Skip to main content

Mesenchymal Stem Cell Treatment for Ischemic Brain Injury

  • Chapter
  • First Online:
  • 1104 Accesses

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 5))

Abstract

Cell-based therapies for experimental models of neonatal and adult ischemic brain injury are effective for repairing the damaged brain. Transplantation of mesenchymal stem cells does not only replace lost tissue, but more importantly also enhances repair processes in the brain. The induction of processes like neurogenesis, angiogenesis and axonal remodeling likely underlie the improved functional outcome. These repair processes are mediated via many growth factors secreted by transplanted stem cells and parenchymal cells. After transplantation, mesenchymal stem cells react to the ischemic cerebral environment and change their secretory profile to the need of the cerebral environment. The interplay between transplanted mesenchymal stem cells and parenchymal cells will ultimately define the extent of repair.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarum J, Sandberg K, Haeberlein SL, Persson MA (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA 100:15983–15988

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  CAS  Google Scholar 

  • Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, Arvin KL, Holtzman DM (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 22:455–463

    PubMed  CAS  Google Scholar 

  • Carmichael ST (2006) Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol 59:735–742

    Article  PubMed  CAS  Google Scholar 

  • de Vries LS, Groenendaal F (2010) Patterns of neonatal hypoxic-ischaemic brain injury. Neuroradiology 52:555–566

    Article  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  • Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Felling RJ, Snyder MJ, Romanko MJ, Rothstein RP, Ziegler AN, Yang Z, Givogri MI, Bongarzone ER, Levison SW (2006) Neural stem/progenitor cells participate in the regenerative response to perinatal hypoxia/ischemia. J Neurosci 26:4359–4369

    Article  PubMed  CAS  Google Scholar 

  • Fisher M (2011) New approaches to neuroprotective drug development. Stroke 42:S24–S27

    Article  PubMed  Google Scholar 

  • Gonzalez FF, Ferriero DM (2008) Therapeutics for neonatal brain injury. Pharmacol Ther 120:43–53

    Article  PubMed  CAS  Google Scholar 

  • Grayson WL, Zhao F, Bunnell B, Ma T (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358:948–953

    Article  PubMed  CAS  Google Scholar 

  • Hagg T (2005) Molecular regulation of adult CNS neurogenesis: an integrated view. Trends Neurosci 28:589–595

    Article  PubMed  CAS  Google Scholar 

  • Hedtjarn M, Mallard C, Eklind S, Gustafson-Brywe K, Hagberg H (2004a) Global gene expression in the immature brain after hypoxia-ischemia. J Cereb Blood Flow Metab 24:1317–1332

    Article  PubMed  Google Scholar 

  • Hedtjarn M, Mallard C, Hagberg H (2004b) Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. J Cereb Blood Flow Metab 24:1333–1351

    Article  PubMed  Google Scholar 

  • Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang JA, Wei L (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135:799–808

    Article  PubMed  CAS  Google Scholar 

  • Hung SC, Pochampally RR, Hsu SC, Sanchez C, Chen SC, Spees J, Prockop DJ (2007) Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One 2:e416

    Article  PubMed  Google Scholar 

  • Kuhn NZ, Tuan RS (2010) Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol 222:268–277

    Article  PubMed  CAS  Google Scholar 

  • Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11:96–104

    Article  PubMed  CAS  Google Scholar 

  • Leviton A, Dammann O, O’Shea TM, Paneth N (2002) Adult stroke and perinatal brain damage: like grandparent, like grandchild? Neuropediatrics 33:281–287

    Article  PubMed  CAS  Google Scholar 

  • Leviton A, Dammann O, Durum SK (2005) The adaptive immune response in neonatal cerebral white matter damage. Ann Neurol 58:821–828

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Li Y, Zhang ZG, Cui X, Cui Y, Lu M, Savant-Bhonsale S, Chopp M (2010) Bone marrow stromal cells enhance inter- and intracortical axonal connections after ischemic stroke in adult rats. J Cereb Blood Flow Metab 30:1288–1295

    Article  PubMed  Google Scholar 

  • Molina-Holgado E, Molina-Holgado F (2010) Mending the broken brain: neuroimmune interactions in neurogenesis. J Neurochem 114:1277–1290

    PubMed  CAS  Google Scholar 

  • Ohab JJ, Carmichael ST (2008) Poststroke neurogenesis: emerging principles of migration and localization of immature neurons. Neuroscientist 14:369–380

    Article  PubMed  CAS  Google Scholar 

  • Okazaki T, Magaki T, Takeda M, Kajiwara Y, Hanaya R, Sugiyama K, Arita K, Nishimura M, Kato Y, Kurisu K (2008) Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats. Neurosci Lett 430:109–114

    Article  PubMed  CAS  Google Scholar 

  • Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  • Raber J, Fan Y, Matsumori Y, Liu Z, Weinstein PR, Fike JR, Liu J (2004) Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Ann Neurol 55:381–389

    Article  PubMed  Google Scholar 

  • Rivera FJ, Couillard-Despres S, Pedre X, Ploetz S, Caioni M, Lois C, Bogdahn U, Aigner L (2006) Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells 24:2209–2219

    Article  PubMed  CAS  Google Scholar 

  • Rivera FJ, Kandasamy M, Couillard-Despres S, Caioni M, Sanchez R, Huber C, Weidner N, Bogdahn U, Aigner L (2008) Oligodendrogenesis of adult neural progenitors: differential effects of ciliary neurotrophic factor and mesenchymal stem cell derived factors. J Neurochem 107:832–843

    Article  PubMed  CAS  Google Scholar 

  • Robin AM, Zhang ZG, Wang L, Zhang RL, Katakowski M, Zhang L, Wang Y, Zhang C, Chopp M (2006) Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab 26:125–134

    Article  PubMed  CAS  Google Scholar 

  • Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10:235–241

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz K, Kumbruch S, Lebermann K, Marschner K, Jensen A, Dermietzel R, Meier C (2010) The chemokine SDF-1/CXCL12 contributes to the ‘homing’ of umbilical cord blood cells to a hypoxic-ischemic lesion in the rat brain. J Neurosci Res 88:1223–1233

    PubMed  CAS  Google Scholar 

  • Rosova I, Dao M, Capoccia B, Link D, Nolta JA (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26:2173–2182

    Article  PubMed  CAS  Google Scholar 

  • Shichinohe H, Kuroda S, Yano S, Hida K, Iwasaki Y (2007) Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct. Brain Res 1183:138–147

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  PubMed  CAS  Google Scholar 

  • van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2009) Regeneration of the ischemic brain by engineered stem cells: fuelling endogenous repair processes. Brain Res Rev 61:1–13

    Article  PubMed  Google Scholar 

  • van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2010a) Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain Behav Immun 24:387–393

    Article  PubMed  Google Scholar 

  • van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2010b) Repeated mesenchymal stem cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function. J Neurosci 30:9603–9611

    PubMed  Google Scholar 

  • van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2010c) Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatr Res 68:419–422

    PubMed  Google Scholar 

  • van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2011) Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain. Brain, Behavior and Immunity 25:1342–8

    Google Scholar 

  • Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, Yarmush ML (2010) Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant 19:667–679

    Article  PubMed  Google Scholar 

  • Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 95:15769–15774

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8:491–500

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy T. J. van Velthoven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

van Velthoven, C.T.J., Kavelaars, A., Heijnen, C.J. (2012). Mesenchymal Stem Cell Treatment for Ischemic Brain Injury. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 5. Stem Cells and Cancer Stem Cells, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2900-1_7

Download citation

Publish with us

Policies and ethics