Skip to main content

Ionic Liquids/Supercritical Carbon Dioxide as Advantageous Biphasic Systems in Enzymatic Synthesis

  • Chapter
  • First Online:
Book cover Green Solvents II

Abstract

Ionic liquids/supercritical carbon dioxide (ILs/scCO2) biphasic systems have recently proved as interesting clean alternatives to classical organic solvents in enzymatic synthesis. The success of IL/scCO2 biphasic systems is based on the fact that ILs provide an adequate microenvironment for the catalytic activity of the enzyme, while supercritical carbon dioxide acts as extracting phase, making possible the easy recovery of the products. This new methodology avoids the use of volatile organic solvents and hence is considered as a green technology. In this chapter, the properties of ionic liquids/supercritical carbon dioxide biphasic systems for enzymatic applications have been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  Google Scholar 

  2. Halling P (1994) Thermodynamic predictions for biocatalysis in nonconventional media: theory, test and recommendations for experimental design and analysis. Enzyme Microb Technol 16:178–206

    Article  CAS  Google Scholar 

  3. Freemantle M (2001) New horizons for ionic liquids. Chem Eng News 79:21–25

    Article  Google Scholar 

  4. Dzyuba SV, Bartsch RA (2003) Recent advances in applications of room-temperature ionic liquid/supercritical CO2 systems. Angew Chem Int Ed 42:148–150

    Article  CAS  Google Scholar 

  5. Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids. McGraw-Hill, New York. ISBN 0070517991

    Google Scholar 

  6. Eikani MH, Goodarznia I, Mirza M (1999) Supercritical carbon dioxide extraction of cumin seeds (Cuminum cyminum L.). Flavour Fragr J 14:29–31

    Article  CAS  Google Scholar 

  7. Wai CM, Wang S (1997) Supercritical fluid extraction: metals as complexes. J Chromatogr A 785:369–383

    Article  CAS  Google Scholar 

  8. Cooper AI (2000) Polymer synthesis and processing using supercritical carbon dioxide. J Mater Chem 10:207–234

    Article  CAS  Google Scholar 

  9. Pourmortazavi SM, Hajimirsadeghi SS (2005) Application of supercritical carbon dioxide in energetic materials processes: a review. Ind Eng Chem Res 44:6523–6533

    Article  CAS  Google Scholar 

  10. Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and ­processing. J Supercrit Fluids 28:121–191

    Article  CAS  Google Scholar 

  11. Matsuda T, Watanabe K, Harada T et al (2004) Enzymatic reactions in supercritical CO2: ­carboxylation, asymmetric reduction and esterification. Catal Today 96:103–111

    Article  CAS  Google Scholar 

  12. Srivastava S, Madras G, Modak J (2003) Esterification of myristic acid in supercritical carbon dioxide. J Supercrit Fluids 27:55–64

    Article  CAS  Google Scholar 

  13. Fontes N, Almeida MC, Peres C et al (1998) Cutinase activity and enantioselectivity in supercritical fluids. Ind Eng Chem Res 37:3189–3194

    Article  CAS  Google Scholar 

  14. Romero MD, Calvo L, Alba C et al (2005) Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in supercritical carbon dioxide. J Supercrit Fluids 33:77–84

    CAS  Google Scholar 

  15. García-Arrazola R, López-Guerrero DA, Gimeno M et al (2009) Lipase-catalyzed synthesis of poly-l-lactide using supercritical carbon dioxide. J Supercrit Fluids 51:197–201

    Article  Google Scholar 

  16. Hammond DA, Karel M, Klibanov AM et al (1985) Enzymatic reactions in supercritical gases. Appl Biochem Biotechnol 11:393–400

    Article  CAS  Google Scholar 

  17. Hernández FJ, de los Ríos AP, Gómez D et al (2006) A new recirculating enzymatic membrane reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Appl Catal B: Environ 67:121–126

    Article  Google Scholar 

  18. Paiva AV, Rossum DV, Malcasa FX (2002) Kinetics of lipase-mediated synthesis of butyl butyrate in n-hexane. Biocatal Biotransf 20:43–51

    Article  CAS  Google Scholar 

  19. Goddard R, Bosley J, Al-Duri B (2000) Esterification of oleic acid and ethanol in plug flow (packed bed) reactor under supercritical conditions—investigation of kinetics. J Supercrit Fluids 18:121–130

    Article  CAS  Google Scholar 

  20. Liaw ET, Liu KJ (2010) Synthesis of terpinyl acetate by lipase-catalyzed esterification in supercritical carbon dioxide. J Bioresour Technol 101:3320–3324

    Article  CAS  Google Scholar 

  21. Kamat S, Critchley G, Beckman EJ et al (1995) Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids. III. Does carbon dioxide covalently modify enzymes? Biotechnol Bioeng 46:610–620

    Article  CAS  Google Scholar 

  22. de los Ríos AP, Hernández FJ, Rubio M et al (2007) Stabilization of native penicillin G acylase by ionic liquids. J Chem Technol Biotechnol 82:190–195

    Article  Google Scholar 

  23. Ruiz A, de los Ríos AP, Hernández FJ et al (2007) A cross-linked enzyme aggregate of Candida antarctica lipase B is active in denaturing ionic liquids. Enzyme Microb Technol 40:1095–1099

    Article  Google Scholar 

  24. Lozano P, Piamtongkam R, Kohns K et al (2007) Ionic liquids improve citronellyl ester synthesis catalyzed by immobilized Candida antarctica lipase B in solvent-free media. Green Chem 9:780–784

    Article  CAS  Google Scholar 

  25. Sheldon RA (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407

    Article  Google Scholar 

  26. Persson M, Bornscheuer UT (2003) Increased stability of an esterase from Bacillus subtilis in ionic liquids as compared to organic solvents. J Mol Catal B: Enzym 22:21–27

    Article  CAS  Google Scholar 

  27. de los Ríos AP, Hernandez-Fernandez FJ, Presa H et al (2009) Tailoring supported ionic liquid membranes for the selective separation of transesterification reaction compounds. J Membr Sci 328:81–85

    Article  Google Scholar 

  28. Kim MJ, Choi MY, Lee JK (2003) Enzymatic selective acylation of glycosides in ionic liquids: significantly enhanced reactivity and regioselectivity. J Mol Catal B: Enzym 26:115–118

    Article  Google Scholar 

  29. de los Ríos AP, Hernández-Fernández FJ, Rubio M et al (2007) Enhancement of activity and selectivity in lipase-catalyzed transesterification in ionic liquids by the use of additives. J Chem Technol Biotechnol 82:882–887

    Article  Google Scholar 

  30. de los Ríos AP, Hernández-Fernández FJ, Martínez FA et al (2007) The effect of ionic liquid media on activity, selectivity and stability of Candida antarctica lipase B in transesterification reactions. Biocatal Biotransfor 25:151–156

    Article  Google Scholar 

  31. de los Ríos AP, Hernández-Fernández FJ, Tomás-Alonso F et al (2008) Synthesis of esters in ionic liquids. The effect of vinyl esters and alcohols. Process Biochem 43:892–895

    Article  Google Scholar 

  32. van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785

    Article  Google Scholar 

  33. Liu Q, Janssen MHA, van Rantwijk F et al (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem 7:39–42

    Article  CAS  Google Scholar 

  34. Reetz MT, Wiesenhöfer W, Franciò G et al (2002) Biocatalysis in ionic liquids: batchwise and continuous flow processes using supercritical carbon dioxide as the mobile phase. Chem Commun 9:992

    Article  Google Scholar 

  35. Blanchard LA, Gu Z, Brennecke JF (2001) High-pressure phase behaviour of ionic liquids/CO2 systems. J Phys Chem B 105:2437–2444

    Article  CAS  Google Scholar 

  36. Blanchard LA, Brennecke JF (2001) Recovery of organic products from ionic liquids using supercritical carbon dioxide. Ind Eng Chem Res 40:287–292

    Article  CAS  Google Scholar 

  37. Lozano P, de Diego T, Carrié D et al (2002) Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chem Commun 7:692–693

    Article  Google Scholar 

  38. Hernández FJ, de los Ríos AP, Gómez D et al (2007) Understanding the chemical reaction and mass-transfer phenomena in a recirculating enzymatic membrane reactor for green ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. J Supercrit Fluids 43:303–309

    Article  Google Scholar 

  39. Reetz MT, Wiesenhöfer W, Franciò G et al (2003) Continuous flow enzymatic kinetic resolution and enantiomer separation using ionic liquid/supercritical carbon dioxide media. Adv Synth Catal 345:1221–1228

    Article  CAS  Google Scholar 

  40. Mori M, Gomez Garcia R, Belleville MP et al (2005) A new way to conduct enzymatic synthesis in an active membrane using ionic liquids as catalyst support. Catal Today 104:313–317

    Article  CAS  Google Scholar 

  41. Lozano P, de Diego T, Gmouh S et al (2004) Criteria to design green enzymatic processes in ionic liquid/supercritical carbon dioxide system. Biotechnol Prog 20:661–666

    Article  CAS  Google Scholar 

  42. Fehér E, Illeová V, Kelemen-Horváth I, Bélafi-Bakó K, Polakovĭc M, Gubicza L (2008) Enzymatic production of isoamyl acetate in an ionic liquid-alcohol biphasic system. J Mol Catal B: Enzym 50:28–33

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the MICINN ENE2010-18687 and SENECA Foundation 15260/PI/10 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. de los Ríos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de los Ríos, A.P., Hernández-Fernández, F.J., Lozano, L.J., Godínez, C. (2012). Ionic Liquids/Supercritical Carbon Dioxide as Advantageous Biphasic Systems in Enzymatic Synthesis. In: Mohammad, A., Inamuddin, D. (eds) Green Solvents II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2891-2_8

Download citation

Publish with us

Policies and ethics