Skip to main content

Differentiation of Human Adipose-Derived Stem Cells into Cardiomyocytes

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 5

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 5))

  • 1107 Accesses

Abstract

The delivery of autologous progenitor cells into injured tissue is emerging as a novel therapeutic option for use in tissue repair and regeneration. Among them, human adipose-derived stem cells (ADSCs) are promising cell source for potential stem cell-based clinical therapies. According to the advent of ADSCs, it became possible to acquire enough numbers of stem cells as a clinically applicable therapeutic agent even without a culture expansion process. The characteristics of the ADSCs are not fully disclosed yet and it seems they have similar cellular plasticity as other types of mesenchymal stem cells. A lot of studies show that they could differentiate not only into mesenchymal tissues such as bone, cartilage, muscle, etc. but also into vascular endothelial cells and increase neovascularization within ischemic tissue. ADSCs have shown the capacity to enhance cardiac function and engrafted cells could differentiate into cardiomyocytes and vascular cells, produce neovascularization by paracrine manner. ADSCs could be promising cell therapeutic agent for cardiovascular disease in regards to the improvement of cardiac function as well as histologic regeneration without severe immunologic compromise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alt E, Pinkernell K, Scharlau M, Coleman M, Fotuhi P, Nabzdyk C, Matthias N, Gehmert S, Song YH (2010) Effect of freshly isolated autologous tissue resident stromal cells on cardiac function and perfusion following acute myocardial infarction. Int J Cardiol 144(1):26–35

    Article  PubMed  Google Scholar 

  • Bai X, Ma J, Pan Z, Song YH, Freyberg S, Yan Y, Vykoukal D, Alt E (2007) Electrophysiological properties of human adipose tissue-derived stem cells. Am J Physiol Cell Physiol 293(5):C1539–C1550

    Article  PubMed  CAS  Google Scholar 

  • Bai X, Yan Y, Song YH, Seidensticker M, Rabinovich B, Metzele R, Bankson JA, Vykoukal D, Alt E (2010) Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J 31(4):489–501

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Johnstone BH, Cook TG, Liang Z, Traktuev D, Cornetta K, Ingram DA, Rosen ED, March KL (2007) Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells 25(12):3234–3243

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS, March KL (2009) IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells 27(1):230–237

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Sun Z, Laio L, Meng Y, Han Q, Zhao RC (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332:370–379

    Article  PubMed  CAS  Google Scholar 

  • Choi YS, Dusting GJ, Stubbs S, Arunothayaraj S, Han XL, Collas P, Morrison WA, Dilley RJ (2010) Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med 14(4):878–889

    Article  PubMed  CAS  Google Scholar 

  • De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  PubMed  Google Scholar 

  • Gaustad KG, Boquest AC, Anderson BE, Gerdes AM, Collas P (2004) Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun 314:420–427

    Article  PubMed  CAS  Google Scholar 

  • Gehling UM, Ergün S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schäfer B, Hossfeld DK, Fiedler W (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95(10):3106–3112

    PubMed  CAS  Google Scholar 

  • Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100(9):1249–1260

    Article  PubMed  CAS  Google Scholar 

  • Kim U, Shin DG, Park JS, Kim YJ, Park SI, Moon YM, Jeong KS (2011) Homing of adipose-derived stem cells to radiofrequency catheter ablated canine atrium and differentiation into cardiomyocyte-like cells. Int J Cardiol 146(3):371–378

    Article  PubMed  Google Scholar 

  • Madonna R, Geng YJ, De Caterina R (2009) Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol 29(11):1723–1729

    Article  PubMed  CAS  Google Scholar 

  • Metzele R, Alt C, Bai X, Yan Y, Zhang Z, Pan Z, Coleman M, Vykoukal J, Song YH, Alt E (2011) Human adipose tissue-derived stem cells exhibit proliferation potential and spontaneous rhythmic contraction after fusion with neonatal rat cardiomyocytes. FASEB J 25(3):830–839

    Article  PubMed  CAS  Google Scholar 

  • Miranville A, Heeschen C, Sengenès C, Curat CA, Busse R, Bouloumié A (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110(3):349–355

    Article  PubMed  CAS  Google Scholar 

  • Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459–465

    Article  PubMed  CAS  Google Scholar 

  • Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC, Sung SM, Jung JS (2006) Human adipose tissue-derived stem cells improve postnatal neovascularization in a model of hindlimb ischemia. Cell Physiol Biochem 17:279–290

    Article  PubMed  CAS  Google Scholar 

  • Nakagami H, Morishita R, Maeda K, Kikuchi Y, Ogihara T, Kaneda Y (2006) Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb 13(2):77–81

    Article  PubMed  Google Scholar 

  • Ning H, Liu G, Lin G, Yang R, Lue TF, Lin CS (2009) Fibroblast growth factor 2 promotes endothelial differentiation of adipose tissue-derived stem cells. Differentiation 77(2):172–180

    Article  PubMed  CAS  Google Scholar 

  • Planat-Bénard V, Menard C, André M, Puceat M, Perez A, Garcia-Verdugo JM, Pénicaud L, Casteilla L (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229

    Article  PubMed  Google Scholar 

  • Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L (2005) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109(5):656–663

    Article  Google Scholar 

  • Rangappa S, Fen C, Lee EH, Bongso A, Sim EK (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779

    Article  PubMed  Google Scholar 

  • Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298

    Article  PubMed  Google Scholar 

  • Rodriguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ (2006) Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci USA 103(32):12167–12172

    Article  PubMed  CAS  Google Scholar 

  • Sadat S, Gehmert S, Song YH, Yen Y, Bai X, Gaiser S, Klein H, Alt E (2007) The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun 363:674–679

    Article  PubMed  CAS  Google Scholar 

  • Schenke-Layland K, Strem BM, Jordan MC, Deemedio MT, Hedrick MH, Roos KP, Fraser JK, Maclellan WR (2009) Adipose tissue-derived cells improve cardiac function following myocardial infarction. J Surg Res 153(2):217–223

    Article  PubMed  CAS  Google Scholar 

  • Song YH, Gehmert S, Sadat S, Pinkernell K, Bai X, Matthias N, Alt E (2007) VEGF is critical for ­spontaneous differentiation of stem cells into ­cardiomyocytes. Biochem Biophys Res Commun 354(4):999–1003

    Article  PubMed  CAS  Google Scholar 

  • Strem BM, Zhu M, Alfonso Z, Daniels EJ, Schreiber R, Beygui R, MacLellan WR, Hedrick MH, Fraser JK (2005) Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy 7:282–291

    Article  PubMed  CAS  Google Scholar 

  • Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E (2007) Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 28(21):2667–2677

    Article  PubMed  Google Scholar 

  • Valiunas V, Doronin S, Valiuniene L, Potapova I, Zuckerman J, Walcott B, Robinson RB, Rosen MR, Brink PR, Cohen IS (2004) Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol 555:617–626

    Article  PubMed  CAS  Google Scholar 

  • Van Dijk A, Niessen HW, Zandieh Doulabi B, Visser FC, van Milligen FJ (2008) Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell Tissue Res 334(3):457–467

    Article  PubMed  Google Scholar 

  • Wang L, Deng J, Tian W, Xiang B, Yang T, Li G, Wang J, Gruwel M, Kashour T, Rendell J, Glogowski M, Tomanek B, Freed D, Deslauriers R, Arora RC, Tian G (2009) Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. Am J Physiol Heart Circ Physiol 297(3):H1020–H1031

    Article  PubMed  CAS  Google Scholar 

  • Zhu XY, Zhang XZ, Xu L, Zhong XY, Ding Q, Chen YX (2009) Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue. Biochem Biophys Res Commun 379(4):1084–1090

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Gu Shin MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kim, U., Shin, DG. (2012). Differentiation of Human Adipose-Derived Stem Cells into Cardiomyocytes. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 5. Stem Cells and Cancer Stem Cells, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2900-1_9

Download citation

Publish with us

Policies and ethics