Skip to main content

Room Temperature Ionic Liquids (RTILs) Versus Volatile Organic Compounds (VOCs) in Organic Electrosynthesis: The Requirement of a Careful Comparison

  • Chapter
  • First Online:

Abstract

The possible utilization of room temperature ionic liquids (RTILs), instead of volatile organic compounds (VOCs), in the electrochemical procedures of organic synthesis has been discussed. The synthesis of β − lactams, the activation of carbon dioxide and its utilization as renewable carbon source and the carbon–carbon bond formation reactions via umpolung of aldehydes (benzoin condensation and Stetter reaction) and via Henry reaction have been selected as typical electrochemical methodologies. The results, related to procedures performed in RTILs, have been compared with those performed in VOCs. The double role of RTILs, as green solvents and parents of electrogenerated reactive intermediates or catalysts, has been emphasized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sheldon RA (2008) Green and sustainable chemistry: challenges and perspectives. Green Chem 10:359–360

    Article  CAS  Google Scholar 

  2. Tucker JL (2010) Green chemistry: cresting a summit toward sustainability. Org Process Res Dev 14:328–331

    Article  CAS  Google Scholar 

  3. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    Article  CAS  Google Scholar 

  4. Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun 29:3352–3365

    Article  CAS  Google Scholar 

  5. Sheldon RA, Arends IWCE, Hanefeld U (2007) Green chemistry and catalysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. Li CJ, Trost BM (2008) Proc Natl Acad Sci USA 105:13197–13202

    Article  CAS  Google Scholar 

  7. Horváth IT, Anastas PT (2007) Innovations and green chemistry. Chem Rev 107:2169–2173

    Article  CAS  Google Scholar 

  8. Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278

    Article  CAS  Google Scholar 

  9. Trost BM (1991) The atom economy—a search for synthetic efficiency. Science 254:1471–1477

    Article  CAS  Google Scholar 

  10. Trost BM (1995) Atom economy—challenge for organic synthesis: homogeneous catalysis leads the w ay. Angew Chem Int Ed Engl 34:259–281

    Article  CAS  Google Scholar 

  11. Houmam A (2008) Electron transfer initiated reactions: bond formation and bond dissociation. Chem Rev 108:2180–2237

    Article  CAS  Google Scholar 

  12. Evans DH (2008) One-electron and two-electron transfers in electrochemistry and homogeneous solution reactions. Chem Rev 108:2113–2144

    Article  CAS  Google Scholar 

  13. Amatore C (2001) Basic concepts. In: Lund H, Hammerich O (eds) Organic electrochemistry, 4th edn. Marcel Dekker, New York

    Google Scholar 

  14. Savéant JM (2008) Introduction: molecular and biomolecular electrochemistry. Chem Rev 108:2111–2112

    Article  CAS  Google Scholar 

  15. Yoshida JI, Kataoka K, Horcajada R, Nagaki A (2008) Modern strategies in electroorganic synthesis. Chem Rev 108:2265–2299

    Article  CAS  Google Scholar 

  16. Sperry JB, Wright DL (2006) The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chem Soc Rev 35:605–621

    Article  CAS  Google Scholar 

  17. Torii S (2006) Electroorganic reduction synthesis, vol 1–2. Kodansha, Tokyo

    Google Scholar 

  18. Schäfer HJ (2004) In: Bard AJ, Stratmann M, Schäfer HJ (eds) Encyclopedia of electrochemistry: organic electrochemistry, vol 8. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  19. Lund H, Hammerich O (2001) Organic electrochemistry, 4th edn. Marcel Dekker, New York

    Google Scholar 

  20. Fry AJ (2001) Electroorganic chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  21. Shono T (1990) Electroorganic synthesis. Academic, London

    Google Scholar 

  22. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264

    Article  CAS  Google Scholar 

  23. Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imp Sci St Petersb 8:405–422

    Google Scholar 

  24. Chum LH, Koch VR, Miller LL, Osteryoung RA (1975) Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J Am Chem Soc 97:3264–3265

    Article  CAS  Google Scholar 

  25. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis, vol 1–2. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  26. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  27. Sun P, Armstrong DW (2006) Ionic liquids in analytical chemistry. Anal Chim Acta 661:1–16

    Article  CAS  Google Scholar 

  28. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237

    Article  CAS  Google Scholar 

  29. Moniruzzaman M, Nakashima K, Kamiya N, Goto M (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295–314

    Article  CAS  Google Scholar 

  30. Baudequin C, Brégeon D, Levillain J, Guillen F, Plaquevent JC, Gaumont AC (2005) Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron-Asymmetr 16:3921–3945

    Article  CAS  Google Scholar 

  31. Nese C, Unterreiner AN (2010) Photochemical processes in ionic liquids on ultrafast timescales. Phys Chem Chem Phys 12:1698–1708

    Article  CAS  Google Scholar 

  32. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nature Mater 8:621–629

    Article  CAS  Google Scholar 

  33. Weingärtner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed 47:654–670

    Article  CAS  Google Scholar 

  34. Ueno K, Tokuda H, Watanabe M (2010) Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys Chem Chem Phys 12:1649–1658

    Article  CAS  Google Scholar 

  35. Pavlinac J, Zupan M, Laali KK, Stavber S (2009) Halogenation of organic compounds in ionic liquids. Tetrahedron 65:5625–5662

    Article  CAS  Google Scholar 

  36. Hayes R, Warr GG, Atkin R (2010) At the interface: solvation and designing ionic liquids. Phys Chem Chem Phys 12:1709–1723

    Article  CAS  Google Scholar 

  37. Chowdhury S, Mohan RS, Scott JL (2007) Reactivity of ionic liquids. Tetrahedron 63:2363–2389

    Article  CAS  Google Scholar 

  38. Jain N, Kumar A, Chauhan S, Chauhan SMS (2005) Chemical and biochemical transformations in ionic liquids. Tetrahedron 61:1015–1060

    Article  CAS  Google Scholar 

  39. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A-Gen 373:1–56

    Article  CAS  Google Scholar 

  40. Pârvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665

    Article  CAS  Google Scholar 

  41. Martínez-Palou R (2010) Microwave-assisted synthesis using ionic liquids. Mol Divers 14:3–25

    Article  CAS  Google Scholar 

  42. Bellina F, Chiappe C (2010) The Heck reaction in ionic liquids: progress and challenges. Molecules 15:2211–2245

    Article  CAS  Google Scholar 

  43. Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry—a review. Chem Phys Chem 5:1106–1120

    Article  CAS  Google Scholar 

  44. Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  CAS  Google Scholar 

  45. MacFarlane DR, Pringle JM, Howlett PC, Forsyth M (2010) Ionic liquids and reactions at the electrochemical interface. Phys Chem Chem Phys 12:1659–1669

    Article  CAS  Google Scholar 

  46. Endres F, Höfft O, Borisenko N, Gasparotto LH, Prowald A, Al-Salman R, Carstens T, Atkin R, Bund A, El Abedin SZ (2010) Do solvation layers of ionic liquids influence electrochemical reactions? Phys Chem Chem Phys 12:1724–1732

    Article  CAS  Google Scholar 

  47. Sowmiah S, Srinivasadesikan V, Tseng MC, Chu YH (2009) On the chemical stabilities of ionic liquids. Molecules 14:3780–3813

    Article  CAS  Google Scholar 

  48. Pham TPT, Cho CW, Yun YS (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372

    Article  CAS  Google Scholar 

  49. Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637

    Article  CAS  Google Scholar 

  50. Hunt PA, Kirchner B, Welton T (2006) Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem Eur J 12:6762–6775

    Article  CAS  Google Scholar 

  51. Chu Y, Deng H, Cheng JP (2007) An acidity scale of 1,3-dialkylimidazolium salts in dimethyl sulfoxide solution. J Org Chem 72:7790–7793

    Article  CAS  Google Scholar 

  52. Hahn FE, Jahnke MC (2008) Heterocyclic carbenes: synthesis and coordination chemistry. Angew Chem Int Ed 47:3122–3172

    Article  CAS  Google Scholar 

  53. Arduengo AJ, Harlow RL, Kline M (1991) A stable crystalline carbene. J Am Chem Soc 113:361–363

    Article  CAS  Google Scholar 

  54. Arduengo AJ (1999) Looking for stable carbenes: the difficulty in starting anew. Acc Chem Res 32:913–921

    Article  CAS  Google Scholar 

  55. Gorodetsky B, Ramnial T, Branda NR, Clyburne JAC (2004) Electrochemical reduction of an imidazolium cation: a convenient preparation of imidazol-2-ylidenes and their observation in an ionic liquid. Chem Commun 1972–1973

    Article  CAS  Google Scholar 

  56. Canal JP, Ramnial T, Dickie DA, Clyburne JAC (2006) From the reactivity of N-heterocyclic carbenes to new chemistry in ionic liquids. Chem Commun 1809–1818

    Article  CAS  Google Scholar 

  57. Xiao L, Johnson KE (2003) Electrochemistry of 1-butyl-3-methyl-1 H-imidazolium tetrafluoroborate ionic liquid. J Electrochem Soc 150:E307–E311

    Article  CAS  Google Scholar 

  58. Bonhôte P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  Google Scholar 

  59. Suarez PAZ, Consorti CS, De Souza RF, Dupont J, Goncalves RS (2002) Electrochemical behavior of vitreous glass carbon and platinum electrodes in the ionic liquid 1-n-butyl-3-methylimidazolium trifluoroacetate. J Brazil Chem Soc 13:106–109

    Article  CAS  Google Scholar 

  60. Enders D, Niemeier O, Henseler A (2007) Organocatalysis by N-heterocyclic, carbenes. Chem Rev 107:5606–5655

    Article  CAS  Google Scholar 

  61. Marion N, Díez-González S, Nolan SP (2007) N-heterocyclic carbenes as organocatalysts. Angew Chem Int Ed 46:2988–3000

    Article  CAS  Google Scholar 

  62. Glorius F (2007) N-heterocyclic carbenes in transition metal catalysis. In: Topics in organometallic chemistry, vol 48. Springer, Berlin/Heidelberg

    Google Scholar 

  63. Nolan SP (2006) N-heterocyclic carbenes in synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  64. Page MI (1992) The chemistry of β-lactams. Blackie Academic & Professional, New York

    Book  Google Scholar 

  65. Georg GI (1993) The organic chemistry of β-lactams. VCH Press, New York

    Google Scholar 

  66. Morin RB, Gorman M (1982) Chemistry and biology of β-lactam antibiotics, vol 1–3. Academic, New York

    Google Scholar 

  67. Banik BK, Becker FF, Banik I (2004) Synthesis of anticancer β-lactams: mechanism of action. Bioorg Med Chem 12:2523–2528

    Article  CAS  Google Scholar 

  68. Alcaide B, Almendros P, Alonso JM, Redondo MC (2003) Asymmetric synthesis of unusual fused tricyclic β-lactam structures via aza-cycloadditions/ring closing metathesis. J Org Chem 68:1426–1432, and references therein

    Article  CAS  Google Scholar 

  69. Deshmukh ARAS, Bhawal BM, Krishnaswamy D, Govande VV, Shinkre BA, Jayanthi A (2004) Azetidin-2-ones, synthon for biologically important compounds. Curr Med Chem 11:1889–1920

    CAS  Google Scholar 

  70. Ojma I, Delaloge F (1997) Asymmetric synthesis of building-blocks for peptides and peptidomimetics by means of the -lactam synthon method. Chem Soc Rev 26:377–386

    Article  Google Scholar 

  71. Berks AH (1996) Preparations of two pivotal intermediates for the synthesis of 1-β-methyl carbapenem antibiotics. Tetrahedron 52:331–375, and references therein

    Article  CAS  Google Scholar 

  72. Durham TB, Miller MJ (2003) Enantioselective synthesis of α-amino acids from N-tosyloxy β-lactams derived from β-keto esters. J Org Chem 68:27–34

    Article  CAS  Google Scholar 

  73. Ojima I (1993) In: Georg GI (ed) The organic chemistry of β-lactams. VCH Press, New York, pp 197–255

    Google Scholar 

  74. Ojima I (1995) Advances in asymmetric synthesis, vol 1. JAI Press, Greenwich, pp 95–146

    Book  Google Scholar 

  75. Alcaide B, Almendros P, Aragoncillo C (2007) β-lactams: versatile building blocks for the stereoselective synthesis of non-β-lactam products. Chem Rev 107:4437–4492

    Article  CAS  Google Scholar 

  76. Singh GS (2003) Recent progress in the synthesis and chemistry of azetidinones. Tetrahedron 59:7631–7649

    Article  CAS  Google Scholar 

  77. France S, Shah MH, Weatherwax A, Wack H, Roth JP, Lectka T (2005) Bifunctional Lewis acid-nucleophile-based asymmetric catalysis: mechanistic evidence for imine activation working in tandem with chiral enolate formation in the synthesis of β-lactams. J Am Chem Soc 127:1206–1215

    Article  CAS  Google Scholar 

  78. Ardura D, López R (2007) A theoretical investigation of the Co(CO)4-catalyzed carbonylative ring expansion of N-benzoyl-2-methylaziridine to β-lactams: reaction mechanism and effect of substituent at the aziridine Cα atom. J Org Chem 72:3259–3267

    Article  CAS  Google Scholar 

  79. Alcaide B, Almendros P, Martínez del Campo T, Rodríguez-Acebes R (2007) Diversity-oriented preparation of enantiopure spirocyclic 2-azetidinones from α-oxo-β-lactams through barbier-type reactions followed by metal-catalyzed cyclizations. Adv Synth Catal 349:749–758

    Article  CAS  Google Scholar 

  80. Palomo C, Aizpurua JM, Balentová E, Jimenez A, Oyarbide J, Fratila RM, Miranda JI (2007) Synthesis of β-lactam scaffolds for ditopic peptidomimetics. Org Lett 9:101–104

    Article  CAS  Google Scholar 

  81. Coyne AG, Müller-Bunz H, Guiry PJ (2007) The asymmetric synthesis of β-lactams: HETPHOX/Cu(I) mediated synthesis via the Kinugasa reaction. Tetrahedron-Asymmetr 18:199–207

    Article  CAS  Google Scholar 

  82. Brandi A, Cicchi S, Cordero M (2008) Novel syntheses of azetidines and azetidinones. Chem Rev 108:3988–4035

    Article  CAS  Google Scholar 

  83. Aranda MT, Perez-Faginas P, Gonzalez-Muniz R (2009) An update on the synthesis of β-lactams. Curr Org Synth 6:325–341

    Article  CAS  Google Scholar 

  84. Staudinger H (1907) Ketenes. 1. Diphenylketene. Liebigs Ann Chem 356:51–123

    Article  CAS  Google Scholar 

  85. Xu J (2009) Stereoselectivity in the synthesis of 2-azetidinones from ketenes and imines via the Staudinger reaction. Arkivoc ix:21–44. http://www.arkat-usa.org/get-file/25199/

  86. Cossío FP, Arrieta A, Sierra MA (2008) The mechanism of the ketene−imine (Staudinger) reaction in its centennial: still an unsolved problem? Accounts Chem Res 8:925–936

    Article  CAS  Google Scholar 

  87. Fu N, Tidwell TT (2008) Preparation of β-lactams by [2  +  2] cycloaddition of ketenes and imines. Tetrahedron 64:10465–10496

    Article  CAS  Google Scholar 

  88. Jiao L, Liang Y, Xu J (2006) Origin of the relative stereoselectivity of the β-lactam formation in the Staudinger reaction. J Am Chem Soc 128:6060–6069

    Article  CAS  Google Scholar 

  89. Palomo C, Aizpurua JM, Ganboa I, Oiarbide M (1999) Asymmetric synthesis of β-lactams by Staudinger ketene-imine cycloaddition reaction. Eur J Org Chem 1999:3223–3235

    Article  Google Scholar 

  90. Taggi AE, Hafez AM, Wack H, Young B, Ferraris D, Lectka T (2002) The development of the first catalyzed reaction of ketenes and imines: catalytic, asymmetric synthesis of β-lactams. J Am Chem Soc 124:1578–1579

    Article  CAS  Google Scholar 

  91. Hodous BL, Fu GC (2002) Enantioselective Staudinger synthesis of β-lactams catalyzed by a planar-chiral nucleophile. J Am Chem Soc 124:1578–1579

    Article  CAS  Google Scholar 

  92. France S, Weatherwax A, Taggi AE, Lectka T (2004) Advances in the catalytic, asymmetric synthesis of β-lactams. Acc Chem Res 37:592–600

    Article  CAS  Google Scholar 

  93. Chen R, Yang B, Su W (2006) Ytterbium(III) triflate–catalyzed stereoselective synthesis of β-lactams via [2  +  2] cyclocondensation in ionic liquid. Synth Commun 36:3167–3174

    Article  CAS  Google Scholar 

  94. Tao XL, Lei M, Wang YG (2007) Ionic liquid supported synthesis of β-lactam library in ionic liquid batch. Tetrahedron Lett 48:5143–5146

    Article  CAS  Google Scholar 

  95. Duguet N, Campbell CD, Slawin AMZ, Smith AD (2008) N-heterocyclic carbene catalysed β-lactam synthesis. Org Biomol Chem 6:1108–1113

    Article  CAS  Google Scholar 

  96. Zhang YR, He L, Wu X, Shao PL, Ye S (2008) Chiral N-heterocyclic carbene catalyzed Staudinger reaction of ketenes with imines: highly enantioselective synthesis of N-Boc β-Lactams. Org Lett 10:277–280

    Article  CAS  Google Scholar 

  97. Lee EC, Hodous BL, Bergin E, Shih C, Fu GC (2005) Catalytic asymmetric Staudinger reactions to form β-lactams: an unanticipated dependence of diastereoselectivity on the choice of the nitrogen substituent. J Am Chem Soc 127:11586–11587

    Article  CAS  Google Scholar 

  98. He M, Bode JW (2008) Enantioselective, NHC-catalyzed bicyclo-β-lactam formation via direct annulations of enals and unsaturated N-sulfonyl ketimines. J Am Chem Soc 130:418–419

    Article  CAS  Google Scholar 

  99. Feroci M, Chiarotto I, Orsini M, Inesi A (2010) Electrogenerated NHC as an organocatalyst in the Staudinger reaction. Chem Commun 46:4121–4123

    Article  CAS  Google Scholar 

  100. Kawabata T, Minami T, Hiyama T (1992) Stereoselective synthesis of β-lactams by oxidative coupling of dianions of acyclic tertiary amides. J Org Chem 57:1864–1873

    Article  CAS  Google Scholar 

  101. Gerona-Navarro G, Bonache MA, Herranz R, García-López MT, González-Muñiz R (2001) Entry to new conformationally constrained amino acids. First synthesis of 3-unsubstituted 4-alkyl-4-carboxy-2-azetidinone derivatives via an intramolecular Nα-Cα-cyclization strategy. J Org Chem 66:3538–3547

    Article  CAS  Google Scholar 

  102. Bonache MA, Gerona-Navarro G, Martín-Martínez M, García-López MT, López P, Cativiela C, González-Muñiz R (2003) Memory of chirality in the enantioselective synthesis of β-lactams derived from amino acids. Influence of the reaction conditions. Synlett 7:1007–1011

    Google Scholar 

  103. Gerona-Navarro G, García-López MT, González-Muñiz R (2002) General approach for the stereocontrolled construction of the β-lactam ring in amino acid-derived 4-alkyl-4-carboxy-2-azetidinones. J Org Chem 67:3953–3956

    Article  CAS  Google Scholar 

  104. Bonache MA, Gerona-Navarro G, García-Aparicio C, Alías M, Martín-Martínez M, García-López MT, López P, Cativiela C, González-Muñiz R (2003) Memory of chirality in the stereoselective synthesis of β-lactams: importance of the starting amino acid derivative. Tetrahedron-Asymmetr 14:2161–2169

    Article  CAS  Google Scholar 

  105. Bonache MA, López L, Martín-Martínez M, García-López MT, Cativiela C, González-Muñiz R (2006) Stereoselective synthesis of amino acid-derived β-lactams. Experimental evidence for TADDOL as a memory of chirality enhancer. Tetrahedron 62:130–138

    Article  CAS  Google Scholar 

  106. Pérez-Faginas P, O’Reilly F, O’Byrne A, García-Aparicio C, Martín-Martínez M, Pérez de Vega MJ, García-López MT, González-Muñiz R (2007) Exceptional stereoselectivity in the synthesis of 1,3,4-trisubstituted 4-carboxy β-lactam derivatives from amino acids. Org Lett 9:1593–1596

    Article  CAS  Google Scholar 

  107. Pérez-Faginas P, Alkorta I, García-López MT, González-Muñiz R (2008) From theoretical calculations to the enantioselective synthesis of a 1,3,4-trisubstituted Gly-derived 2-azetidinone. Tetrahedron Lett 49:215–218

    Article  CAS  Google Scholar 

  108. Pérez-Faginas P, Aranda MT, Coady L, García-López MT, González-Muñiz R (2008) Simple, highly enantioselective access to quaternary 1,3,4,4-tetrasubstituted β-lactams from amino acids: a solid-phase approach. Adv Synth Catal 350:2279–2285

    Article  CAS  Google Scholar 

  109. Feroci M, Lessard J, Orsini M, Inesi A (2005) Electrogenerated cyanomethyl anion in organic synthesis: a simple diastereoselective synthesis of cis-3-alkyl-1-benzyl-4-ethoxycarbonyl-β-lactams. Tetrahedron Lett 46:8517–8519

    Article  CAS  Google Scholar 

  110. Feroci M, Orsini M, Palombi L, Rossi L, Inesi A (2005) An electrochemical alternative strategy to the synthesis of β-lactams via NC4 bond formation. Electrochim Acta 50:2029–2036

    Article  CAS  Google Scholar 

  111. Feroci M, Orsini M, Rossi L, Sotgiu G, Inesi A (2006) An electrochemical alternative strategy to the synthesis of β-lactams: part 2. C3-C4 bond formation. Electrochim Acta 51:5540–5547

    Article  CAS  Google Scholar 

  112. Feroci M, Chiarotto I, Orsini M, Sotgiu G, Inesi A (2008) Reactivity of electrogenerated N-heterocyclic carbenes in room-temperature ionic liquids. Cyclization to 2-azetidinone ring via C-3/C-4 bond formation. Adv Synth Catal 350:1355–1359

    Article  CAS  Google Scholar 

  113. Sotgiu G, Chiarotto I, Feroci M, Orsini M, Rossi L, Inesi A (2008) An electrochemical alternative strategy to the synthesis of β-lactams: part 3. Room-temperature ionic liquids vs molecular organic solvents. Electrochim Acta 53:7852–7858

    Article  CAS  Google Scholar 

  114. Sakakura T, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 1007:2365–2387

    Article  CAS  Google Scholar 

  115. Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992

    Article  CAS  Google Scholar 

  116. He LN, Wang JQ, Wang JL (2009) Carbon dioxide chemistry: examples and challenges in chemical utilization of carbon dioxide. Pure Appl Chem 81:2069–2080

    Article  CAS  Google Scholar 

  117. Dai WL, Luo SL, Yin SF, Au CT (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal A-Gen 366:2–12

    Article  CAS  Google Scholar 

  118. Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) A short review of catalysis for CO2 conversion. Catal Today 148:221–231

    Article  CAS  Google Scholar 

  119. Amatore C, Savéant JM (1981) Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J Am Chem Soc 103:5021–5023

    Article  CAS  Google Scholar 

  120. Hammouche M, Lexa D, Momenteau M, Savéant JM (1991) Chemical catalysis of electrochemical reactions—homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins—role of the addition of magnesium cations. J Am Chem Soc 113:8455–8466

    Article  CAS  Google Scholar 

  121. Bhugun I, Lexa D, Savéant JM (1994) Ultraefficient selective homogeneous catalysis of the electrochemical reduction of carbon dioxide by an iron(0) porphyrin associated with a weak bronsted acid cocatalyst. J Am Chem Soc 116:5015–5016

    Article  CAS  Google Scholar 

  122. Barrosse-Antle LE, Compton RG (2009) Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate. Chem Commun 25:3744–3746

    Article  CAS  Google Scholar 

  123. Schäffner B, Friederike Schäffner F, Verevkin SP, Börner A (2010) Organic carbonates as solvents in synthesis and catalysis. Chem Rev 110:4554–4581

    Article  CAS  Google Scholar 

  124. Shaikh AG, Sivaram S (1996) Organic carbonates. Chem Rev 96:951–976

    Article  CAS  Google Scholar 

  125. Abrams E (1978) Carbonic and chloroformic esters. In: Kirk-Othmer encyclopedia of chemical technology, vol 4, 3rd edn. Wiley, New York, pp 758–771

    Google Scholar 

  126. Adams P, Baron FA (1965) Esters of carbamic acid. Chem Rev 65:567–602

    Article  CAS  Google Scholar 

  127. Babad H, Zeiler AG (1973) Chemistry of phosgene. Chem Rev 73:75–91

    Article  CAS  Google Scholar 

  128. Rossi L (2005) In: Knight JC (ed) Science of synthesis: Houben-Weyl method of molecular trasformation, vol 18. George Thieme, Stuttgart, pp 461–648

    Google Scholar 

  129. Greene TW, Wuts PGM (1999) Protective groups in organic synthesis, 3rd edn. Wiley, New York

    Book  Google Scholar 

  130. Chaturvedi D, Suprabhat R (2006) Versatile use of carbon dioxide in the synthesis of carbamates. Monatsh Chem 137:127–145

    Article  CAS  Google Scholar 

  131. Sakakura T, Kohno K (2009) The synthesis of organic carbonates from carbon dioxide. Chem Commun 11:1312–1330

    Article  CAS  Google Scholar 

  132. Casadei MA, Inesi A, Micheletti Moracci F, Rossi L (1996) Electrochemical activation of carbon dioxide: synthesis of carbamates. Chem Commun 22:2575–2576

    Article  Google Scholar 

  133. Casadei MA, Inesi A, Rossi L (1997) Electrochemical activation of carbon dioxide: synthesis of organic carbonates. Tetrahedron Lett 38:3565–3568

    Article  CAS  Google Scholar 

  134. Casadei MA, Micheletti Moracci F, Zappia G, Inesi A, Rossi L (1997) Electrogenerated superoxide-activated carbon dioxide. A new mild and safe approach to organic carbamates. J Org Chem 62:6754–6759

    Article  CAS  Google Scholar 

  135. Casadei MA, Cesa S, Feroci M, Inesi A (1997) The O 2 /CO2 system as mild and safe carboxylating reagent synthesis of organic carbonates. Tetrahedron 53:167–176

    Article  CAS  Google Scholar 

  136. Feroci M, Inesi A, Rossi L (2000) The reaction of amines with an electrogenerated base. Improved synthesis of arylcarbamic esters. Tetrahedron Lett 41:963–966

    Article  CAS  Google Scholar 

  137. Casadei MA, Cesa S, Rossi L (2000) Electrogenerated base-promoted synthesis of organic carbonates from alcohols and carbon dioxide. Eur J Org Chem 13:2445–2448

    Article  Google Scholar 

  138. Feroci M, Casadei MA, Orsini M, Palombi L, Inesi A (2003) Cyanomethyl anion/carbon dioxide system: an electrogenerated carboxylating reagent. Synthesis of carbamates under mild and safe conditions. J Org Chem 68:1548–1551

    Article  CAS  Google Scholar 

  139. Yang H, Gu Y, Deng Y, Shi F (2002) Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chem Commun 3:274–275

    Article  CAS  Google Scholar 

  140. Feroci M, Orsini M, Rossi L, Sotgiu G, Inesi A (2007) Electrochemically promoted C−N bond formation from amines and CO2 in ionic liquid BMIm−BF4: synthesis of carbamates. J Org Chem 72:200–203

    Article  CAS  Google Scholar 

  141. Zhang L, Niu D, Zhang K, Zhang G, Luo Y, Lu J (2008) Electrochemical activation of CO2 in ionic liquid (BMIMBF4): synthesis of organic carbonates under mild conditions. Green Chem 10:202–206

    Article  CAS  Google Scholar 

  142. Moore JL, Rovis T (2009) Carbene catalysts. Top Curr Chem 2009(291):77–144

    Article  CAS  Google Scholar 

  143. Iwamoto HI, Hamaya M, Hashimoto N, Kimura H, Suzuki Y, Sato M (2006) Benzoin reaction in water as an aqueous medium catalyzed by benzimidazolium salt. Tetrahedron Lett 47:7175–7177

    Article  CAS  Google Scholar 

  144. Xu LW, Gao Y, Yin JJ, Li L, Xia CG (2005) Tetrahedron Lett 46:5317–5320

    Article  CAS  Google Scholar 

  145. Estager J, Lévêque JM, Turgis R, Draye M (2006) Solventless and swift benzoin condensation catalyzed by 1-alkyl-3-methylimidazolium ionic liquids under microwave irradiation. J Mol Catal A-Chem 256:261–264

    Article  CAS  Google Scholar 

  146. Aupoix A, Pégot B, Vo-Thanh G (2010) Synthesis of imidazolium and pyridinium-based ionic liquids and application of 1-alkyl-3-methylimidazolium salts as pre-catalysts for the benzoin condensation using solvent-free and microwave activation. Tetrahedron 66:1352–1356

    Article  CAS  Google Scholar 

  147. Enders D, Henseler A (2009) A direct intermolecular cross-benzoin type reaction: N-heterocyclic carbene-catalyzed coupling of aromatic aldehydes with trifluoromethyl ketones. Adv Synth Catal 351:1749–1752

    Article  CAS  Google Scholar 

  148. XueLiang H, Song Y (2010) Enantioselective benzoin condensation catalyzed by bifunctional N-heterocyclic carbenes. Chinese Sci Bull 55:1753–1757

    Article  CAS  Google Scholar 

  149. Breslow R (1958) On the mechanism of thiamine action. IV evidence from studies on model systems. J Am Chem Soc 80:3719–3726

    Article  CAS  Google Scholar 

  150. Chiarotto I, Feroci M, Orsini M, Feeney MMM, Inesi A (2010) Study on the reactivity of aldehydes in electrolysed ionic liquids. Benzoin condensation: VOCs (volatile organic compounds) vs RTILs (room temperature ionic liquids). Adv Synth Catal 352:3287–3292

    Article  CAS  Google Scholar 

  151. Orsini M, Chiarotto I, Elinson MN, Sotgiu G, Inesi A (2009) Benzoin condensation in 1,3-dialkylimidazolium ionic liquids via electrochemical generation of N-heterocyclic carbene. Electrochem Commun 11:1013–1017

    Article  CAS  Google Scholar 

  152. Stetter H, Schreckenberg M (1973) A new method for addition of aldehydes to activated double bonds. Angew Chem Int Ed 12:81

    Google Scholar 

  153. Stetter H (1976) Catalyzed addition of aldehydes to activated double bonds—a new synthetic approach. Angew Chem Int Ed 15:639–647

    Article  Google Scholar 

  154. Stetter H, Kuhlmann H (1991) The catalyzed nucleophilic addition of aldehydes to electrophilic double bonds. Org Reactions 40:407–496

    CAS  Google Scholar 

  155. DiRocco DA, Oberg KM, Dalton DM, Rovis T (2009) Catalytic asymmetric intermolecular Stetter reaction of heterocyclic aldehydes with nitroalkenes: backbone fluorination improves selectivity. J Am Chem Soc 131:10872–10874

    Article  CAS  Google Scholar 

  156. Read de Alaniz J, Kerr MS, Moore JL, Rovis T (2008) Scope of the asymmetric intramolecular Stetter reaction catalyzed by chiral nucleophilic triazolinylidene carbenes. J Org Chem 73:2033–2040

    Article  CAS  Google Scholar 

  157. Enders D, Jianwei H (2008) Asymmetric intermolecular Stetter reactions of aromatic heterocyclic aldehydes—with arylidenemalonates. Synthesis 23:3864–3868

    Article  CAS  Google Scholar 

  158. Enders D, Han J, Henseler A (2008) Asymmetric intermolecular Stetter reactions catalyzed by a novel triazolium derived N-heterocyclic carbene. Chem Commun 34:3989–3991

    Article  CAS  Google Scholar 

  159. Orsini M, Chiarotto I, Sotgiu G, Inesi A (2010) Polarity reversal induced by electrochemically generated thiazol-2-ylidenes: the Stetter reaction. Electrochim Acta 55:3511–3517

    Article  CAS  Google Scholar 

  160. Henry L (1895) Nitro-alcohols. Acad Sci Ser 120:1265–1268

    CAS  Google Scholar 

  161. Luzzio FA (2001) The Henry reaction: recent examples. Tetrahedron 57:915–945

    Article  CAS  Google Scholar 

  162. Fan J, Sun G, Wan C, Wang Z, Li Y (2008) Investigation of DNA as a catalyst for Henry reaction in water. Chem Commun 32:3792–3794

    Article  CAS  Google Scholar 

  163. Bellini R, Noè M, Perosa A, Selva M (2008) Selective nitroaldol condensations over heterogeneous catalysts in the presence of supercritical carbon dioxide. J Org Chem 73:8520–8528

    Article  CAS  Google Scholar 

  164. Khan FA, Sudheer C, Sahu N (2005) 1-butyl-3-methyl-imidazolium tetrafluoroborate as a recyclable reaction medium for Henry reaction. Synth Commun 35:201–207

    Article  CAS  Google Scholar 

  165. Elinson MN, Ilovaisky AI, Merkulova VM, Barba F, Batanero B (2008) Electrochemically induced Henry reaction of nitromethane and carbonyl compounds. Tetrahedron 64:5915–5919

    Article  CAS  Google Scholar 

  166. Samet AV, Niyazymbetov ME, Semenov VV, Laikhter AL, Evans DH (1996) Comparative studies of cathodically-promoted and base-catalyzed Michael addition reactions of levoglucosenone. J Org Chem 61:8786–8791

    Article  CAS  Google Scholar 

  167. Suba C, Niyazymbetov ME, Evans DH (1997) Addition of electrochemically-generated anions to aldehydes and olefins: effect of reaction medium and anion basicity. Electrochim Acta 42:2247–2255

    Article  CAS  Google Scholar 

  168. Niazimbetova ZI, Evans DH, Liable-Sands LM, Rheingold AL (2000) Electrochemical synthesis of aliphatic 1,3-dinitro compounds. J Electrochem Soc 147:256–259

    Article  CAS  Google Scholar 

  169. Palombi L, Feroci M, Orsini M, Inesi A (2004) An innovative strategy for electrochemically-promoted addition reactions. Chem Commun 16:1846–1847

    Article  CAS  Google Scholar 

  170. Caruso T, Feroci M, Inesi A, Orsini M, Scettri A, Palombi L (2006) Electrochemically induced addition reactions in the absence of solvent and supporting electrolyte. Adv Synth Catal 348:1942–1947

    Article  CAS  Google Scholar 

  171. Feroci M, Elinson MN, Rossi L, Inesi A (2009) The double role of ionic liquids in organic electrosynthesis: precursors of N-heterocyclic carbenes and green solvents. Henry reaction. Electrochem Commun 11:1523–1526

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Mr Marco Di Pilato for his contribution to graphics and Miur and CNR (Italy) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marta Feroci or Achille Inesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Feroci, M., Orsini, M., Inesi, A. (2012). Room Temperature Ionic Liquids (RTILs) Versus Volatile Organic Compounds (VOCs) in Organic Electrosynthesis: The Requirement of a Careful Comparison. In: Mohammad, A., Inamuddin, D. (eds) Green Solvents II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2891-2_16

Download citation

Publish with us

Policies and ethics