Skip to main content

Nanoaerosols in the Atmosphere

  • Chapter
  • First Online:
The Atmosphere and Ionosphere

Part of the book series: Physics of Earth and Space Environments ((EARTH))

Abstract

This chapter presents an overview of the modern state of the kinetics of aerosol processes in the atmosphere. The first part focuses on the principles of modeling the dynamics of nanoaerosols in the atmosphere. Attention is then given to the kinetics of single aerosol particles whose size is less than or comparable to the mean free path of gaseous molecules in the atmosphere (less than 0.1 μm). The Introduction states a concept overview of the circle of atmospheric problems related to the particles suspended in the atmospheric air (atmospheric aerosols). The atmospheric aerosols are known to play an important role in the formation of the climatic conditions on our planet. Although optically active aerosol particles are relatively large, the processes of formation, growth, and behavior of smaller particles (atmospheric nanoaerosols) attract the attention of many researchers because the larger particles result from the smaller ones. The questions of where are these particles from, how they grow, and what are the mechanisms of their losses are of primary importance for modeling the aerosol states of the atmosphere at local and global scales. The main body of this presentation popularizes an analytical approach to the kinetics of a single aerosol particle in the transition regime (the particle size is of the order of the molecular mean free path). I consider the condensational growth of particles, diffusion charging of particles in the free molecule and transition regimes, and heat exchange between the particle and the carrier gas. The version of the flux-matching theory of Lushnikov and Kulmala serves as a basis for the consideration of all the aforementioned processes whose efficiencies are found analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalto P, Hammeri K, Becker S, Weber R, Salm J, Mäkelä JM, Hoell C, O’Dowd C, Karlsson H, Hansson H-C, Väkevä M, Buzorius G, Kulmala M (2001) Physical characterization of aerosol particles during nucleation events. Tellus 53B:344

    Google Scholar 

  • Adachi M (1985) Unipolar and bipolar diffusion charging of ultrafine aerosol particles. J Aerosol Sci 16:109–123

    Article  Google Scholar 

  • Ammann M, Pöschl U (2007) Kinetic model framework for aerosol and cloud surface chemistry and gas–particle interactions – part 2: exemplary practical applications and numerical simulations. Atmos Chem Phys 7:6025–6045

    Article  Google Scholar 

  • Anttila T, Kerminen V-M, Kulmala M, Laaksonen A, O’Dowd C (2004) Modeling the formation of organic particles in the atmosphere. Atmos Chem Phys 4:1071–1083

    Article  Google Scholar 

  • Arey J, Atkinson R, Aschmann SM (1990) Product study of gas-phase reactions of monoterpenes with the OH radical in the presence of NOx. J Geophys Res 96:18539

    Article  Google Scholar 

  • Beig G, Brasseur GP (2000) Model of tropospheric ion composition: a first attempt. J Geophys Res 105:22671–22684

    Article  Google Scholar 

  • Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charge and neutral one–component systems. Phys Rev 94:511–525

    Article  Google Scholar 

  • Boy M, Kulmala M (2002) Nucleation events on the continental boundary layer: influence of physical and meteorological parameters. Atmos Chem Phys 2:1–16

    Article  Google Scholar 

  • Boy M, Rannik U, Lehtinen KE, Tarvainen V, Hakola H, Kulmala M (2003) Nucleation events in the continental boundary layer: long-term statistical analysis of aerosol relevant characteristics. J Geophys Res 108(D21):4667–4675

    Article  Google Scholar 

  • Brock JR (1970) Aerosol charging: the role of the image force. J Appl Phys 41:843–844

    Article  Google Scholar 

  • Burtcher H, Schmidt-Ott A (1985) Experiments on small particles in gas suspension. Surface Sci 156:735–740

    Article  Google Scholar 

  • Castelman AV (1982) Experimental studies of ion clustering relationship to aerosol formation processes and some atmospheric implications. J Aerosol Sci 13:73–85

    Article  Google Scholar 

  • Cercignani C (1975) Theory and application of the Boltzmann equation. Scottish Academic Press, Edinburgh/London

    Google Scholar 

  • Charlson RJ, Heitzenberg RL (1995) Aerosol forcing of climate. Wiley, New York

    Google Scholar 

  • Clement CF (2007) Mass transfer to aerosols. In: Colbeck I (ed) Environmental chemistry of aerosols. Wiley Interscience, New York, pp 49–89

    Google Scholar 

  • Clement CF, Kulmala M, Vesala T (1996) Theoretical consideration on sticking probabilities. J Aerosol Sci 27:869–882

    Article  Google Scholar 

  • Dahnecke B (1983) Simple kinetic theory of Brownian diffusion in vapors and aerosols. In: Meyer E (ed) Theory of dispersed multiphase flows. Academic, New York, pp 97–133

    Google Scholar 

  • Dal Maso M, Kulmala M, Rippinen I, Hussein T, Wagner R, Aalto PP, Lehtinen KEJ (2005) Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiala, Finland. Boreal Environ Res 10:3232–3336

    Google Scholar 

  • Davidovits P, Jaine JT, Duan SX, Worsnop DR, Zahniser MS, Kolb CE (1991) Uptake of gas molecules by liquids. A model. J Phys Chem 95:6337–6340

    Article  Google Scholar 

  • Davidovits P, Hu JH, Worsnop DR, Zahnister MS, Colb CE (1995) Entry of gas molecules into liquids. Faraday Discuss 100:65–81

    Article  Google Scholar 

  • Davis EJ (1983) Transport phenomena with single aerosol particle. Aerosol Sci Technol 2:121

    Google Scholar 

  • Farman JC, Gardiner PG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–210

    Article  Google Scholar 

  • Feng X, Bogan MJ, Chuah E, Agnes GR (2001) Micro–heterogeneous catalysis at the surface of electrodynamically levitated particles. J Aerosol Sci 32:1147–1159

    Article  Google Scholar 

  • Filippov AV, Rosner DE (2000) Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime. Int J Heat Mass Transfer 43:127–137

    Article  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere. Academic, San Diego

    Google Scholar 

  • Ford IJ, Harris SA (2004) Molecular cluster decay viewed as escape from a potential of mean force. J Chem Phys 120:4428–4437

    Article  Google Scholar 

  • Friedlander SK (1983) Dynamics of aerosol formation by chemical reactions. Ann N Y Acad Sci 404:354–363

    Article  Google Scholar 

  • Friedlander SK (2000) Smoke, dust, and haze. Wiley, New York/London

    Google Scholar 

  • Fuchs NA (1964) In: Davies CN (ed) The mechanics of aerosols. MacMillan, New York

    Google Scholar 

  • Fuchs NA, Sutugin AG (1971) High–dispersed aerosols. In: Hidy GM, Brock JR (eds) Topics in current aerosol research, vol 2. Pergamon, Oxford, pp 1–60

    Google Scholar 

  • Gentry JW, Brock JR (1967) Unipolar diffusion charging of small aerosol particles. J Chem Phys 47:64–67

    Article  Google Scholar 

  • Grini A, Korhonen H, Lehtinen K, Isaksen I, Kulmala M (2005) A combined photochemistry/aerosol dynamics model: model development and a study of new particle formation. Boreal Environ Res 10:525–541

    Google Scholar 

  • Hahn Y (1997) Electron–ion recombination processes. Rep Prog Phys 60:691–759

    Article  Google Scholar 

  • Harrison RG, Carslaw KS (2003) Ion–aerosol–cloud processes in the lower atmosphere. Rev Geophys 41:1–25

    Article  Google Scholar 

  • Hashish AH, Bailey AG (1991) Electrostatic enhancement of particle deposition in the lung when using jet and ultrasonic nebulisers. In: O’Neil BC (ed) Electrostatic 1991: invited and contributed papers from the eighth international conference, held at the University of Oxford, 10–12 April 1991. Inst Phys Conf Ser 118:45–50

    Google Scholar 

  • Havnes O, de Angelis U, Bingham R, Goetz CK, Morfill GE, Tsytovich V (1990) On the role of dust in the summer mesopause. J Atmos Terr Phys 52:637–643

    Article  Google Scholar 

  • Havnes O, Melandso F, La Hoz C, Aslaksen TK, Harquist T (1992) Charged dust in the earth’s mesopause: effect on radar backscatter. Phys Scr 45:535–544

    Article  Google Scholar 

  • Havnes O, Troim J, Blix T, Mortensen W, Naesheim LI, Thrain E, Tonnesen T (1996) First detection of charged dust particles in the earth’s mesosphere. J Geophys Res 101:10839–10847

    Article  Google Scholar 

  • Hidy JM, Brock JR (1971) The dynamics of aerocolloidal systems. Pergamon, Oxford

    Google Scholar 

  • Hodges RR Jr (1969) Ion pair annihilation by aerosols in the lower ionosphere. J Geophys Res 74:2223–2228

    Article  Google Scholar 

  • Hoppel WA, Frick GM (1986) Ion–aerosol attachment coefficients and the steady–state charge distribution on aerosols in a bipolar ion environment. J Aerosol Sci Technol 5:1–21

    Article  Google Scholar 

  • Hoppel WA, Frick GM (1990) The nonequilibrium character of the aerosol charge distribution produced by neutralizers. Aerosol Sci Technol 12:471–496

    Article  Google Scholar 

  • Huang DD, Seinfeld JH, Marlow WH (1990) BGK equation solution for large Knudsen number aerosol with a singular attractive contact potential. J Colloid Interface Sci 140:258–276

    Article  Google Scholar 

  • Huang DD, Seinfeld JH, Okuyama K (1991) Image potential between a charged particle and an uncharged particle in aerosol coagulation–enhancement in all size regimes and interplay with van der Waals forces. J Colloid Interface Sci 141:191–198

    Article  Google Scholar 

  • Hussin A, Scheibel HG, Becker KH, Porstendorfer J (1983) Bipolar diffusion charging of aerosol particles – I. Experimental results within the diameter range 4 – 30 nm. J Aerosol Sci 14:671–677

    Article  Google Scholar 

  • Janson R, Rozman K, Karlsson S, Hansson HC (2001) Biogenic emission and gaseous precursor to forest aerosols. Tellus B53:423–440

    Google Scholar 

  • Jensen EJ, Thomas GE (1991) Charging of mesospheric particles: implication for electron density and particle coagulation. J Geophys Res 96:18603–18615

    Article  Google Scholar 

  • Juozaitis A, Trakumas S, Girgzdiene D, Girgzdis A, Sopauskiene D, Ulevicius V (1996) Investigation of gas–to–particle conversion in the atmosphere. Atmos Res 41:445

    Article  Google Scholar 

  • Keefe D, Nolan PJA, MRI, Scott JA (1968) Influence of Coulomb and image forces on combination in aerosols. Proc R Ir Acad 66A:17–29

    Google Scholar 

  • Kerminen V-M, Lehtinen K, Anttila T, Kulmala M (2004) Dynamics of atmospheric nucleation mode particles: timescale analysis. Tellus 56B:135–146

    Google Scholar 

  • Khachatourian AV, Wistrom AO (2001) Size effect in aerosol electrostatic interactions. J Colloid Interface Sci 242:52–58

    Article  Google Scholar 

  • Korhonen H, Lehtinen KEJ, Pirjola L, Napari I, Vehkamäki H, Noppel M, Kulmala M (2003) Simulation of atmospheric nucleation mode: a comparison of nucleation models and size distribution representations. J Geophys Res 108(D15):4471. doi:10.1029/2002JD003305

    Article  Google Scholar 

  • Korhonen H, Lehtinen KEJ, Kulmala M (2004) Multicomponent aerosol dynamic model UHMA: model development and validation. Atmos Chem Phys Discuss 4:471–506

    Article  Google Scholar 

  • Krueger AP, Reed EJ (1976) Biological impact of small air ions. Science 193:1209–1213

    Article  Google Scholar 

  • Kulmala M, Wagner PE (2001) Mass accommodation and uptake coefficients – a quantitative comparison. J Aerosol Sci 32:833–841

    Article  Google Scholar 

  • Kulmala M, Vehkamäki H, Petäjä T, Dal Maso M, Lauri A, Kerminen V-M, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176

    Article  Google Scholar 

  • Laaksonen A, Vesala T, Kulmala M, Winkler PM, Wagner PE (2005) Commentary on cloud modeling and mass accommodation coefficient of water. Atmos Chem Phys 5:461–464

    Article  Google Scholar 

  • Landau LD, Lifshits EM (1969) Electrodynamics of continuous media. Nauka, Moscow

    Google Scholar 

  • Lee YC, Chyou YP, Pfender E (1985) Particle dynamics and particle heat and mass transfer in thermal plasmas. Part II. Particle heat and mass transfer in thermal plasmas. Plasma Chem Plasma Process 5:391

    Article  Google Scholar 

  • Lehtinen KEJ, Kulmala M (2003) A model for particle formation and growth in the atmosphere with molecular resolution in size. Atmos Chem Phys 3:251–257

    Article  Google Scholar 

  • Li W, Davis EJ (1995) Aerosol evaporation in the transition regime. Aerosol Sci Technol 25:11–19

    Google Scholar 

  • Li YQ, Davidovits P, Shi Q, Jayne JT, Kolb CE, Worsnop DR (2001) Mass and thermal accommodation coefficients of H2O(g) on liquid water as a function of temperature. J Phys Chem A105:10627–10634

    Article  Google Scholar 

  • Liu BYH (1976) Fine particles, aerosol generation, measurement, sampling, and analysis. Academic, New York

    Google Scholar 

  • Lohman U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737

    Article  Google Scholar 

  • Loyalka SK, Hamodi SA, Tompson RV (1989) Isothermal condensation on a spherical droplet. Phys Fluids A1:358–362

    Google Scholar 

  • Lushnikov AA (2010a) Introduction to aerosols. In: Agranovski I (ed) Aerosols – science and technology. WILEI – VCH Verlag GmbH&Co KGaA, Weinheim, pp 1–42

    Chapter  Google Scholar 

  • Lushnikov AA (2010b) Condensation, evaporation, nucleation. In: Agranovski I (ed) Aerosols – science and technology. WILEI – VCH Verlag GmbH&Co KGaA, Weinheim, pp 91–126

    Chapter  Google Scholar 

  • Lushnikov AA, Kulmala M (1998a) Nucleation controlled formation and growth of disperse particles. Phys Rev Lett 8:23

    Google Scholar 

  • Lushnikov AA, Kulmala M (1998b) Dimers in nucleating vapors. Phys Rev E58:3157

    Google Scholar 

  • Lushnikov AA, Kulmala M (2000) Nucleation burst in a coagulating system. Phys Rev E62:4932

    Google Scholar 

  • Lushnikov AA, Kulmala M (2001) Kinetics of nucleation controlled formation and condensational growth of disperse particles. Phys Rev E63:061109

    Google Scholar 

  • Lushnikov AA, Kulmala M (2004a) Flux–matching theory of particle charging. Phys Rev E70:046413

    Google Scholar 

  • Lushnikov AA, Kulmala M (2004b) Charging of aerosol particles in the near free–molecule regime. Eur Phys J D29:345–355

    Google Scholar 

  • Lushnikov AA, Kulmala M (2005) A kinetic theory of particle charging in the free–molecule regime. J Aerosol Sci 39:1069–1088

    Article  Google Scholar 

  • Lushnikov AA, Lyubovtseva YuS, Kulmala M (2008) A model of nucleation bursts. Russ J Earth Sci 10(ES1005). doi:10.2205/2007ES000275

  • Lushnikov AA, Zagaynov VA, Lyubovtseva YuS (2010) Formation of aerosols in the atmosphere. In: Bychkov VL, Golubkov GV, Nikitin AI (eds) Atmosphere and ionosphere. Dynamics, processes, and monitoring. Springer, New York, pp 69–96

    Google Scholar 

  • Lyubovtseva YuS, Sogacheva L, Dal Maso M, Bonn B, Keronen P, Kulmala M (2005) Seasonal variations of trace gases, meteorological parameters, and formation of aerosols in boreal forests. Boreal Environ Res 10:493–510

    Google Scholar 

  • Lyubovtseva YuS, Zagaynov VA, Khodzher TV, Kulmala M, Boy M, Dal Maso M, Junninen H, Obolkin VA, Potyomkin VL, Biryukov YuG, Lushnikov AA (2010) Comparison of formation conditions of secondary aerosol particles in boreal forests of Southern Finland and Siberia. Russ J Earth Sci 11:4002. doi:10.2205/2009ES000410

    Article  Google Scholar 

  • Marlow WH (1980) Derivation of the collision rates for singular attractive contact potentials. J Chem Phys 73:6284–6287

    Article  Google Scholar 

  • Marlow WH, Brock JR (1975) Unipolar charging of small aerosol particles. J Colloid Interface Sci 50:32–38

    Article  Google Scholar 

  • Matsoukas T (1997) The coagulation rate of charged aerosols in ionized gases. J Colloid Interface Sci 178:474–483

    Article  Google Scholar 

  • Natanson GL (1959) On the theory of volume ion recombination. Sov Phys Tech Phys Engl Transl 29:1373–1380

    Google Scholar 

  • Natanson GL (1960) On the theory of the charging of amicroscopic aerosol particles as a result of capture of gas ions. Sov Phys Tech Phys Engl Transl 30:573–588

    Google Scholar 

  • Natanson GM, Davidovits P, Worsnop DR, Kolb CE (1996) Dynamics and kinetics at the gas-liquid interface. J Phys Chem 100:13007

    Article  Google Scholar 

  • Pöschl U, Rudich Y, Ammann M (2007) Kinetic model framework for aerosol and cloud surface chemistry and gas–particle interactions – part 1: general equations, parameters, and terminology. Atmos Chem Phys 7:5989–6023

    Article  Google Scholar 

  • Pui DYH, Fruin S, McMurry PH (1988) Unipolar diffusion charging of ultrafine aerosols. J Aerosol Sci Technol 8:173–187

    Article  Google Scholar 

  • Qu X, Davis EJ (2001) Droplet evaporation and condensation in the near continuum regime. J Aerosol Sci 32:861–875

    Article  Google Scholar 

  • Rapp M (2000) Capture rates of electrons and positive ions by mesospheric aerosol particles. J Aerosol Sci 31:1367–1369

    Article  Google Scholar 

  • Rapp M, Lübken FJ (1999) Modelling of positively charged aerosols in the polar summer mesopause region. Earth Planet Space 51:799–807

    Google Scholar 

  • Reist PC (1984) Introduction to aerosol science. Macmillan, New York

    Google Scholar 

  • Romay FJ, Pui DYH (1992) On the combination coefficient of positive ions with ultrafine neutral particles in the transition and free–molecule regimes. J Aerosol Sci Technol 17:134–137

    Article  Google Scholar 

  • Sahni DC (1966) The effect of black sphere on the flux distribution of an infinite moderator. J Nucl Energy 20:915–920

    Google Scholar 

  • Seinfeld JH, Pandis SP (2006) Atmospheric chemistry and physics. Wiley, New York

    Google Scholar 

  • Shi B, Seinfeld JH (1991) On mass transport limitation to the rate of reaction of gases in liquid droplets. Atmos Environ 25A:2371

    Google Scholar 

  • Smirnov BM (2000a) Clusters and small particles in gases. Springer, New York

    Book  Google Scholar 

  • Smirnov BM (2000b) Cluster plasma. Phys Usp 170:495–534

    Article  Google Scholar 

  • Smith M, Lee K, Matsoukas T (1999) Coagulation of charged aerosols. J Nanopart Res 1:185–195

    Article  Google Scholar 

  • Smith GD, Woods E, Baer T, Miller RE (2003) Aerosol uptake described by numerical solution of the diffusion–reaction equation in the particle. J Phys Chem A107(45):9582–9587

    Article  Google Scholar 

  • Sorokin A, Mirabel P (2001) Ion recombimation in aircraft exhaust plumes. Geophys Res Lett 14:955–958

    Article  Google Scholar 

  • Sorokin A, Vancassel X, Mirabel P (2003) Emission of ions and charged soot particles by aircraft engines. Atmos Chem Phys 3:325–334

    Article  Google Scholar 

  • Stolzenburg MR, McMurry PH, Sakurai H, Smith JN, Mauldin RL, Eisele FL, Clement CF (2005) Growth rates of freshly nucleated atmospheric particles in Atlanta. J Geophys Res 110:D22S05

    Article  Google Scholar 

  • Stratton JA (1941) Electromagnetic theory. McGraw, New York/London

    Google Scholar 

  • Tsang TH, Rao A (1988) Comparison of different numerical schemes for condensational growth of aerosols. Aerosol Sci Technol 9:133

    Article  Google Scholar 

  • Wagner PE (1982) Aerosol growth by condensation. In: Marlow WH (ed) Aerosol microphysics, vol II. Springer, Heidelberg, pp 129–178

    Chapter  Google Scholar 

  • Weber AP, Seipenbusch M, Christoph T, Kasper G (1999) Aerosol catalysis on nickel nanoparticles. J Nanopart Res 1:253–265

    Article  Google Scholar 

  • Wen HY, Reischl GP, Kasper G (1984) Bipolar diffusion charging of fibrous aerosol particles. I. J Aerosol Sci 15:103–122

    Article  Google Scholar 

  • Widmann JF, Davis EJ (1997) Mathematical models of the uptake of ClONO2 and other gases by atmospheric aerosols. J Aerosol Sci 28:87–106

    Article  Google Scholar 

  • Wiedenscholer A, Fissan HJ (1991) Bipolar charge distributions of aerosol particles in high–purity argon and nitrogen. J Aerosol Sci Technol 14:358–364

    Article  Google Scholar 

  • Williams MMR, Loyalka SK (1991) Aerosol science, theory & practice. Pergamon Press, Oxford

    Google Scholar 

  • Winkler PM, Vrtala A, Wagner PE, Kulmala M, Lehtinen KEJ, Vesala T (2004) Mass and thermal accomodation during gas–liquid condensation of water. Phys Rev Lett 93:07501

    Article  Google Scholar 

  • Winkler PM, Vrtala A, Rudolf R, Wagner PE, Riipinen I, Vesala T, Lehtinen KEJ, Viisanen Y, Kulmala M (2006) Condensation of water vapor: experimental determination of mass and thermal accommodation coefficients. J Geophys Res 111:D19202

    Article  Google Scholar 

  • Yu F, Turko RP (1998a) The formation and evolution of aerosols in atmospheric aircraft plumes: numerical simulation and comparison with observations. J Geophys Res 103:25119–25934

    Article  Google Scholar 

  • Yu F, Turko RP (1998b) The role of ions in the formation and evolution of particles in aircraft plumes. Geophys Res Lett 24:1927–1930

    Article  Google Scholar 

  • Yu F, Turko RP (2001) From molecular clusters to nanoparticles: role of ambient ionization in tropospheric aerosol formation. J Geophys Res 106:4797–4814

    Article  Google Scholar 

  • Zagaynov VA, Sutugin AG, Petryanov-Sokolov IV, Lushnikov AA (1976) Sticking probability of molecular clusters to solid surfaces. J Aerosol Sci 7:389–395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lushnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lushnikov, A.A. (2013). Nanoaerosols in the Atmosphere. In: Bychkov, V., Golubkov, G., Nikitin, A. (eds) The Atmosphere and Ionosphere. Physics of Earth and Space Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2914-8_3

Download citation

Publish with us

Policies and ethics