Google Scholar 

  • Dauborn B, Brüggemann W (1998) A spontaneous point mutation in the RuBisCO large subunit gene impairing holoenzyme assembly renders the IVβ plastome mutant of Oenothera extremely light- and chilling sensitive. Physiol Plantarum 104:116–124

    Article  CAS  Google Scholar 

  • Day A, Ellis THN (1984) Chloroplast DNA deletions associated with wheat plants regenerated from pollen: possible basis for maternal inheritasnce of chloroplasts. Cell 39:359–368

    Article  PubMed  CAS  Google Scholar 

  • Day A, Madesis P (2007) DNA replication, recombination, and repair in plastids. In: Bock R (ed) Cell and molecular biology of plastids, vol 19. Springer, Berlin/Heidelberg/New York, pp 65–119

    Chapter  Google Scholar 

  • Desveaux D, Maréchal A, Brisson N (2005) Whirly transcription factors: defense gene regulation and beyond. Trends Plant Sci 10:95–102

    Article  PubMed  CAS  Google Scholar 

  • Dietrich W, Wagner WL, Raven PH (1997) Systematics of Oenothera section Oenothera subsection Oenothera (Onagraceae), vol 50, Systematic botany monographs. The American Society of Plant Taxonomists, Laramie

    Google Scholar 

  • Doak SH, Jenkins GJS, Johnson GE, Quick E, Parry EM, Parry JM (2007) Mechanistic influences for mutation induction curves after exposure to DNA-reactive carcinogens. Cancer Res 67:3904–3911

    Article  PubMed  CAS  Google Scholar 

  • Draper CK, Hays JB (2000) Replication of chloroplast, mitochondrial and nuclear DNA during growth of unirradiated and UVB-irradiated Arabidopsis leaves. Plant J 23:255–265

    Article  PubMed  CAS  Google Scholar 

  • Drescher A, Ruf S, Calsa T Jr, Carrer H, Bock R (2000) The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J 22:97–104

    Article  PubMed  CAS  Google Scholar 

  • Eigel L, Koop H-U (1992) Transfer of defined numbers of chloroplasts into albino protoplasts by subprotoplast/protoplast microfusion: chloroplasts can be “cloned”, by using suitable plastome combinations or selective pressure. Mol Gen Genet 233:479–482

    Article  PubMed  CAS  Google Scholar 

  • El-Lithy ME, Rodrigues GC, van Rensen JJS, Snel JFH, Dassen HJHA, Koornneef M, Jansen MAK, Aarts MGM, Vreugdenhil D (2005) Altered photosynthetic performance of a natural Arabidopsis accession is associated with atrazine resistance. J Exp Bot 56:1625–1634

    Article  PubMed  CAS  Google Scholar 

  • Epp MD (1973) Nuclear gene-induced plastome mutations in Oenothera hookeri: I. Genetic analysis. Genetics 75:465–483

    PubMed  CAS  Google Scholar 

  • Esau K (1972) Apparent temporary chloroplast fusion in leaf cells of Mimosa pudiea. Z Pflanzenphysiol 67:244–254

    Google Scholar 

  • Etzold T, Fritz CC, Schell J, Schreier PH (1987) A point mutation in the chloroplast 16S rRNA gene of a streptomycin resistant Nicotiana tabacum. FEBS Lett 219:343–346

    Article  CAS  Google Scholar 

  • Fitter JT, Rose RJ (1993) Investigation of chloroplast DNA heteroplasmy in Medicago sativa L. using cultured tissue. Theor Appl Genet 86:65–70

    Article  CAS  Google Scholar 

  • Fluhr R, Aviv D, Galun E, Edelman M (1984) Generation of heteroplastidic Nicotiana cybrids by protoplast fusion: analysis for plastid recombinant types. Theor Appl Genet 67:491–497

    Article  CAS  Google Scholar 

  • Fluhr R, Aviv D, Galun E, Edelman M (1985) Efficient induction and selection of chloroplast-encoded antibiotic-resistant mutants in Nicotiana. Proc Natl Acad Sci 82:1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Fromm H, Edelman M, Aviv D, Galun E (1987) The molecular basis for rRNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J 6:3233–3237

    PubMed  CAS  Google Scholar 

  • Fromm H, Galun E, Edelman M (1989) A novel site for streptomycin resistance in the “530 loop” of chloroplast 16S ribosomal RNA. Plant Mol Biol 12:499–505

    Article  CAS  Google Scholar 

  • Galili S, Fromm H, Aviv D, Edelman M, Galun E (1989) Ribosomal protein S12 as a site for streptomycin resistance in Nicotiana chloroplasts. Mol Gen Genet 218:289–292

    Article  PubMed  CAS  Google Scholar 

  • Giardi MT, Piletska EV, Breton F, Piletska EV, Karim K, Rouillon R, Piletsky SA (2006) Mimicking the plastoquinone-binding pocket of photosystem II using molecularly imprinted polymers. In: Giardi MT, Piletska EV (eds) Biotechnological applications of photosynthetic proteins: biochips, biosensors and biodevices. Springer, New York, pp 155–165

    Google Scholar 

  • Gillham NW (1978) Organelle heredity. Raven Press, New York

    Google Scholar 

  • Gillham NW, Boynton JE, Harris EH (1991) Transmission of plastid genes. In: Bogorad L, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 7A. Academic, San Diego/New York, pp 55–92

    Google Scholar 

  • Gordon KHJ, Hildebrandt JW, Bohnert HJ, Herrmann RG, Schmitt JM (1980) Analysis of the plastid DNA in an Oenothera plastome mutant deficient in ribulose bisphosphate carboxylase. Theor Appl Genet 57:203–207

    Article  CAS  Google Scholar 

  • Gordon KHJ, Crouse EJ, Bohnert HJ, Herrmann RG (1982) Physical mapping of differences in chloroplast DNA of the five wild-type plastomes in Oenothera subsection Euoenothera. Theor Appl Genet 61:373–384

    CAS  Google Scholar 

  • Greiner S, Wang X, Herrmann RG, Rauwolf U, Mayer K, Haberer G, Meurer J (2008a) The complete nucleotide sequences of the 5 genetically distinct plastid genomes of Oenothera, subsection Oenothera: II. A microevolutionary view using bioinformatics and formal genetic data. Mol Biol Evol 25:2019–2030

    Article  PubMed  CAS  Google Scholar 

  • Greiner S, Wang X, Rauwolf U, Silber MV, Mayer K, Meurer J, Haberer G, Herrmann RG (2008b) The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. Sequence evaluation and plastome evolution. Nucleic Acids Res 36:2366–2378

    Article  PubMed  CAS  Google Scholar 

  • Greiner S, Rauwolf U, Meurer J, Herrmann RG (2011) The role of plastids in plant speciation. Mol Ecol 20:671–691

    Article  PubMed  Google Scholar 

  • Gressel J (2009) Evolving understanding of the evolution of herbicide resistance. Pest Manag Sci 65:1164–1173

    Article  PubMed  CAS  Google Scholar 

  • Grun P (1976) Cytoplasmic genetics and evolution. Columbia University Press, New York

    Google Scholar 

  • GuhaMajumdar M, Baldwin S, Sears BB (2004) Chloroplast mutations induced by 9-aminoacridine hydrochloride are independent of the plastome mutator in Oenothera. Theor Appl Genet 108:543–549

    Article  PubMed  CAS  Google Scholar 

  • Guskov EP, Markin NV, Usatov AV, Mashkina EV (2001) Modification of the effect of nitrosomethylurea on sunflower seedlings by heat shock. Russ J Genet 37:257–263

    Article  CAS  Google Scholar 

  • Hagemann R (1964) Plasmatic Vererbung. Gustav Fischer, Jena

    Google Scholar 

  • Hagemann R (1976) Plastid distribution and plastid competition in higher plants and the induction of plastome mutations by nitroso-urea-compounds. In: Bücher T, Neupert W, Sebald W, Werner S (eds) Genetics and biogenesis of chloroplasts and mitochondria. Elsevier, Amsterdam/New York/Oxford, pp 331–338

    Google Scholar 

  • Hagemann R (1982) Induction of plastome mutations by nitro-urea-compounds. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier, Amsterdam/New York/Oxford, pp 119–127

    Google Scholar 

  • Hagemann R (1986) A special type of nuleus-plastid-interactions: nuclear gene induced plastome mutations. In: Akoyunoglou G, Senger H (eds) Regulation of chloroplast differentiation. Alan R Liss, New York, pp 455–466

    Google Scholar 

  • Hagemann R (1992) Plastid genetics in higher plants. In: Herrmann RG (ed) Cell organelles – plant gene research: basic knowledge & application. Springer, Berlin/Heidelberg/New York, pp 65–96

    Google Scholar 

  • Hagemann R (2004) The sexual inheritance of plant organelles. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles – chloroplasts and mitochondria. Springer, Berlin/Heidelberg/New York, pp 93–114

    Chapter  Google Scholar 

  • Hagemann R (2010) The foundation of extranuclear inheritance: plastid and mitochondrial genetics. Mol Genet Genomics 283:199–209

    Article  PubMed  CAS  Google Scholar 

  • Hagemann R, Scholze M (1974) Struktur und Funktion der genetischen Information in den Plastiden: VII. Vererbung und Entmischung genetisch unterschiedlicher Plastidensorten bei Pelargonium zonale Ait. Biol Zentralblatt 93:625–648

    Google Scholar 

  • Han CD, Martienssen RA (1995) The Iojap (IJ) protein is associated with 50S chloroplast ribosomal subunits. Maize Genet Cooper News Lett 69:32–34

    Google Scholar 

  • Han CD, Coe EHJ, Martienssen RA (1992) Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBO J 11:4037–4046

    PubMed  CAS  Google Scholar 

  • Harte C (1994) Oenothera – contributions of a plant to biology. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Heap I (2011) International survey of herbicide-resistant weeds. http://www.weedscience.org. Accessed 18 Feb 2011

  • Herrmann RG (1982) The preparation of circular DNA from plastids. In: Edelman M, Hallick RB, Chang N-H (eds) Methods in chloroplast molecular biology. Elsevier, Amsterdam/New York/Oxford, pp 259–280

    Google Scholar 

  • Herrmann RG, Westhoff P, Link G (1992) Biogenesis of plastids in higher plants. In: Herrmann RG (ed) Plant gene research. Cell organelles, vol 6. Springer, Wien/New York, pp 275–349

    Google Scholar 

  • Hildebrandt J, Bottomley W, Moser J, Herrmann RG (1984) A plastome mutant of Oenothera hookeri has a lesion in the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochim Biophys Acta 783:67–73

    Article  CAS  Google Scholar 

  • Hirao T, Watanabe A, Kurita M, Kondo T, Takata K (2009) A frameshift mutation of the chloroplast matK coding region is associated with chlorophyll deficiency in the Cryptomeria japonica virescent mutant Wogon-Sugi. Curr Genet 55:311–321

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra RF (2000) Evolutionary origin and consequences of uniparental mitochondrial inheritance. Hum Reprod 15(Suppl 2):102–111

    Article  PubMed  Google Scholar 

  • Hornung S, Fulgosi H, Dörfel P, Herrmann RG (1996) Sequence variation in the putative replication origins of the five genetically distinct basic Euoenothera plastid chromosomes (plastomes). Mol Gen Genet 251:609–612

    PubMed  CAS  Google Scholar 

  • Hsu C-M, Yang W-P, Chen C-C, Lai Y-K, Lin T-Y (1993) A point mutation in the chloroplast rps12 gene from Nicotiana plumbaginifolia confers streptomycin resistance. Plant Mol Biol 23:179–183

    Article  PubMed  CAS  Google Scholar 

  • Hupfer H (2002) Vergleichende Sequenzanalyse der fünf Grundplastome der Sektion Oenothera (Gattung Oenothera) – analyse des Cytochrom-Komplexes. PhD thesis, Ludwig-Maximilians-University, Munich, p 145

    Google Scholar 

  • Jansen CE, Snel EAM, Akerboom MJE, Nijkamp HJJ, Hille J (1990) Induction of streptomycin resistance in the wild tomato Lycopersicon peruvianum. Mol Gen Genet 220:261–268

    Article  CAS  Google Scholar 

  • Johnson EM, Schnabelrauch LS, Sears BB (1991) A plastome mutation affects processing of both chloroplast and nuclear DNA-encoded plastid proteins. Mol Gen Genet 225:106–112

    Article  PubMed  CAS  Google Scholar 

  • Kanevski I, Maliga P (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci 91:1969–1973

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh TA, O’Driscoll KM, McCabe PF, Dix PJ (1994) Mutations conferring lincomycin, spectinomycin, and streptomycin resistance in Solanum nigrum are located in three different chloroplast genes. Mol Gen Genet 242:675–680

    Article  PubMed  CAS  Google Scholar 

  • Kirk JTO, Tilney-Bassett RAE (1978) The plastids their chemistry, structure, growth and inheritance. Elsevier, Amsterdam/New York/Oxford

    Google Scholar 

  • Kode V, Mudd EA, Iamtham S, Day A (2005) The tobacco plastid accD gene is essential and is required for leaf development. Plant J 44:237–244

    Article  PubMed  CAS  Google Scholar 

  • Kohl S, Bock R (2009) Transposition of a bacterial insertion sequence in chloroplasts. Plant J 58:423–436

    Article  PubMed  CAS  Google Scholar 

  • Krause K, Kilbienski I, Mulisch M, Rödiger A, Schäfer A, Krupinska K (2005) DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Lett 579:3707–3712

    Article  PubMed  CAS  Google Scholar 

  • Kuchuk N, Sytnyk K, Vasylenko M, Shakhovsky A, Komarnytsky I, Kushnir S, Gleba Y (2006) Genetic transformation of plastids of different Solanaceae species using tobacco cells as organelle hosts. Theor Appl Genet 113:519–527

    Article  PubMed  Google Scholar 

  • Kuroiwa T (2010) Review of cytological studies on cellular and molecular mechanisms of uniparental (maternal or paternal) inheritance of plastid and mitochondrial genomes induced by active digestion of organelle nuclei (nucleoids). J Plant Res 123:207–230

    Article  PubMed  CAS  Google Scholar 

  • Kushnir SG, Shlumukov LR, Pogrebnyak NJ, Berger S, Gleba Y (1987) Functional cybrid plants possessing a Nicotiana genome and an Atropa plastome. Mol Gen Genet 209:159–163

    Article  PubMed  CAS  Google Scholar 

  • Kushnir S, Babiychuk E, Bannikova M, Momot V, Komarnitsky I, Cherep N, Gleba Y (1991) Nucleo-cytoplasmic incompatibility in cybrid plants possessing an Atropa genome and a Nicotiana plastome. Mol Gen Genet 225:225–230

    Article  PubMed  CAS  Google Scholar 

  • Kutzelnigg H, Stubbe W (1974) Investigation on plastome mutants in Oenothera: 1. General considerations. Subcell Biochem 3:73–89

    Article  CAS  Google Scholar 

  • Landau A, Diaz Paleo A, Civitillo R, Jaureguialzo M, Prina AR (2007) Two infA gene mutations independently originated from a mutator genotype in barley. J Hered 98:272–276

    Article  PubMed  CAS  Google Scholar 

  • Landau AM, Lokstein H, Scheller HV, Lainez V, Maldonado S, Prina AR (2009) A cytoplasmically inherited barley mutant is defective in photosystem I assembly due to a temperature-sensitive defect in ycf3 splicing. Plant Physiol 151:1802–1811

    Article  PubMed  CAS  Google Scholar 

  • Lee DJ, Blake TK, Smith SE, Bingham ET, Carroll TW (1989) Chloroplast genome mapping and plastid ultrastructure analysis of chlorophyll deficient mutants of Alfalfa. Crop Sci 29:190–196

    Article  CAS  Google Scholar 

  • Lemke CA, Gracen VE, Everett HL (1988) A second source of cytoplasmic male sterility in maize induced by the nuclear gene iojap. J Hered 79:459–464

    Google Scholar 

  • Levin DA (2003) The cytoplasmic factor in plant speciation. Syst Bot 28:5–11

    Google Scholar 

  • Liere K, Börner T (2007) Transcription and transcriptional regulation in plastids. In: Bock R (ed) Cell and molecular biology of plastids, vol 19. Springer, Berlin/Heidelberg/New York, pp 121–174

    Chapter  Google Scholar 

  • Maliga P, Sz.-Breznovits Á, Márton L (1973) Streptomycin-resistant plants from callus culture of haploid tobacco. Nat New Biol 244:29–30

    PubMed  CAS  Google Scholar 

  • Maliga P, Sz.-Breznovits A, Marton L, Joo F (1975) Non-Mendelian streptomycin-resistant tobacco mutant with altered chloroplasts and mitochondria. Nature 255:401–402

    Article  PubMed  CAS  Google Scholar 

  • Maly R (1958a) Die Mutabilität der Plastiden von Antirrhinum majus L. Sippe 50. Z Indukt Abstamm Vererbungs 89:692–696

    CAS  Google Scholar 

  • Maly R (1958b) Die Genetik einiger strahleninduzierter, abweichender Plastidenformen bei Farnen. Z Vererbungs 89:469–470

    CAS  Google Scholar 

  • Maréchal A, Parent J-S, Véronneau-Lafortune F, Joyeux A, Lang BF, Brisson N (2009) Whirly proteins maintain plastid genome stability in Arabidopsis. Proc Natl Acad Sci 106:14693–14698

    Article  PubMed  Google Scholar 

  • Mashkina E, Usatov A, Skorina M (2010) Comparative analysis of thermotolerance of sunflower chlorophyll mutants. Russ J Genet 46:178–184

    Article  CAS  Google Scholar 

  • Medgyesy P, Fejes E, Maliga P (1985) Interspecific chloroplast recombination in a Nicotiana somatic hybrid (protoplast fusion/chloroplast DNA/physical mapping). Proc Natl Acad Sci 82:6960–6964

    Article  PubMed  CAS  Google Scholar 

  • Meyer B, Stubbe W (1974) Das Zahlenverhätnis von mütterlichen und väterlichen Plastiden in der Zygote von Oenothera erythrosepala Borbas (syn. Oe. lamarckiana). Ber Deutsch Bot Ges 87:29–38

    Google Scholar 

  • Michaelis P (1955) Über Gesetzmäßigkeiten der Plasmon-Umkombination und über eine Methode zur Trennung einer Plastiden-, Chondriosomen-, resp. Sphaerosomen-, (Mikrosomen)- und einer Zytoplasmavererbung. Cytologia 20:315–338

    Article  Google Scholar 

  • Michaelis P (1957) Genetische, entwicklungsgeschichtliche und cytologische Untersuchungen zur Plasmavererbung: II. Mitteilung: Über eine Plastidenmutation mit intrazellularer Wechselwirkung der Plastiden, zugleich ein Beitrag zur Methodik der Plasmonanalyse und zur Entwicklungsgeschichte von Epilobium. Planta 50:60–106

    Article  Google Scholar 

  • Michaelis P (1958a) Untersuchungen zur Mutation plasmatischer Erbträger, besonders der Plastiden: I. Teil. Planta 51:600–634

    Article  CAS  Google Scholar 

  • Michaelis P (1958b) Untersuchungen zur Mutation plasmatischer Erbträger, besonders der Plastiden: II. Teil. Planta 51:722–756

    Article  Google Scholar 

  • Michaelis P (1964) Beiträge zum Problem der Plastiden-Abänderung: I. Über geninduzierte Störung der Teilungsrhythmen von Zell und Plastide. Z Bot 52:382–426

    Google Scholar 

  • Michaelis P (1967) The segregation of plastids as an example of plastome analysis. Nucleus 10:111–127

    Google Scholar 

  • Michaelis P (1969) Über Plastiden-Restitution (Rückmutation). Cytologia 34(Suppl):1–115

    Google Scholar 

  • Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW, Calie PJ, Jermiin LS, Wolfe KH (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658

    PubMed  CAS  Google Scholar 

  • Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 83:383–404

    Article  Google Scholar 

  • Nagata N (2010) Mechanisms for independent cytoplasmic inheritance of mitochondria and plastids in angiosperms. J Plant Res 123:193–199

    Article  PubMed  Google Scholar 

  • Nagley P, Devenish RJ (1989) Leading organellar proteins along new pathways: the relocation of mitochondrial and chloroplast genes to the nucleus. Trends Biochem Sci 14:31–35

    Article  CAS  Google Scholar 

  • Nock CJ, Waters DL, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ (2011) Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J 9:328–333

    Article  PubMed  CAS  Google Scholar 

  • Nugent GD, ten Have M, van der Gulik A, Dix PJ, Uijtewaal BA, Mordhorst AP (2005) Plastid transformants of tomato selected using mutations affecting ribosome structure. Plant Cell Rep 24:341–349

    Article  PubMed  CAS  Google Scholar 

  • O’Neill C, Horváth GV, Horváth É, Dix PJ, Medgyesy P (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J 3:729–738

    Article  PubMed  Google Scholar 

  • Oettmeier W (1999) Herbicide resistance and supersensitivity in photosystem II. Cell Mol Life Sci 55:1255–1277

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (1983) Chloroplast DNA exists in two ­orientations. Nature 301:92–93

    Article  CAS  Google Scholar 

  • Petit RJ, Vendramin GG (2007) Plant phylogeography based on organelle genes: an introduction. In: Weiss S, Ferrand N (eds) Phylogeography of Southern European Refugia. Springer, Dordrecht, pp 23–97

    Chapter  Google Scholar 

  • Powles SB, Yu Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317–347

    Article  PubMed  CAS  Google Scholar 

  • Prikryl J, Watkins KP, Friso G, van Wijk KJ, Barkan A (2008) A member of the Whirly family is a ­multifunctional RNA- and DNA-binding protein that is essential for chloroplast biogenesis. Nucleic Acids Res 36:5152–5165

    Article  PubMed  CAS  Google Scholar 

  • Prina AR (1992) A mutator nuclear gene inducing a wide spectrum of cytoplasmically inherited chlorophyll deficiences in barley. Theor Appl Genet 85:245–251

    Article  CAS  Google Scholar 

  • Prina AR (1996) Mutator-induced cytoplasmic mutants in barley: genetic evidence of activation of a putative chloroplast transposon. J Hered 87:385–389

    Article  Google Scholar 

  • Prina AR, Arias MC, Lainez V, Landau A, Maldonado S (2003) A cytoplasmically inherited mutant controlling early chloroplast development in barley seedlings. Theor Appl Genet 107:1410–1418

    Article  PubMed  CAS  Google Scholar 

  • Prina AR, Landau AM, Colombo N, Jaureguialzo M, Arias MC, Rios RD, Pacheco MG (2009) Genetically unstable mutants as novel sources of genetic variability: the chloroplast mutator genotype in barley as a tool for exploring the plastid genome. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 227–228

    Google Scholar 

  • Rauwolf U, Golczyk H, Meurer J, Herrmann RG, Greiner S (2008) Molecular marker systems for Oenothera genetics. Genetics 180:1289–1306

    Article  PubMed  CAS  Google Scholar 

  • Rédei GP (1973) Extra-chromosomal mutability determined by a nuclear gene locus in Arabidopsis. Mutat Res 18:149–162

    Article  Google Scholar 

  • Renner O (1934) Die pflanzlichen Plastiden als selbständige Elemente der genetischen Konstitution. Ber math-phys Klasse Sächs Akad Wiss Leipzig 86:241–266

    Google Scholar 

  • Rios RD, Saione H, Robredo C, Acevedo A, Colombo N, Prina AR (2003) Isolation and molecular characterization of atrazine tolerant barley mutants. Theor Appl Genet 106:696–702

    PubMed  CAS  Google Scholar 

  • Röbbelen G (1962) Plastommutationen nach Röntgenbestrahlung von Arabidopsis thaliana (L.) Heynh. Z Vererbungs 93:25–34

    Google Scholar 

  • Rochaix J-D, Erickson J (1988) Function and assembly of photosystem II: genetic and molecular analysis. Trends Biochem Sci 13:56–59

    Article  PubMed  CAS  Google Scholar 

  • Rodermel S (2002) Arabidopsis variegation mutants. TAB 1:1–28

    Article  Google Scholar 

  • Rowan BA, Oldenburg DJ, Bendich AJ (2010) RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis. J Exp Bot 61:2575–2588

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci 104:6998–7002

    Article  PubMed  CAS  Google Scholar 

  • Schaffner C (1995) Molekulargenetische und physiologische Untersuchung an photosynthesedefizienten Plastommutanten von Antirrhinum majus L. PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle, p 108

    Google Scholar 

  • Schaffner C, Laasch H, Hagemann R (1995) Detection of point mutations in chloroplast genes of Antirrhinum majus L.: I. Identification of a point mutation in the psaB gene of a photosystem I plastome mutant. Mol Gen Genet 249:533–544

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Barkan A (2007) RNA splicing and RNA editing in chloroplasts. In: Bock R (ed) Cell and molecular biology of plastids, vol 19. Springer, Berlin/Heidelberg/New York, pp 213–248

    Chapter  Google Scholar 

  • Schmitz-Linneweber C, Kushnir S, Babiychuk E, Poltnigg P, Herrmann RG, Maier RM (2005) Pigment deficiency in nightshade/tobacco cybrids is caused by the failure to edit the plastid ATPase alpha-subunit mRNA. Plant Cell 17:1815–1828

    Article  PubMed  CAS  Google Scholar 

  • Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Söll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322:281–284

    Article  PubMed  Google Scholar 

  • Schötz F (1954) Über Plastidenkonkurrenz bei Oenothera. Planta 43:182–240

    Article  Google Scholar 

  • Sears BB (1980) Elimination of plastids during spermatogenesis and fertilization in the plant kingdom. Plasmid 4:233–255

    Article  PubMed  CAS  Google Scholar 

  • Sears BB (1998) Replication, recombination and repair in the chloroplast genetic system of Chlamydomonas. In: Rochaix JD, Goldschmidt-Clermont M, Merchant S (eds) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Kluwer, Dordrecht/Boston/London, pp 115–138

    Google Scholar 

  • Sears BB, Herrmann RG (1985) Plastome mutation affecting the chloroplast ATP synthase involves a post-transcriptional defect. Curr Genet 9:521–528

    Article  PubMed  CAS  Google Scholar 

  • Sears BB, Sokalski MB (1991) The Oenothera plastome mutator: effect of UV irradiation and nitroso-methyl urea on mutation frequencies. Mol Gen Genet 229:245–252

    Article  PubMed  CAS  Google Scholar 

  • Sears BB, Stoike LL, Chiu WL (1996) Proliferation of direct repeats near the Oenothera chloroplast DNA origin of replication. Mol Biol Evol 13:850–863

    Article  PubMed  CAS  Google Scholar 

  • Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA (2007) Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1251–1264

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Foyer CH, Dulieu H, Parry MAJ, Yokota A (1996) A point mutation in the gene encoding the Rubisco large subunit interferes with holoenzyme assembly. Plant Mol Biol 31:399–403

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Shimizu K, Ueda K, Nishimura Y, Kuroiwa T, Hashimoto T (2001) The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol 42:264–273

    Article  PubMed  CAS  Google Scholar 

  • Sijben-Müller G, Hallick RB, Alt J, Westhoff P, Herrmnann RG (1986) Spinach plastid genes coding for initiation factor IF-1, ribosomal protein S11 and RNA polymerase α-subunit. Nucleic Acids Res 14:1029–1044

    Article  PubMed  Google Scholar 

  • Somerville CR (1986) Analysis of photosynthesis with mutants of higher plants and algae. Annu Rev Plant Physiol 37:467–507

    Article  CAS  Google Scholar 

  • Stoike LL, Sears BB (1998) Plastome mutator–induced alterations arise in Oenothera chloroplast DNA through template slippage. Genetics 149:347–353

    PubMed  CAS  Google Scholar 

  • Stubbe W (1958) Dreifarbenpanschierung bei Oenothera: II. Wechselwirkungen zwischen Geweben mit zwei erblich verschiedenen Plastidensorten. Z Vererbungs 89:189–203

    Google Scholar 

  • Stubbe W (1959) Genetische Analyse des Zusammenwirkens von Genom und Plastom bei Oenothera. Z Vererbungs 90:288–298

    Google Scholar 

  • Stubbe W (1960) Untersuchungen zur genetischen Analyse des Plastoms von Oenothera. Z Bot 48:191–218

    Google Scholar 

  • Stubbe W (1989) Oenothera – an ideal system for studying the interaction of genome and plastome. Plant Mol Biol Rep 7:245–257

    Article  Google Scholar 

  • Stubbe W, Herrmann RG (1982) Selection and maintenance of plastome mutants and interspecific genome/plastome hybrids from Oenothera. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier, Amsterdam/New York/Oxford, pp 149–165

    Google Scholar 

  • Svab Z, Maliga P (1991) Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin. Mol Gen Genet 228:316–319

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci 104:7003–7008

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Teranishi M, Ishida H, Kawasaki J, Takeuchi A, Yamaya T, Watanabe M, Makino A, Hidema J (2011) CPD photolyase repairs ultraviolet-B-induced CPDs in rice chloroplast and mitochondrial DNA. Plant J 66:433–442

    Article  PubMed  CAS  Google Scholar 

  • Thanh N, Medgyesy P (1989) Limited chloroplast gene transfer via recombination overcomes plastomegenome incompatibility between Nicotiana tabacum and Solanum tuberosum. Plant Mol Biol 12:87–93

    Article  Google Scholar 

  • Thanh ND, Páy A, Smith MA, Medgyesy P, Márton L (1988) Intertrubal chloroplast transfer by protoplast fusion between Nicotiana tabacum and Salpiglossis sinuata. Mol Gen Genet 213:186–190

    Article  Google Scholar 

  • Thiel H, Kluth C, Varrelmann M (2010) A new molecular method for the rapid detection of a metamitron-resistant target site in Chenopodium album. Pest Manag Sci 66:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Tilney-Basset RAE (1994) Nuclear controls of ­chloroplast inheritance in higher plants. J Hered 85:347–354

    Google Scholar 

  • Tilney-Bassett RAE (1975) Genetics of variegated plants. In: Birky CW, Perlman PS, Byers TJ (eds) Genetics and biogenesis of mitochondria and chloroplasts. Ohio State University Press, Columbus, pp 268–308

    Google Scholar 

  • To KY, Chen CC, Lai YK (1989) Isolation and characterization of streptomycin-resistant mutants in Nicotiana plumbaginifolia. Theor Appl Genet 78:81–86

    Article  Google Scholar 

  • To KY, Lai YK, Feng TY, Chen CC (1992) Restriction endonuclease analysis of chloroplast DNA from streptomycin-resistant mutants of Nicotiana plumbaginifolia. Genome 35:220–224

    Article  PubMed  CAS  Google Scholar 

  • To K-Y, Liu C-I, Liu S-T, Chang Y-S (1993) Detection of point mutations in the chloroplast genome by single-stranded conformation polymorphism analysis. Plant J 3:183–186

    Article  PubMed  CAS  Google Scholar 

  • Trabelsi S, Gargouri-Bouzid R, Vedel F, Nato A, Lakhoua L, Drira N (2005) Somatic hybrids between potato Solanum tuberosum and wild species Solanum verneï exhibit a recombination in the plastome. Plant Cell Tissue Organ Cult 83:1–11

    Article  CAS  Google Scholar 

  • Usatov AV, Razoriteleva EK, Mashkina EV, Ulitcheva II (2004) Spontaneous and induced nitrosomethylurea reversion of plastomic chlorophyll mutants of the sunflower Helianthus annuus L. Russ J Genet 40:248–255

    Article  CAS  Google Scholar 

  • Vaughn KC (1981) Plastid fusion as an agent to arrest sorting out. Curr Genet 3:243–245

    Article  Google Scholar 

  • Venkataiah P, Christopher T, Subhash K (2005) Induction and characterization of streptomycin-resistant mutants in Capsicum praetermissum. J Appl Genet 46:19–24

    PubMed  Google Scholar 

  • Vila-Aiub MM, Neve P, Powles SB (2009) Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol 184:751–767

    Article  PubMed  CAS  Google Scholar 

  • von Wettstein D, Eriksson G (1965) The genetics of chloroplasts. In: Geerts SJ (ed) Genetics today: proceedings of the XI international congress of geneticist, The Hague, Sep 1963. Vol 3. Pergamon Press, London/New York, pp 591–611

    Google Scholar 

  • Wall MK, Mitchenall LA, Maxwell A (2004) Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria. Proc Natl Acad Sci 101:7821–7826

    Article  PubMed  CAS  Google Scholar 

  • Winter P (1986) Therapie der Oenothera hookeri Plastommutante sigma durch kompartimentfremden Gentransfer. PhD thesis, Heinrich-Heine-Universtiät, Düsseldorf, p 156

    Google Scholar 

  • Winter P, Herrmann RG (1987) A five-base-pair-deletion in the gene for the large subunit causes the lesion in the ribulose bisphosphate carboxylase/oxygenase-deficient plastome mutant sigma of Oenothera hookeri. Bot Acta 101:42–48

    Google Scholar 

  • Wolfe AD, Randle CP (2004) Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: implications for plant molecular systematics. Syst Bot 29:1011–1020

    Article  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci 84:9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Wolfson R, Sears BB (1989) A reduction in the abundance of calium oxalate crystals in Oenothera improves the yield of intact chloroplasts. Plant Cell Environ 12:109–112

    Article  CAS  Google Scholar 

  • Xiong J-Y, Lai C-X, Qu Z, Yang X-Y, Qin X-H, Liu G-Q (2009) Recruitment of AtWHY1 and AtWHY3 by a distal element upstream of the kinesin gene AtKP1 to mediate transcriptional repression. Plant Mol Biol 71:437–449

    Article  PubMed  CAS  Google Scholar 

  • Yeh KC, To KY, Sun SW, Wu MC, Lin TY, Chen CC (1994) Point mutations in the chloroplast 16s rRNA gene confer streptomycin resistance in Nicotiana plumbaginifolia. Curr Genet 26:132–135

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Fu A, Aluru M, Park S, Xu Y, Liu H, Liu X, Foudree A, Nambogga M, Rodermel S (2007) Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ 30:350–365

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Drs. Ralph Bock and Reinhold G. Herrmann are acknowledged for critical reading, fruitful discussions and helpful comments on the manuscript, Lutz Neumetzler for providing the A. thaliana plastome mutant, and Josef Bergstein for photographic service. This research was supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Greiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Greiner, S. (2012). Plastome Mutants of Higher Plants. In: Bock, R., Knoop, V. (eds) Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2920-9_11

Download citation

Publish with us

Policies and ethics