Skip to main content

Elementary Processes Involving Rydberg Molecules in a Strong Laser Field

  • Chapter
  • First Online:
The Atmosphere and Ionosphere

Part of the book series: Physics of Earth and Space Environments ((EARTH))

Abstract

Possibilities of the quasi-classical, Born, and semiclassical approximations for the description of the processes of bremsstrahlung, multiphoton ionization, and elastic and inelastic atomic collisions in the field of intensive laser radiation are considered. Large energy of electrons is a general characteristic for the specified processes in which ponderomotive interaction plays the important role. For processes with participation of slow electrons, proceeding near an ionization continuum border, the ponderomotive interaction has weak influence. Features of processes with participation of slow electrons and molecular ions in a strong light field, which proceed through a stage of intermediate Rydberg complex formation, are discussed. The main feature of these complexes is connected with the presence of the strong nonadiabatic connection of electronic and nuclear movement. For description of its display in various elementary processes, the perturbation theory is essentially inapplicable. The inverse problem in a possibility of restoration of the spectroscopic parameters entering into the theory of multichannel quantum defect is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrashkevich DG, Shapiro M, Brumer P (1998) Two-pulse coherent control of electronic branching in Li2 photodissociation. J Chem Phys 108(9):3385–3390

    Google Scholar 

  • Adamson SO, Buenker RJ, Golubkov GV, Golubkov MG, Dement’ev AI (2009) Laser stimulation of low-temperature dissociative recombination of electrons and oxygen molecular ions. Russ J Phys Chem B3(2):195–210

    Google Scholar 

  • Akramine OEl, Makhoute A, Khalil D et al (1999) Effect of laser polarization in laser-assisted electron–helium inelastic collisions: a Sturmian approach. J Phys B At Mol Opt Phys 32(12):2783–2800

    Google Scholar 

  • Akulin VM, Karlov NV (1987) Intense resonant interactions in quantum electronics. Nauka, Moscow

    Google Scholar 

  • Alber G, Zoller P (1983) Harmonic generation and multiphoton ionization near an autoionizing resonance. Phys Rev A27(3):1373–1388

    Google Scholar 

  • Andryushin AI, Kazakov AE, Fedorov MV (1982) Effect of resonant electromagnetic field on the autoionizing states of atoms. Sov Phys JETP 55(1):53–58

    Google Scholar 

  • Andryushin AI, Kazakov AE, Fedorov MV (1985) Resonant excitation and decay of autoionising states in a strong electromagnetic field. Sov Phys JETP 61(4):678–686

    Google Scholar 

  • Atabek O, Chrysos M, Lefebvre R (1994) Isotope separation using laser fields. Phys Rev A49(1):R8–R11

    Google Scholar 

  • Aubanel EE, Gauthier J-M, Bandrauk AD (1993) Molecular stabilization and angular distribution in photodissociation of \( {\text{H}}_2^{ + } \) in intense laser fields. Phys Rev A48(3):2145–2152

    Google Scholar 

  • Bachau H, Lambropoulos P, Shakeshaft R (1986) Theory of laser-induced transitions between autoionizing states of He. Phys Rev A34(6):4785–4792

    Google Scholar 

  • Balashov EM, Golubkov GV, Ivanov GK (1984) Radiative transitions between Rydberg states of molecules. Sov Phys JETP 59(6):1188–1194

    Google Scholar 

  • Bandrauk AD, Aubanel EE, Gauthier JM (1993) Theory of molecules in intense laser fields. In: Bandrauk AD (ed) Molecules in laser fields. Dekker, New York, pp 109–180

    Google Scholar 

  • Banerjee S, Bhattacharyya SS, Saha S (1994) Nonadiabatic effects on resonance-enhanced two-photon dissociation of H2. Phys Rev A49(3):1836–1846

    Google Scholar 

  • Berson IYa (1981) Multiphoton ionization of Rydberg states and stimulated bremsstrahlung at Coulomb field. Izv Akad Nauk SSSR Ser Fiz 45(12):2289–2292; (1981) Semiclassical approximation for stimulated bremsstrahlung. Sov Phys JETP 53(5):891–895

    Google Scholar 

  • Brown LS, Ribble TWB (1964) Interaction of intense laser beams with electrons. Phys Rev 133(3):A705–A719

    Google Scholar 

  • Brumer P, Shapiro M (1993) Coherence and laser control of chemical reactions. In: Bandrauk AD (ed) Molecules in laser field. Dekker, New York, pp 287–348

    Google Scholar 

  • Bucksbaum PH, Bashkansky M, Mcllrath TJ (1992) Scattering of electrons by intense coherent light. Phys Rev Lett 58(4):349–352

    Google Scholar 

  • Bunkin FV, Fedorov MV (1966) Bremsstrahlung in a strong radiation field. Sov Phys JETP 22(6):844–847

    Google Scholar 

  • Charron E, Giusti-Suzor A, Mies FH (1994) Fragment angular distribution in one- and two-color photodissociation by strong laser fields. Phys Rev A49(2):R641–R644

    Google Scholar 

  • Charron E, Giusti-Suzor A, Mies FH (1995) Coherent control of isotope separation in HD+ photodissociation by strong fields. Phys Rev Lett 75(15):2815–2818

    Google Scholar 

  • Chen Z, Shapiro M, Brumer P (1993) Theory of resonant two-photon dissociation of Na2. J Chem Phys 98(11):8647–8659

    Google Scholar 

  • Chu S-I (1991) Complex quasivibrational energy formalism for intense-field multiphoton and above-threshold dissociation: complex-scaling Fourier-grid Hamiltonian method. J Chem Phys 94(12):7901–7909

    Google Scholar 

  • Cohen-Tannoudji C, Reynaud S (1977) Dressed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam. J Phys B At Mol Opt Phys 10(3):345–363

    Google Scholar 

  • Collins LA, Csanak G (1991) Multiphoton resonances in e − + H+ scattering in a linearly polarized radiation field. Phys Rev A44(9):R5343–R5345

    Google Scholar 

  • Connerade JP, Gay JC, Liberman S (1982) Atomic and molecular physics close to Ionization thresholds in high fields. J Phys Colloq (France) 43(C2)

    Google Scholar 

  • Corkum PB, Burnett NH, Brunel F (1989) Above-threshold ionization in long-wavelength limit. Phys Rev Lett 62(11):1259–1262

    Google Scholar 

  • Corkum PB, Burnett NH, Brunel F (1992) Multiphoton ionization in large ponderomotive potentials. In: Gavrila M (ed) Atoms in intense laser fields. Academic, New York

    Google Scholar 

  • Deb SG, Sinha C (2009) Multiphoton effects in laser-assisted ionization of a helium atom by electron impact. Eur Phys J D56(2):173–177

    Google Scholar 

  • Deb SG, Roy S, Sinha C (2009) Multiphoton (e,2e) process of hydrogen atom in strong laser field. Eur Phys J D55(3):591–600

    Google Scholar 

  • Delone NB (1989) Interaction of laser radiation with matter. Nauka, Moscow

    Google Scholar 

  • Delone NB, Fedorov MV (1989) New effects in the multiphoton ionization of atoms. Sov Phys Usp 32(6):500–520

    Google Scholar 

  • Delone NB, Krainov VP (1978) Atom in a strong light field. Atomizdat, Moscow

    Google Scholar 

  • Delone ND, Krainov VP (1985) Atoms in strong laser fields. Springer, Heidelberg

    Google Scholar 

  • Delone ND, Krainov VP (1994) Multiphoton processes in atoms. Springer, Heidelberg

    Google Scholar 

  • Delone NB, Krainov VP (1995) Atomic stabilization in a laser field. Phys Usp 38(11):1247–1268

    Google Scholar 

  • Delone ND, Krainov VP (2001) Nonlinear ionization of atoms by laser radiation. Fizmatlit, Moscow

    Google Scholar 

  • Delone NB, Krainov VP, Shepelyanskii DL (1983) Highly excited atoms in the electromagnetic field. Sov Phys Usp 26(7):551–572

    Google Scholar 

  • Dimou L, Faisal FHM (1987a) In: Rahman NK, Guidotti C, Allegrini M (eds) Photon and continuum states of atoms and molecules. Springer proceedings in physics 16. Springer, Berlin

    Google Scholar 

  • Dimou L, Faisal FHM (1987b) New class of resonance in the e − + H+ scattering in an excimer laser field. Phys Rev Lett 59(8):872–875

    Google Scholar 

  • Dixit SN, Lynch DL, McKoy BV, Hazi AU (1989) Electronic autoionization and vibrational-state distributions in resonant multiphoton ionization of H2. Phys Rev A40(3):1700–1703

    Google Scholar 

  • Dubov VS, Lapsker YaE, Gurvich LV (1982) Chemical radiative collisions: a new type of elementary processes. Khim Fiz 1(12):1642–1659

    Google Scholar 

  • Dubrovskii YuV, Ivanov MYu, Fedorov MV (1991) Resonant excitation and stabilization of atomic Rydberg levels during multiphoton ionization in a strong laser field. Sov Phys JETP 72(2): 228–237

    Google Scholar 

  • Ehlotzky F (ed) (1985) Fundamentals of laser interactions. Lecture Notes in Physics 229. Springer, Berlin

    Google Scholar 

  • Fedorov MV (1987) Electron in strong light field. Nauka, Moscow

    Google Scholar 

  • Fedorov MV (1999) Stabilization of atoms in a strong laser field. Phys Usp 42(1):61–66

    Google Scholar 

  • Fedorov MV, Ivanov MYu (1990) Coherence and interference in a Rydberg atom in a strong laser field: excitation, ionization, and emission of light. J Opt Soc Am B7(4):569–573

    Google Scholar 

  • Fedorov MV, Movsesyan AM (1988) Field-induced effects of narrowing of photoelectron spectra and stabilization of Rydberg atoms. J Phys B At Mol Opt Phys 21(7):L155–L158

    Google Scholar 

  • Fedorov MV, Roshchupkin SP (1984) Suppression of interference in e – e scattering by the field of a strong electromagnetic wave. J Phys A Math Gen 17(16):3143–3149

    Google Scholar 

  • Francken P, Attaourti Y, Joachain CJ (1988) Laser-assisted inelastic electron-atom collisions. Phys Rev A38(4):1785–1796

    Google Scholar 

  • Gavrila M (1992) Atomic structure and decay in high-frequency fields. In: Gavrila M (ed) Atoms in intense laser fields. Academic, New York, pp 435–510

    Google Scholar 

  • Geller YuI, Popov AK (1981) Laser stimulation of nonlinear resonances in continuous spectra. Nauka, Novosibisrsk

    Google Scholar 

  • Giusti-Suzor A, Zoller P (1987) Rydberg electrons in laser fields: a finite–range-interaction problem. Phys Rev A36(11):5178–5188

    Google Scholar 

  • Giusti-Suzor A, He X, Atabek O, Mies FH (1990) Above-threshold dissociation of \( {\text{H}}_2^{ + } \) in intense laser fields. Phys Rev Lett 64(5):515–518

    Google Scholar 

  • Giusti-Suzor A, Mies FH, DiMauro LF et al (1995) Dynamics of \( {\text{H}}_2^{ + } \) in intense laser fields. J Phys B At Mol Opt Phys 28(3):309–339

    Google Scholar 

  • Golovinskii PA (1988) Stimulated bremsstrahlung effect in the scattering of electrons by atoms subject to the polarization of a target. Sov Phys JETP 67(7):1346–1350

    Google Scholar 

  • Golubkov GV, Ivanov GK (1993) Dissociative recombination of electrons and molecular ions in monochromatic IR light. JETP 77(4):574–586

    Google Scholar 

  • Golubkov GV, Ivanov GK (1994) Dynamic behavior of highly excited molecular states in the strong monochromatic laser field. Russ Chem Bull 43(3):327–345

    Google Scholar 

  • Golubkov GV, Ivanov GK (1997) Elementary reactions in a field of monochromatic laser radiation. Chem Phys Rep 16(6):101–111

    Google Scholar 

  • Golubkov GV, Ivanov GK (2001) Rydberg states of atoms and molecules and elementary processes with their participation. URSS, Moscow

    Google Scholar 

  • Golubkov GV, Ivanov GK, Vartazaryan AS (1993) Effect of strong electromagnetic field on collisional and radiative processes involving Rydberg states of atoms and molecules. Khim Fiz 12(1):16–31

    Google Scholar 

  • Golubkov GV, Golubkov MG, Ivanov GK (1999a) The possibility of general MQDT parameter determination from high resolution optical spectra. Khim Fiz 18(1):63–78

    Google Scholar 

  • Golubkov GV, Golubkov MG, Ivanov GK (1999b) Difficulties inherent in the theory dissociative recombination and possible ways of their obviation. In: Larsson M, Mitchell JBA, Schneider IF (eds) Dissociative recombination: theory, experiment, and application IV. World Scientific, Singapore, pp 106–110

    Google Scholar 

  • Golubkov MG, Golubkov GV, Ivanov GK (2000a) Difficulties in the theory of low-temperature dissociative recombination and possible ways of their obviation. In: Larson M, Mitchell JBA, Schneider IF (eds) Dissociative recombination. Theory, experiment and applications, vol IV. World Scientific, Singapore

    Google Scholar 

  • Golubkov MG, Golubkov GV, Ivanov GK (2000b) On the feasibility of reconstruction the MQD theory parameters from high-resolution optical spectra. Chem Phys Rep 18(7):1305–1333

    Google Scholar 

  • Golubkov GV, Golubkov MG, Romanov AN (2002) Dissociative recombination of electrons and \( {\text{O}}_2^{ + } \) molecular ions in the field of intense visible laser radiation. JETP 94(3):489–497

    Google Scholar 

  • Golubkov GV, Golubkov MG, Romanov AN, Buenker RJ (2003) Dissociative recombination of electrons and \( {e^{ - }} + O_2^{ + } \to O\left( {^1D} \right) + O\left( {^3P} \right) \) in a strong laser field. Phys Chem Chem Phys 5:3174–3182

    Google Scholar 

  • Golubkov GV, Golubkov MG, Buenker RJ (2011) Laser control of low-temperature reaction \( {e^{ - }} + O_2^{ + } \). JETP 112(2):187–192

    Google Scholar 

  • Gontier Y, Nrahin M (1980) Energetic electron generation by multiphoton absorption. J Phys B At Mol Opt Phys 13(12):4381–4390

    Google Scholar 

  • Guo H (1998) A time-dependent theory of photodissociation based on polynomial propagation. J Chem Phys 108(6):2466–2472

    Google Scholar 

  • He X, Atabek O, Giusti-Suzor A, Zoller P (1989) Laser-induced resonances in molecular dissociation in intense fields. Phys Rev A38(11):5586–5594

    Google Scholar 

  • He X, Atabek O, Giusti-Suzor A (1990) Semiadiabatic treatment of photodissociation in strong laser fields. Phys Rev A42(3):1585–1591

    Google Scholar 

  • Hickman AP (1987) Non-Franck–Condon distributions of final states in photoionization of \( {{\text{H}}_{{2}}}\left( {{{\text{C}}^{{1}}}{\prod_u}} \right) \). Phys Rev Lett 59(14):1553–1556

    Google Scholar 

  • Hirschfelder JN (1989) Where are laser–molecule interactions headed? Adv Chem Phys Laser Mol Methods 73:1–79

    Google Scholar 

  • Hoogenraad JH, Vrijen RB, Noordam LD (1994) Ionization suppression of Rydberg atoms by short laser pulses. Phys Rev A50(5):4133–4138

    Google Scholar 

  • Horbatsch M (1981) Suppression of ionization in short high-frequency laser pulses of high intensity. Phys Rev A44(9):R5346–R5349

    Google Scholar 

  • Itatani J, Levesque J, Zeidler D et al (2004) Tomographic imaging of molecular orbitals. Nature 432:867–871

    Google Scholar 

  • Ivanov GK, Golubkov GV (1991) Bremsstrahlung from slow electrons scattered by ions in an external electromagnetic field. Sov Phys JETP 72(5):783–789

    Google Scholar 

  • Ivanov GK, Golubkov GV (1999) Multiphoton ionization of molecules under the conditions of strong field-induced perturbation of Rydberg states. JETP 88(6):1087–1094

    Google Scholar 

  • Ivanov GK, Vartazaryan AS, Golubkov GV (1988) Radiative collisional processes involving Rydberg states of diatomic molecules. Dokl Akad Nauk SSSR 303(2):390–394

    Google Scholar 

  • Ivanov GK, Golubkov GV, Manakov DM (1994) Rydberg states in multiphoton atomic ionization processes of Rydberg atoms. JETP 79(5):707–713

    Google Scholar 

  • Ivanov GK, Golubkov GV, Drygin SV (1995) Resonant multiphoton ionization and dissociation of molecules with simultaneous action of a weak field and intense monochromatic radiation. JETP 80(5):840–847

    Google Scholar 

  • Ivanov GK, Golubkov GV, Drygin SV (1996) Rotational orientation of molecular ions in multi-photon ionization of molecules. Chem Phys Rep 15(5):641–647

    Google Scholar 

  • Ivanov GK, Manakov DM, Golubkov GV (1997a) Multiphoton ionization of atoms via a series of intermediate Rydberg states. Chem Phys Rep 16(6):1013–1023

    Google Scholar 

  • Ivanov GK, Golubkov GV, Drygin SV, Cherlina IE (1997b) Multilevel rotational transitions in the intermediate stage of three-photon ionization of molecules. JETP 84(5):888–892

    Google Scholar 

  • Ivanov GK, Golubkov GV, Manakov DM (1997c) Multiphoton ionization of atoms via a series of intermediate Rydberg states. Chem Phys Rep 16(6):112–123

    Google Scholar 

  • Ivanov GK, Golubkov GV, Manakov DM (1999) Characteristics of manifestations of Rydberg resonance structure in multiphoton ionization of molecules. Khim Fiz 18(1):33–39

    Google Scholar 

  • Jetzke S, Broad J, Maquet A (1987) Electron–hydrogen collisions in the presence of a laser field: one-photon excitation. J Phys B At Mol Opt Phys 20(12):2887–2897

    Google Scholar 

  • Jolicard G, Atabek O (1992) Above-threshold-dissociation dynamics of \( {\text{H}}_2^{ + } \) with short intense laser pulses. Phys Rev A46(9):5845–5855

    Google Scholar 

  • Kelsey EJ, Rosenberg L (1979) Generalized low-frequency approximation for scattering in a laser field. Phys Rev A19(2):756–765

    Google Scholar 

  • Khalil D, Maquet A, Taieb R et al (1997) Laser-assisted (e,2e) collisions in helium. Phys Rev A 56(6):4918–4928

    Google Scholar 

  • Kibble TWB (1966) Mutual refraction of electrons and photons. Phys Rev 150(4):1060–1069

    Google Scholar 

  • Klinskikh AF, Rapoport LP (1987) Quasi-classical theory of potential scattering of an electron in the field of a laser wave. Sov Phys JETP 66(1):53–57

    Google Scholar 

  • Krainov VP, Roshchupkin SP (1983) Bremsstrahlung of a slow electron at a Coulomb center in an external electromagnetic field. JETP 57(4):754–757

    Google Scholar 

  • Krol NM, Watson KM (1973) Charged-particle scattering in the presence of a strong electromagnetic wave. Phys Rev A8(2):804–809

    Google Scholar 

  • Kundliya R, Mohan M (2001) Stabilization of hydrogen atom in intense laser fields. Phys Lett A291(1):22–26

    Google Scholar 

  • L’Huillier A, Tang X, Lambropoulos P (1988) Multiphoton ionization of rare gases using multichannel quantum defect theory. Phys Rev A39(3):1112–1122

    Google Scholar 

  • Lambropoulos P (1976) Topics on multiphoton processes in atoms. Adv At Mol Phys 12:87–164

    Google Scholar 

  • Lambropoulos P, Zoller P (1981) Autoionizing states in strong laser fields. Phys Rev A24(1): 379–397

    Google Scholar 

  • Letokhov VS (1987) Laser photoionization spectroscopy. Academic, New York

    Google Scholar 

  • Leubner C (1981) Uniform asymptotic expansion of a class of generalized Bessel functions occurring in the study of fundamental scattering processes in intense laser. Phys Rev A23(6):2877–2890

    Google Scholar 

  • Lisitsa VS, Savel’ev YuA (1987) Soft-photon emission in collisions in an external electromagnetic field. Sov Phys JETP 65(2):273–280

    Google Scholar 

  • Makhoute A, Khalil D (2008) Phase signatures in laser-assisted electron-atom collisions. Eur Phys J D46(1):77–82

    Google Scholar 

  • Martin P, Veniard V, Maquet A et al (1989) Electron-impact ionization of atomic hydrogen in the presence of a laser field. Phys Rev A39(12):6178–6189

    Google Scholar 

  • McCann JF, Bandrauk AD (1992) Laser induced stabilization and alignment in multiphoton dissociation of diatomic molecules. J Chem Phys 96(2):903–910

    Google Scholar 

  • Meyerhofer DD (1997) High-intensity-laser-electron scattering. IEEE J Quant Electron 33(11):1935–1941

    Google Scholar 

  • Mittleman MH (1982) Introduction to the theory of laser–atom interaction. Plenum Press, New York

    Google Scholar 

  • Moiseyev N, Cederbaum LS (1999) Suppression of electron correlation and of autoionization by strong laser fields. J Phys B At Mol Opt Phys 32(12):L279–L284

    Google Scholar 

  • Movsesyan AM, Fedorov MV (1989) Interference effects in the photoionization of Rydberg atoms in a strong electromagnetic field. Sov Phys JETP 68(1):27–33

    Google Scholar 

  • Musa MO, MacDonald A, Tidswell L et al (2010) Laser-induced free–free transitions in elastic electron scattering from CO2. J Phys B At Mol Opt Phys 43(17):175201

    Google Scholar 

  • Nikishov FI, Ritus VI (1964) Quantum processes in the field of a plane electromagnetic wave and in a constant field I. Sov Phys JETP 19(2):529–541

    Google Scholar 

  • O’Halloran MA, Pratt ST, Dehmer PM, Dehmer JL (1987) Photoionization dynamics of \( {{\text{H}}_{{2}}}\left( {{{\text{C}}^{{1}}}{\prod_u}} \right) \): vibrational and rotational branching ratios. J Chem Phys 87(6):3288–3298

    Google Scholar 

  • Peatross J, Fedorov MV, Meyerhofer DD (1992) Laser temporal and spatial effects on ionization suppression. J Opt Soc Am B9(8):1234–1239

    Google Scholar 

  • Purohit SP, Mathur KC (2010) Resonant laser assisted elastic scattering of electrons by lithium and sodium atoms. Eur Phys J D53(1):1–8

    Google Scholar 

  • Rapoport LP, Zon BA, Manakov IL (1978) Theory of multiphoton processes in atoms. Atomizdat, Moscow

    Google Scholar 

  • Reiss HR (1962) Absorption of light by light. J Math Phys 3(1):59–67

    Google Scholar 

  • Reiss HR (1980) Effect of an intense electromagnetic field on a weak bound system. Phys Rev A22(5):1786–1813

    Google Scholar 

  • Reiss HR (1987) Electron spectrum in intense-field photoionization. J Opt Soc Am B4(5):726–730

    Google Scholar 

  • Reiss HR (1990) Relativistic strong-field photoionization. J Opt Soc Am B7(4):574–586; (1996) Energetic electrons in strong-field ionization. Phys Rev A54(3):R1765–R1768

    Google Scholar 

  • Rosenberg L (1982) Theory of electron–atom scattering in a radiation field. Adv At Mol Phys 18:1–52

    Google Scholar 

  • Rosenberg L (1989) Second-order correction to the low-frequency approximation for scattering in a laser field. Phys Rev Lett A39(9):4525–4530

    Google Scholar 

  • Salamin YI (1997) Strong-field multiphoton ionization of hydrogen: nondipolar asymmetry and ponderomotive scattering. Phys Rev A56(6):4910–4917

    Google Scholar 

  • Salamin YI, Faisal FHM (1997) Ponderomotive scattering of electrons in intense laser field. Phys Rev A55(5):3678–3683

    Google Scholar 

  • Shirley JH (1965) Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys Rev 138(4):B979–B987

    Google Scholar 

  • Stebbings R, Danning F (eds) (1983) Rydberg states of atoms and molecules. Cambridge University Press, Cambridge

    Google Scholar 

  • Su Q, Eberly H, Javanien J (1990) Dynamics of atomic ionization suppression and electron localization in an intense high-frequency radiation field. Phys Rev Lett 64(8):862–865

    Google Scholar 

  • Sukharev ME, Krainov VP (1998) Rotation and alignment of diatomic molecules and their molecular ions in strong laser fields. JETP 86(2):318–322

    Google Scholar 

  • Swain S (1980) Theory of atomic processes in a radiation field. Adv At Mol Phys 16:159–200

    Google Scholar 

  • Theodosiou CE, Armstrong L, Crance M Jr, Feneuille S (1979) Short-time behavior in multiphoton ionization. Phys Rev A19(2):766–775

    Google Scholar 

  • Vartazaryan AS, Ivanov GK, Golubkov GV (1989) Near-threshold ionization and dissociation of diatomic molecules by weak UV and intense IR radiation. Opt Spectr 67(3):557–561

    Google Scholar 

  • Vos RJ, Gavrila M (1992) Effective stabilization of Rydberg states at current laser performances. Phys Rev Lett 68(2):170–173

    Google Scholar 

  • Yakovlenko SI (1982) Absorption of powerful resonance radiation accompanying collisional line broadening. Sov Phys Usp 25(4):216–230

    Google Scholar 

  • Yakovlenko SI (1984) Radiative collisional phenomena. Energoatomizdat, Moscow

    Google Scholar 

  • Yang B, Saeed M, DiMauro LF et al (1991) High-resolution multiphoton ionization and dissociation of H2 and D2 molecules in intense laser fields. Phys Rev A44(3):R1458–R1461

    Google Scholar 

  • Yao G, Chu SI (1992) Laser-induced molecular stabilization and trapping and chemical bond hardening in intense laser fields. Chem Phys Lett 197(5):413–418; (1993) Molecular bond-hardening and dynamics of molecular stabilization and trapping in intense laser fields. Phys Rev A48(5):485–494

    Google Scholar 

  • Zakrewski J (1984) Laser-induced autoionization in the presence of additional atomic continua. J Phys B At Mol Opt Phys 17(5):719–728

    Google Scholar 

  • Zavriev F, Bucksbaum PY (1993) H2 in intense laser field. In: Bandrauk AD (ed) Molecules in laser fields. Dekker, New York, pp 71–108

    Google Scholar 

  • Zavriyev A, Bucksbaum PH, Muller GH, Schumacher DW (1990) Ionization and dissociation of \( {\text{H}}_2^{ + } \) in intense laser fields at 1.064 μm, 532 nm, and 355 nm. Phys Rev A42(9):5500–5513

    Google Scholar 

  • Zavriyev A, Bucksbaum PH, Squier J, Saline F (1993) Light-induced vibrational structure in \( {\text{H}}_2^{ + } \) and \( {\text{D}}_2^{ + } \) in intense laser fields. Phys Rev Lett 70(8):1077–1080

    Google Scholar 

  • Zel’dovich YB (1973) Scattering and emission of a quantum system in a strong electromagnetic wave. Sov Phys Usp 16(3):427–433

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady V. Golubkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Golubkov, G.V. (2013). Elementary Processes Involving Rydberg Molecules in a Strong Laser Field. In: Bychkov, V., Golubkov, G., Nikitin, A. (eds) The Atmosphere and Ionosphere. Physics of Earth and Space Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2914-8_2

Download citation

Publish with us

Policies and ethics