Skip to main content

Peripheral Nerve Regeneration After Traumatic Injury and Stem-Cell Therapy

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 5

Abstract

Although the peripheral nervous system has an inherent potential for regeneration, injuries to nerves still result in considerable disabilities, constituting a challenge for clinicians and surgeons across the world. Knowledge of the microsurgery techniques, cell, gene and pharmacological approaches that are being implemented in basic, pre clinical and clinical trials to date is of great importance to guide neuroscientists and neurosurgeons worldwide. Among the strategies for nerve reconstruction after trauma, stem cells represent a potential therapeutic tool, opening up the possibility of their application in the nerve repair clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aquino JB, Hjerling-Leffler J, Koltzemburg M, Edlund T, Villar MJ, Ernfors P (2006) In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Exp Neurol 198:438–449

    Article  PubMed  CAS  Google Scholar 

  • Brunelli G (1989) Direct muscle neurotization. Ann Chir Main 8:324–328

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay M, Wolfe D, Mata M, Huang S, Glorioso JC, Fink DJ (2005) Long-term neuroprotection achieved with latency-associated promoter-driven herpes simplex virus gene transfer to the peripheral nervous system. Mol Ther: J Am Soc Gene Ther 12:307–313

    Article  CAS  Google Scholar 

  • Chen CJ, Ou YC, Liao SL, Chen WY, Chen SY, Wu CW, Wang CC, Wang WY, Huang YS, Hsu SH (2007) Transplantation of bone-marrow stromal cells for peripheral nerve repair. Exp Neurol 204:443–453

    Article  PubMed  CAS  Google Scholar 

  • Chiu DT, Janecka I, Krizek TJ, Wolff M, Lovelace RE (1982) Autogenous vein graft as a conduit for nerve regeneration. Surgery 91:226–233

    PubMed  CAS  Google Scholar 

  • Cui L, Jiang J, Wei L, Zhou X, Fraser J, Snider J, Yu SP (2008) Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells 26:1356–1365

    Article  PubMed  CAS  Google Scholar 

  • Dahlin LB, Anagnostaki L, Lundborg G (2001) Tissue response to silicone tubes used to repair human median and ulnar nerves. Scand J Plast Reconstr Surg Hand Surg 35:29–34

    Article  PubMed  CAS  Google Scholar 

  • Elkwood AI, Holland NR, Arbes SM, Rose MI, Kaufman MR, Ashinoff RL, Parikh MA, Patel TR (2011) Nerve allograft transplantation for functional restoration of the upper extremity: case series. J Spinal Cord Med 34:241–247

    Article  PubMed  Google Scholar 

  • Fleming J, Ginn SL, Weinberger RP, Trahair TN, Smythe JA, Alexander IE (2001) Adeno-associated virus and lentivirus vectors mediate efficient and sustained transduction of cultured mouse and human dorsal root ganglia sensory neurons. Hum Gene Ther 12:77–86

    Article  PubMed  CAS  Google Scholar 

  • Fu KY, Dai LG, Chiu IM, Chen JR, Hsu SH (2011) Sciatic nerve regeneration by microporous nerve conduits seeded with glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor gene transfected neural stem cells. Artif Organs 35:363–372

    Article  PubMed  CAS  Google Scholar 

  • Heine W, Conant K, Griffin JW, Höke A (2004) Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Exp Neurol 189:231–240

    Article  PubMed  CAS  Google Scholar 

  • Heumann R, Korsching S, Bandtlow C, Thoenen H (1987) Changes of nerve growth factor synthesis in non-neuronal cells in response to sciatic nerve transection. J Cell Biol 104:1623–1631

    Article  PubMed  CAS  Google Scholar 

  • Hood B, Levene HB, Levi AD (2009) Transplantation of autologous Schwann cells for the repair of segmental peripheral nerve defects. Neurosurg Focus 26:1–9

    Article  Google Scholar 

  • Hu J, Zhu QT, Liu XL, Xu YB, Zhu JK (2007) Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Exp Neurol 204:658–666

    Article  PubMed  Google Scholar 

  • Jungnickel J, Haastert K, Grzybek M, Thau N, Lipokatic-Takacs E, Ratzka A, Nölle A, Claus P, Grothe C (2010) Mice lacking basic fibroblast growth factor showed faster sensory recovery. Exp Neurol 223:166–172

    Article  PubMed  CAS  Google Scholar 

  • Kato N, Nemoto K, Nakanishi K, Morishita R, Kaneda Y, Uenoyama M, Ikeda T, Fujikawa K (2005) Nonviral HVJ (hemagglutinating virus of Japan) liposome-mediated retrograde gene transfer of human hepatocyte growth factor into rat nervous system promotes functional and histological recovery of the crushed nerve. Neurosci Res 52:299–310

    Article  PubMed  CAS  Google Scholar 

  • Keilhoff G, Goinhl A, Stang F, Wolf G, Fansa H (2006) Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng 12:1451–1465

    Article  PubMed  CAS  Google Scholar 

  • Labrador RO, ButĂ­ M, Navarro X (1998) Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair. Exp Neurol 149:243–252

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R, Hamburger V (1953) A diffusible agent of mouse sarcoma, producing hyperplasia of sympathetic ganglia and hyper neurotization of viscera in the chick embryo. J Exp Zool 123:233–288

    Article  Google Scholar 

  • Liao WC, Chen JR, Wang YJ, Tseng GF (2009) The efficacy of end-to-end and end-to-side nerve repair (neurorrhaphy) in the rat brachial plexus. J Anat 215:506–521

    Article  PubMed  Google Scholar 

  • Madison R, da Silva CF, Dikkes P, Chiu TH, Sidman Rl (1985) Increased rate of peripheral nerve regeneration using bioresorbable nerve guides and a laminin-containing gel. Exp Neurol 88:767–772

    Article  PubMed  CAS  Google Scholar 

  • Marques SA, Almeida FM, Fernandes AM, dos Santos Souza C, Cadilhe DV, Rehen SK, Martinez AM (2010) Predifferentiated embryonic stem cells promote functional recovery after spinal cord compressive injury. Brain Res 1349:115–128

    Article  PubMed  CAS  Google Scholar 

  • Mason MR, Tannemaat MR, Malessy MJ, Verhaagen J (2011) Gene therapy for the peripheral nervous system: a strategy to repair the injured nerve? Curr Gene Ther 11:75–89

    Article  PubMed  CAS  Google Scholar 

  • Midha R, Munro CA, Dalton PD, Tator CH, Shoichet MS (2003) Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube. J Neurosurg 99:555–565

    Article  PubMed  Google Scholar 

  • Navarro X, VivĂł M, Valero-CabrĂ© A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82:163–201

    Article  PubMed  CAS  Google Scholar 

  • Oliveira JT, Almeida FM, Biancalana A, Baptista AF, Tomaz MA, Melo PA, Martinez AM (2010) Mesenchymal stem cells in a polycaprolactone conduit enhance median-nerve regeneration, prevent decrease of creatine phosphokinase levels in muscle, and improve functional recovery in mice. Neuroscience 170:1295–1303

    Article  PubMed  CAS  Google Scholar 

  • Pereira Lopes FR, de Moura Campos LC, Dias CorrĂȘa J Jr, Balduino A, Lora S, Langone F, Borojevic R, Blanco Martinez AM (2006) Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice. Exp Neurol 198:457–468

    Article  PubMed  Google Scholar 

  • Pereira Lopes FR, Lisboa BC, Frattini F, Almeida FM, Tomaz MA, Matsumoto PK, Langone F, Lora S, Melo PA, Borojevic R, Han SW, Martinez AM (2011) Enhancement of sciatic-nerve regeneration after VEGF gene therapy. Neuropathol Appl Neurobiol. doi:10.1111/j.1365-2990.2011.01159.x. [Epub ahead of print]

  • Radtke C, Wewetzer K, Reimers K, Vogt PM (2011) Transplantation of olfactory ensheathing cells as adjunct cell therapy for peripheral nerve injury. Cell Transplant 20(2):145–152

    Article  PubMed  CAS  Google Scholar 

  • Rao P, Kotwal PP, Farooque M, Dinda AK (2001) Muscle autografts in nerve gaps. Pattern of regeneration and myelination in various lengths of graft: an experimental study in guinea pigs. J Orthop Sci 6:527–534

    Article  PubMed  CAS  Google Scholar 

  • RodrĂ­guez FJ, VerdĂș E, Ceballos D, Navarro X (2000) Nerve guides seeded with autologous Schwann cells improve nerve regeneration. Exp Neurol 1612:571–584

    Article  Google Scholar 

  • Sakamoto T, Kawazoe Y, Shen JS, Takeda Y, Arakawa Y, Ogawa J, Oyanagi K, Ohashi T, Watanabe K, Inoue K, Eto Y, Watabe K (2003) Adenoviral gene transfer of GDNF, BDNF and TGF beta 2, but not CNTF, cardiotrophin-1 or IGF1, protects injured adult moto­neurons after facial nerve avulsion. J Neurosci Res 72:54–64

    Article  PubMed  CAS  Google Scholar 

  • Schratzberger P, Schratzberger G, Silver M, Curry C, Kearney M, Magner M, Alroy J, Adelman LS, Weinberg DH, Ropper AH, Isner JM (2000) Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med 6:405–413

    Article  PubMed  CAS  Google Scholar 

  • Siemionow M, Brzezicki G (2009) Chapter 8: Current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol 87:141–172

    Article  PubMed  CAS  Google Scholar 

  • Siemionow M, Demir Y, Mukherjee AL (2010) Repair of peripheral nerve defects with epineural sheath grafts. Ann Plast Surg 65:546–554

    Article  PubMed  CAS  Google Scholar 

  • Sondell M, Sundler F, Kanje M (2000) Vascular endo­thelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 12:4243–4254

    Article  PubMed  CAS  Google Scholar 

  • Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628–643

    Article  PubMed  CAS  Google Scholar 

  • Unezaki S, Yoshii S, Mabuchi T, Saito A, Ito S (2009) Effects of neurotrophic factors on nerve regeneration monitored by in vivo imaging in thy1-YFP transgenic mice. J Neurosci Methods 178:308–315

    Article  PubMed  CAS  Google Scholar 

  • Wakao S, Hayashi T, Kitada M, Kohama M, Matsue D, Teramoto N, Ose T, Itokazu Y, Koshino K, Watabe H, Iida H, Takamoto T, Tabata Y, Dezawa M (2010) Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Exp Neurol 223:537–547

    Article  PubMed  CAS  Google Scholar 

  • Walsh SK, Gordon T, Addas BMJ, Kemp SWP, Midha R (2010) Skin-derived precursor cells enhance peripheral nerve regeneration following chronic denervation. Exp Neurol 223:221–228

    Article  PubMed  CAS  Google Scholar 

  • Walton RL, Brown RE, Matory WE Jr, Borah GL, Dolph JL (1989) Autogenous vein graft repair of digital nerve defects in the finger: a retrospective clinical study. Plast Reconstr Surg 84:944–952

    Article  PubMed  CAS  Google Scholar 

  • Whittlesey KJ, Shea L (2006) Nerve growth factor expression by PLG-mediated lipofection. Biomaterials 27:2477–2486

    Article  PubMed  CAS  Google Scholar 

  • Wong AY, Scott JJ (1991) Functional recovery following direct or graft repair of nerve gaps in the rat. Exp Neurol 114:364–366

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Soucacos PN, Beris AE (1999) Evaluation of collateral sprouting after end-to-side nerve coaptation using a fluorescent double-labeling technique. Microsurgery 19:281–286

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Lineaweaver WC, Oswald T, Chen Z, Chen Z, Zhang F (2004) Ciliary neurotrophic factor for acceleration of peripheral nerve regeneration: an experimental study. J Reconstr Microsurg 20:323–327

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Blanco Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Oliveira, J.T., Almeida, F.M., Martinez, A.M.B. (2012). Peripheral Nerve Regeneration After Traumatic Injury and Stem-Cell Therapy. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 5. Stem Cells and Cancer Stem Cells, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2900-1_5

Download citation

Publish with us

Policies and ethics