Skip to main content

Ionization of Excited Atoms in Thermal Collisions

  • Chapter
  • First Online:
The Atmosphere and Ionosphere

Abstract

This book is devoted to the modern theory and experimental investigations of the associative ionization (AI) reaction. The means of their further development are analyzed. Numerous applications in plasma chemistry, aeronomy, chemical physics of the upper atmosphere, and astrophysics have contributed to conducting this study. The threshold behavior of cross sections of the endothermic reaction AI is considered, and it is shown that the dependence of above-threshold energy E is a strictly linear in the quantum case, which differs substantially from the law E 3/2, resulting in a semiclassical theory. This result has a simple physical explanation because the matrix elements of scattering operator resulting from the tunneling effect are finite at E = 0. Comparison with the semiclassical theory has been made. A substantiation of the described possibility of elementary AI reaction dynamics in the diffusion approach is given. A detailed consideration of the applicability conditions of the “quantum chaos” theory for the spectrum of highly excited Rydberg molecules is carried out. A review of experimental studies of AI reaction under different conditions covering vapor cells, single effusive beams, two crossing beams, and cold matters (very briefly) is presented. The importance of accounting for specific distribution functions of atoms over a relative (colliding) velocity in AI rate constant evaluations is discussed, and a proper explanation of noticeable variations in experimental data is provided. Different types of colliding atomic/molecular pairs consisting of low-lying excited states (normal, metastable, and resonance) in inert and alkali gases are considered, and the corresponding futures of AI cross sections are analyzed. Experimental data on AI and Penning ionization processes involving the Rydberg states of hydrogen and alkali atoms are considered on the basis of a number of theoretical models. The relevance of diffusion motion of the optical electron through the Rydberg energy states toward the continuum resulting from appearance of the dynamics chaos regime in its evolution is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson SO, Buenker RG, Golubkov GV et al (2009) Laser stimulation of low-temperature dissociative recombination of dissociative recombination of electrons and oxygen molecular ions. Russ J Phys Chem B3(2):195–210

    Google Scholar 

  • Amthor T, Denskat J, Giese C et al (2009) Autoionization of an ultracold Rydberg gas through resonant dipole coupling. Eur Phys J D53:329–335

    Google Scholar 

  • Balashov EM, Golubkov GV, Ivanov GK (1984) Radiative transitions between Rydberg states of molecules. Sov Phys JETP 59(6):1188–1194

    Google Scholar 

  • Barbier L, Djerad MT, Cheret M (1986) Collisional ion-pair formation in an excited alkali-metal vapor. Phys Rev A34:2710–2718

    Google Scholar 

  • Barbier L, Pesnelle A, Cheret MJ (1987) Theoretical interpretation of penning and associative ionization in collisions between two excited rubidium atoms. J Phys B28:1249–1260

    Google Scholar 

  • Bellissard J (1991) Non commutative methods in semiclassical analysis. Transition to chaos in classical and quantum mechanics. Springer, Berlin

    Google Scholar 

  • Beterov IM, Vasilenko GL, Riabtsev II et al (1987) Collisional chemiionization of highly excited sodium atoms. Z Phys D At Mol Clust 6–7:55–63

    Article  Google Scholar 

  • Beterov IM, Tretyakov DV, Riabtsev II et al (2005) Collisional and thermal ionization of sodium Rydberg atoms. III. Experiment and theory for nS, nP and nD states with n = 8 ÷ 20 in a cross beam geometry. J Phys B38:4349–4361

    Google Scholar 

  • Bezuglov NN, Klyucharev AN, Sheverev VA (1987) Associative ionization rate constants measured in cell and beam experiments. J Phys B20:2497–2513

    Google Scholar 

  • Bezuglov NN, Vujnovic VV, Klyucharev AN, Sheverev VA (1989) The efficiency of collision processes involving optically excited atoms in crossed atomic beams. Opt Spectrosc 66: 721–725

    Google Scholar 

  • Bezuglov NN, Klyucharev AN, Stacewicz T (1994) Photoplasma of optically excited metal vapors. Opt Spectrosc 77:304–326

    Google Scholar 

  • Bezuglov NN, Borodin VM, Klyucharev AN et al (1995) Ionization in subthermal collisions of Rydberg alkali metal atoms. Opt Spectrosc 79:680–684

    Google Scholar 

  • Bezuglov NN, Borodin VM, Klyucharev AN et al (1997) Near-threshold ionization in collisions of two Rydberg atoms in identical states. Opt Spektrosc V 83:338–344

    Google Scholar 

  • Blange JJ, Aben G, Rudolph H et al (1997) Associative ionization in collision between excited Na atoms in 32P3/2 and 32P1/2 states. J Phys B30:2789–2800

    Google Scholar 

  • Borodin VM, Komarov IV (1974) Redoubling of the excitation induced by collisions between two resonance excited cesium atoms. Opt Spectrosc 36:250–257

    Google Scholar 

  • Borodin VM, Dobrolezh BV, Klucharev AN et al (1995) Investigation of ionization processes in subthermal collisions of rubidium n2P atoms with one another and with the ground state Rb atoms. Opt Spectrosc 78:15–19

    Google Scholar 

  • Casati G, Chirikov BV, Guarneri I (1985) Energy-level statistics of integrable quantum systems. Phys Rev Lett 54:1350–1353

    Article  Google Scholar 

  • Cohen JS (1976) Multistate curve-crossing model for scattering: associative ionization and excitation transfer in helium. Phys Rev A13:99–110

    Google Scholar 

  • Cutzwiller MC (1990) Chaos in classical and quantum mechanics. Pergamon Press, New York

    Google Scholar 

  • De Iong A, van der Valk F (1979) Associative ionization of laser-excited sodium in an atomic beam. J Phys B12:L561–L566

    Google Scholar 

  • Demkov YuN, Golubkov GV (2003) Adiabatic approximation in time-dependent problems of quantum mechanics. Khim Fiz 22(10):7–24

    Google Scholar 

  • Demkov YuN, Komarov IV (1966) Ionization under slow collisions of two atoms. Sov Phys JETP 23:189–196

    Google Scholar 

  • Demkov YuN, Osherov VI (1968) Stationary and time-dependent quantum problems solved by the contour integral method. Sov Phys JETP 26:916–923

    Google Scholar 

  • Devdariani AZ (1979) Influence of the characteristic feature of elastic scattering on the temperature dependence of the rate constant on nonadiabatic reactions. Opt Spectrosc 47:58–64

    Google Scholar 

  • Devdariani AZ, Klyucharev AN, Lazarenko AB et al (1978) Collisional ionization processes of Rydberg states of the alkali atoms. Sov Tech Phys Lett 4:408–411

    Google Scholar 

  • Devdariani AZ, Demidov VI, Kolokolov NB et al (1983) Electronic spectra under the low excited atoms collision in inert gases. JETP 84:1646–1653

    Google Scholar 

  • Devdariani AZ, Klyucharev AN, Penkin NP et al (1988) Diffusional approach to the process of collisional ionization of excited atoms. Opt Spectrosc 64:425–426

    Google Scholar 

  • Djerad MT, Harima H, Cheret M (1985) Associative ionization in Rb(nL) – K(4S) collisions. J Phys B18:L815–L819

    Google Scholar 

  • Duman EA, Shmatov IP (1980) Ionization of highly excited atoms in the own gas. Sov Phys JETP 51:1061–1069

    Google Scholar 

  • Galitskii VM, Nikitin EE, Smirnov BM (1981) Theory of the collisions of atomic particles. Nauka, Moscow (in Russian)

    Google Scholar 

  • Garrison BJ, Miller WH, Shaefer HF (1973) Penning and associative ionization of triplet metastable helium atoms. J Chem Phys 59:3193–3198

    Article  Google Scholar 

  • Geltman S (1988) Semiclassical analysis of the associative process Na(3p) + Na(3p) → Na +2 + e. J Phys B21:L735–L740

    Google Scholar 

  • Gnedin YN, Mihajlov AA, Ignatovic LM et al (2009) Rydberg atoms in astrophysics. New Astron Rev 53:259–265

    Article  Google Scholar 

  • Golubkov GV, Ivanov GK (1988) Near-threshold associative ionization reaction of atoms. J Phys B21:2049–2062

    Google Scholar 

  • Golubkov GV, Ivanov GK (1990) Interaction of auto-decayed states in molecular photodissociation processes. IL Nuovo Cimento 12D(1):1–20

    Article  Google Scholar 

  • Golubkov GV, Ivanov GK (2001) Rydberg states of atoms and molecules and elementary processes with their participation. URSS, Moscow

    Google Scholar 

  • Golubkov GV, Kuznetsov NM, Egorov VV (1979) The role of single-step ionization by thermal electron-atom collisions. J Phys Colloq C7 40:89

    Google Scholar 

  • Golubkov GV, Ivanov GK, Golubkov MG (1996a) Nonadiabatic effects in dissociative recombination of electrons with hydrogen molecular ions. Chem Phys Rep 15:503–513

    Google Scholar 

  • Golubkov GV, Ivanov GK, Balashov EM (1996b) Manifestation of nonadiabatic electron-rotational coupling in radiative transitions between Rydberg states of H2 molecule. Opt Spectrosc 80(1):33–40

    Google Scholar 

  • Golubkov MG, Golubkov GV, Ivanov GK (1997) Low-temperature dissociative recombination of electrons with \( {H_2}^{ + },H{D^{ + }} \) and \( {D_2}^{ + } \) molecular ions. J Phys B30:5511–5534

    Google Scholar 

  • Golubkov GV, Golubkov MG, Romanov AN (2002) Dissociative recombination of electrons and \( {O_2}^{ + } \) in intense visible laser radiation. JETP 94(3):489–497

    Article  Google Scholar 

  • Golubkov GV, Golubkov MG, Romanov AN et al (2003) Dissociative recombination \( {{\text{e}}^{ - }} + {O_2}^{ + } \to O\left( {^1D} \right) + O\left( {^3P} \right) \)in a strong laser field. Phys Chem Chem Phys 5:3174–3182

    Article  Google Scholar 

  • Golubkov GV, Golubkov MG, Ivanov GK (2010) Rydberg states of atoms and molecules in a field of neutral particles. In: Bychkov VL, Golubkov GV, Nikitin AI (eds) The atmosphere and ionosphere: dynamics, processes and monitoring. Springer, New York, pp 1–67

    Google Scholar 

  • Gutzwiller MC (1990) Chaos in classical and quantum mechanics. Springer, Heidelberg

    Google Scholar 

  • Harth K, Hotop H, Ruf MW (1986) Ionization and charge transfer in collisions of neon Rydberg atoms with n ≤ 30. Invited papers, Oji international seminar on highly excited states of atoms and molecules. Fyji-Yoshida, Japan, pp 117–121

    Google Scholar 

  • Hasegawa H (1988) Stochastic formulation of energy level statistics: application to the hydrogen atom in a magnetic field. In: Taylor KT, Nayfeh MH, Clark CW (eds) Atomic spectra and collisions in external fields. Plenum Press, New York, p 297

    Chapter  Google Scholar 

  • Hu XK, Mitchell JBA, Lipson RH (2000) Resonance-enhanced multiphoton ionization-photoelectron study of the dissociative recombination and associative ionization on Xe +2 . Phys Rev A62:052712

    Google Scholar 

  • Huennekens J, Gallagher A (1983) Associative ionization by collision between two Na(3p) atoms. Phys Rev A28:1276–1287

    Google Scholar 

  • Ianev RK, Mihajlov AA (1980) Resonant ionization in slow atom-Rydberg atom collisions. Phys Rev A21:819–826

    Google Scholar 

  • Ignatovic LjM, Mihajlov AA, Klyucharev AN (2008) The rate coefficient for the chemi-ionization in slow Li(n)* + Na collisions. J Phys B41:025203

    Google Scholar 

  • Kircz JG, Morgenstern R, Nienhuis G (1982) Polarization dependence of associative ionization of laser-excited Na 32P3/2 atoms. Phys Rev Lett 48:610–613

    Article  Google Scholar 

  • Klyucharev AN (1993) Chemi-ionization processes. Phys Usp 36:486–512

    Article  Google Scholar 

  • Klyucharev AN, Bezuglov NN (1983) Excitation and ionization of atoms during the absorption of light. LGU, Leningrad

    Google Scholar 

  • Klyucharev AN, Lazarenko AV (1980) Collisional ionization processes in the optical excitation of Rydberg states of potassium. Opt Spectrosc 48:229–230

    Google Scholar 

  • Klyucharev AN, Vujnovic V (1990) Chemoionization in thermal-energy binary collisions of optically excited atoms. Phys Rep 188:55–81

    Article  Google Scholar 

  • Klyucharev AN, Bezuglov NN, Matveev AA et al (2007) Rate coefficient for the chemi-ionization processes in sodium and other alkali-metal geocosmical plasma. New Astron Rev 51:547–562

    Article  Google Scholar 

  • Klyucharev AN, Bezuglov NN, Mihajlov AA et al (2010) Influence of inelastic Rydberg atom: Rydberg atom collision process on kinetic and optical properties of low-temperature laboratory and astrophysical plasmas. J Phys Conf Ser 257:012027

    Article  Google Scholar 

  • Knauf F, Sinai YG (1997) Classical nonintegrability, quantum chaos. Birkhauser, Basel

    Book  Google Scholar 

  • Kolokolov NB, Kudryavtsev AA (1989) Hemi-ionization processes in low-temperature plasma. In: Smirnov BM (ed) Chemistry of plasma, vol 15. Energoatomizdat, Moscow, pp 127–162

    Google Scholar 

  • Lee SM (1977) Multichannel dissociative recombination theory. Phys Rev A16:109–122

    Google Scholar 

  • Lombardi M, Seligman TH (1993) Universal and nonuniversal statistical properties of levels and intensities for chaotic Rydberg molecules. Phys Rev A47(5):3571–3586

    Google Scholar 

  • Lombardi M, Labastie P, Bordas MC et al (1988) Molecular Rydberg states: classical chaos and its correspondence in quantum mechanics. J Chem Phys 89(6):3479–3491

    Article  Google Scholar 

  • Matsuzawa M (1979) State-changing collision of a high-Rydberg atom with polar molecule. Phys Rev A20:860–866

    Google Scholar 

  • McGeoch MW, Schlier RE, Chawla GK (1988) Associative ionization with cold Rydberg lithium atoms. Phys Rev Lett 61:2088–2091

    Article  Google Scholar 

  • Merz A, Ruf M-W, Hotop H et al (1994) Ionization of hydrogen and deuterium atoms in thermal energy collisions with metastable He*(23S) atoms. J Phys B27:4973–4990

    Google Scholar 

  • Müller MW, Merz A, Ruf MW et al (1991) Experimental and theoretical studies of the bi-excited collision systems He*(23S) + He*(23S, 21S) at thermal and subthermal kinetic energies. Z Phys D At Mol Clust 21:89–112

    Article  Google Scholar 

  • Neynaber RH, Magnuson GD, Tang SY (1978) Chemi-ionization in collisions of metastable helium with metastable helium. J Chem Phys 68:5112–5117

    Article  Google Scholar 

  • Nielsen SE, Dahler JS (1979) Endoergic chemi-ionization in N − O collisions. J Chem Phys 71:1910–1925

    Article  Google Scholar 

  • Ovsiyankin VV, Feofilov PP (1968) The summation of the electronic excitations in activated crystals. In: Nonlinear optics, proceedings of the 2-union symposium on nonlinear optics. Novosibirsk, Nauka

    Google Scholar 

  • Picart J, Edmonds A (1979) Tables for computation of radial integrals in the Coulomb approximation. J Phys B12(17):2781–2787

    Google Scholar 

  • Reicherts M, Roth TE, Gopalan A et al (1997) Controlled formation of weakly bound atomic negative ions by electron transfer from state-selected Rydberg atoms. Europhys Lett 40: 129–130

    Article  Google Scholar 

  • Ringer G, Gentry WR (1979) A merged molecular beam study of the endoergic associative ionization reaction N(2D) + O(3P) − NO+ + e. J Chem Phys 71:1902–1909

    Article  Google Scholar 

  • Smirnov BM (1981) Ionization in low-energy atomic collisions. Phys Usp 24:251–275

    Article  Google Scholar 

  • Smirnov VM, Mihajlov AA (1971a) Nonelastic collisions involving highly excited atoms. Opt Spektrosc 30:984–987

    Google Scholar 

  • Smirnov VM, Mihajlov AA (1971b) Nonelastic collisions involving highly excited atoms. Opt Spectrosc 30:525–527

    Google Scholar 

  • Stockmann H-J (1999) Quantum chaos (an introduction). Cambridge University Press, Cambridge

    Google Scholar 

  • Tolmachev YuA (1982) Excited ions states settling under penning ionization. In: Smirnov BM (ed) Chemistry of plasma, vol 9. Energoatomizdat, Moscow, pp 80–100

    Google Scholar 

  • Wang M-X, de Vries MS, Boulmer J et al (1985) Direct measurement of velocity dependence of the associative ionization cross section in Na(3p) + Na(3p) collisions. Phys Rev A32:681–684

    Google Scholar 

  • Wang M-X, Keller J, Boulmer J et al (1987) Spin-selected velocity dependence of the associative ionization cross section in Na(3p) + Na(3p) collision energy range from 2.4 to 290 meV. Phys Rev A35:934–937

    Google Scholar 

  • Zhdanov VP, Chibisov MI (1976) Penning ionization of the nonmetastable atoms. Zh Eksp Teor Fiz 70:2087–2097

    Google Scholar 

  • Zollars BG, Walter CW, Lu F et al (1986) Ionization in K(nd)-SF6 and K(nd)-CCl4 collisions at intermediate n. J Chem Phys 84:5589–5593

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the EU FP7 IRSES Project COLIMA, No. 247475.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady V. Golubkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bezuglov, N.N., Golubkov, G.V., Klyucharev, A.N. (2013). Ionization of Excited Atoms in Thermal Collisions. In: Bychkov, V., Golubkov, G., Nikitin, A. (eds) The Atmosphere and Ionosphere. Physics of Earth and Space Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2914-8_1

Download citation

Publish with us

Policies and ethics