Skip to main content

Ionic Liquids as Binary Mixtures with Selected Molecular Solvents, Reactivity Characterisation and Molecular-Microscopic Properties

  • Chapter
  • First Online:
Green Solvents II

Abstract

This chapter presents the design and analysis of the microscopic features of binary solvent systems formed by ionic liquids, particularly room temperature ionic liquids with molecular solvents. Protic ionic liquids, ethylammonium nitrate and 1-n-butyl-3-methylmidazolium (bmim)-based ILs, were selected considering the differences in their hydrogen-bond donor acidity. The molecular solvents chosen were aprotic polar (acetonitrile, dimethylsulphoxide and N,N-dimethylformide) and protic (different alcohols). The empirical solvatochromic parameters E NT , π*, α and β were employed in order to analyse the behaviour of each binary solvent system. The study focuses on the identification of solvent mixtures of relevant solvating properties to propose them as ‘new solvents’. Kinetic study of aromatic nucleophilic substitution reactions carried out in this type of solvent systems is also presented. On the other hand, this is considered as a new approach on protic ionic liquids. Ethylammonium nitrate can act as both Brönsted acid and/or nucleophile. Two reactions (aromatic nucleophilic substitution and nucleophilic addition to aromatic aldehydes) were considered as model reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hitchcock PB, Mohammed TJ, Seddon KR, Zora JA, Hussey CL, Ward EH (1986) 1-methyl-3-ethylimidazolium hexachlorouranate (IV) and 1-methyl-3-ethylimidazolium tetrachlorodioxo-uranate (VI): synthesis, structure, and electrochemistry in a room temperature ionic liquid. Inorg Chim Acta 113:L25–L26

    Article  CAS  Google Scholar 

  2. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2078

    Article  CAS  Google Scholar 

  3. Rogers RD, Seddon KR, Volkov S (2002) Green industrial applications of ionic liquids, vol 92. Kluwer, Dordrecht

    Book  Google Scholar 

  4. Welton T (1999) Ionic liquids in catalysis. Coord Chem Rev 248:2459–2477

    Article  Google Scholar 

  5. Dechambenoit P, Ferlay S, Kyritsaky M, Hosseini MW (2010) Amidinium based ionic liquids. New J Chem 34:1184–1199

    Article  CAS  Google Scholar 

  6. Wasserscheid P, Keim W (2000) Ionic liquids – new ‘solutions’ for transition metal catalysis. Angew Chem Int Ed 39:3773–3789

    Google Scholar 

  7. Wilkes JS (2002) A short history of ionic liquids – from molten salts to neoteric solvents. Green Chem 4:73–80

    Article  CAS  Google Scholar 

  8. Rogers RD, Seddon KR (2003) Ionic liquids. Solvents of the future? Science 302:792–793

    Article  Google Scholar 

  9. Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–365

    Article  CAS  Google Scholar 

  10. Forsyth SA, Pringle JM, MacFarlane DR (2004) Ionic liquids – an overview. Aust J Chem 57:113–119

    Article  CAS  Google Scholar 

  11. Poole CF (2004) Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J Chromatogr A 1037:49–82

    Article  CAS  Google Scholar 

  12. Kulkarni PS, Branco LC, Crespo JG, Nunes MC, Raymundo A, Afonso CAM (2007) Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem A Eur J 13:8478–8486

    Article  CAS  Google Scholar 

  13. Yamada T, Lukac PJ, George M, Weiss RG (2007) Reversible, room-temperature ionic liquids. Amidinium carbamates derived from amidines and aliphatic primary amines with carbon dioxide. Chem Mater 19:967–969

    Article  CAS  Google Scholar 

  14. Yamada T, Lukac PJ, Yu T, Weiss RG (2007) Reversible, room-temperature, chiral ionic liquids. Amidinium carbamates derived from amidines and amino-acid esters with carbon dioxide. Chem Mater 19:4761–4768

    Article  CAS  Google Scholar 

  15. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  16. MacFarlane DR, Seddon KR (2007) Ionic liquids-progress on the fundamental issues. Aust J Chem 60:3–5

    Article  CAS  Google Scholar 

  17. Weingärtner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed 47:654–670

    Article  Google Scholar 

  18. Martins MAP, Frizzo CP, Moreira DN, Zanatta N, Bonacorso HG (2008) Ionic liquids in heterocyclic synthesis. Chem Rev 108:2015–2050

    Article  CAS  Google Scholar 

  19. Seki S, Ohno Y, Kobayashi Y, Miyashiro H, Usami A, Mita Y, Tokuda H, Watanabe M, Hayamizu K, Tsuzuki S, Hattori M, Terada N (2007) Effects of alkyl chain in imidazolium-type room-temperature ionic liquids as lithium secondary battery electrolytes. J Electrochem Soc 154:173–176

    Article  Google Scholar 

  20. Sanes J, Carrión FJ, Bermúdez MD, Martínez-Nicolás G (2006) Ionic liquids as lubricants of polystyrene and polyamide 6-steel contacts. Preparation and properties of new polymer-ionic liquid dispersions. Tribol Lett 21:121–133

    Article  CAS  Google Scholar 

  21. Le Bideau J, Gaveau P, Bellayer S, Néouze MA, Vioux A (2007) Effect of confinement on ionic liquids dynamics in monolithic silica ionogels: 1H NMR study. Phys Chem Chem Phys 9(40):5419–5422

    Article  Google Scholar 

  22. Lopes JNC, Cordeiro TC, Esperanca JMSS, Guedes HJR, Huq S, Rebelo LPN, Seddon KR (2005) Deviations from ideality in mixtures of two ionic liquids containing a common ion. J Phys Chem B 109:3519–3525

    Article  CAS  Google Scholar 

  23. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2359

    Article  CAS  Google Scholar 

  24. Kamlet MJ, Taft RW (1976) The solvatochromic comparison method. I. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc 98:377–383

    Article  CAS  Google Scholar 

  25. Taft RW, Kamlet MJ (1976) The solvatochromic comparison method. 2. The alpha-scale of solvent hydrogen-bond donor (HBD) acidities. J Am Chem Soc 98:2886–2894

    Article  CAS  Google Scholar 

  26. Kamlet MJ, Abboud J-LM, Taft RW (1977) The solvatochromic comparison method. 6. The pi* scale of solvent polarities. J Am Chem Soc 99:6027–6038

    Article  CAS  Google Scholar 

  27. Swatloski RP, Visser AE, Reichert WM, Broker GA, Farina LM, Holbrey JD, Rogers RD (2002) On the solubilization of water with ethanol in hydrophobic hexafluorophosphate ionic liquids. Green Chem 4:81–87

    Article  CAS  Google Scholar 

  28. Seddon KR, Stark A, Torres MJ (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2288

    Article  CAS  Google Scholar 

  29. Boggetti H, Anunziata JD, Cattana R, Silber JJ (1994) Solvatochromic study on nitroanilines. Preferential solvation vs dielectric enrichment in binary solvent mixtures. Spectrochim Acta A: Mol Spectrosc 50:719–726

    Article  Google Scholar 

  30. Mancini PM, Terenzani A, Adam C, del Perez AC, Vottero LR (1999) Characterization of solvent mixtures: preferential solvation of chemical probes in binary solvent mixtures of a polar aprotic hydrogen bond acceptor solvent with polychlorinated cosolvents. J Phys Org Chem 12:713–724

    Article  CAS  Google Scholar 

  31. Mancini PME, Fortunato G, Vottero LR (2004) Molecular solvents/ionic liquids binary mixtures: designing solvents based on the determination of their microscopic properties. Phys Chem Liq 4(6):625–632

    Article  Google Scholar 

  32. Mancini PME, Fortunato G, Adam C, Vottero LR (2008) Solvent effects on chemical processes. New solvents designed on the basis of the molecular-microscopic properties of binary mixtures: molecular solvent + 1,3-dialkylimidazolium ionic liquids. J Phys Org Chem 21:87–95

    Article  CAS  Google Scholar 

  33. Fortunato G, Mancini PME, Bravo V, Adam C (2010) New solvent designed on the basis of the molecular-microscopic properties ob binary mixtures of the type: protic molecular solvent + 1-butyl-3-methylimidazolium-based ionic liquids. J Phys Chem B 114:11804–11819

    Article  CAS  Google Scholar 

  34. Buhvestov U, Rived F, Ràfols C, Bosch E, Rosés M (1998) Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 7. Comparison of the enhancement of water structure in alcohol-water mixtures measurement by solvatochromic indicators. J Phys Org Chem 11:185–192

    Article  CAS  Google Scholar 

  35. Rosés M, Buhvestov U, Ràfols C, Rived F, Bosch E (1997) Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 6. A quantitative measurement of the enhancement of the water structure in 2-methylpropan-2-ol-water and propan-2-ol-water mixtures by solvatochromic indicators. J Chem Soc Perkin Trans 2:1341–1348

    Google Scholar 

  36. Skwierczynsi R, Connors KA (1994) Solvent effects on chemical processes. Part 7. Quantitative description of the composition dependence of the solvent polarity in binary aqueous-organic solvent mixtures. J Chem Soc Perkin Trans 2:467–472

    Google Scholar 

  37. Sarkar A, Trivedi S, Pandey S (2008) Unusual solvatochromism within 1-Butyl-3 methyl hexafluoro phosphate + Poly (ethylene glycol) mixtures. J Phys Chem B 112(30):9042–9049

    Article  CAS  Google Scholar 

  38. Rosa CD, Kneeteman M, Mancini PME (2005) 2-nitrofuranes as dienophiles in Diels-Alder reactions. Tetrahedron Lett 46:8711–8714

    Article  Google Scholar 

  39. Mancini PME et al (2010) Unpublished results

    Google Scholar 

  40. Mancini PME, Vottero LR (2006) Molecular-microscopic characterization of 10 binary solvent mixtures based on solvatochromic reference solutes: a comparison of multiparametric empirical solvent scales. J Phys Org Chem 19:34–42

    Article  CAS  Google Scholar 

  41. Mancini PME, Vottero LR, Fortunato G (2005) A mechanistic viewpoint of the reaction between 1-fluoro-2,6-dinitrobenzene and alicyclic amines in the ethyl acetate-chloroform mixtures. J Phys Org Chem 18(4):336–346

    Article  CAS  Google Scholar 

  42. Mancini PME, Fortunato G, Vottero LR (2004) Kinetics of the reactions between 1-fluoro-2,4-dinitrobenzene with pyrrolidine and piperidine in binary solvent systems. Influence of the nucleophile structure. J Phys Org Chem 17:138–147

    Article  CAS  Google Scholar 

  43. Mancini PME, Bock A, Adam C, Pérez A del C, Vottero LR (2003) Binary solvent mixtures: characterization of molecular environment through multiparametric empirical scales. Concerns about relationships between kinetic data and microscopic properties. ARKIVOC 373–381, Vol. 2003, part x

    Google Scholar 

  44. Mancini PME, del Pérez AC, Vottero LR (2003) Grouping of hydrogen-bond ability of pure solvents and their binary mixtures based on the similarity of their microscopic properties. Phys Chem Liq 41:45–54

    Article  CAS  Google Scholar 

  45. Mancini PME, Fortunato G, Adam C, Terenzani A, Vottero LR (2002) Specific and nonspecific solvent effects on aromatic nucleophilic substitutions. Kinetics of the reaction of 1-fluoro-2,6-dinitrobenzene and homopiperidine in binary solvent mixtures. J Phys Org Chem 15:258–269

    Article  CAS  Google Scholar 

  46. Mancini PME, del Pérez AC, Vottero LR (2001) Nonspecific solute-solvent interactions in binary solvent mixture containing an aprotic hydrogen-bond acceptor and a hydrogen-bond donor: dipolarity/polarizability and refractive index. J Sol Chem 30:695–707

    Article  CAS  Google Scholar 

  47. Mancini PME, Adam C, del Pérez AC, Vottero LR (2000) Solvatochromic and kinetic response models in (ethyl acetate + chloroform or methanol) solvent mixtures. Molecules 5:587–588

    Article  CAS  Google Scholar 

  48. Adam C, Fortunato G, Mancini PME (2009) Nucleophilic and acid catalyst behavior of a protic ionic liquid in a molecular reaction media. Part 1. J Phys Org Chem 22:460–465

    Article  CAS  Google Scholar 

  49. Serjeant EP (1984) Potentiometry and potentiometric titration. Krieger Publishing Company, Florida

    Google Scholar 

  50. Coetzee JF, Padmamabhan GR (1965) Properties of bases in acetonitrile as solvent. IV. Proton acceptor power and homoconjugation of mono- and diamines. J Am Chem Soc 87:5005–5010

    Article  CAS  Google Scholar 

  51. Martinez RD, Mancini PME, Vottero LR, Nudelman NS (1986) Solvent effects on aromatic nucleophilic substitutions. Part 4. Kinetics of the reaction of 1-chloro-2,4-dinitrobenzene with piperidine in protic solvents. J Chem Soc Perkin Trans 2:1133–1138

    Google Scholar 

  52. Jencks WP (1969) Catalysis in chemistry and enzymology. McGraw-Hill, New York

    Google Scholar 

  53. Jencks WP (1972) General acid–base catalysis of complex reactions in water. Chem Rev 72:705–718

    Article  CAS  Google Scholar 

  54. Brigghente IMC, Vottero LR, Terenzani A, Yunes RA (1991) Addition of hydroxylamine to cyclohexanone and bicyclic ketones. Steric, electronic and hydrogen bonding effects on the general mechanism of addition of amines to carbonyl compounds. J Phys Org Chem 4:107

    Article  Google Scholar 

Download references

Acknowledgement

This work received financial supports from Universidad Nacional del Litoral (U.N.L), C.A.I + D 2009 (projects: 56-270 and 56-272), CONICET (project PIP 2010 N°140) and National Agency of Research and Development (proyects PICTO N° 36189 and PICT 2008 N° 1214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. E. Mancini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mancini, P.M.E., Bravo, M.V., Fortunato, G.G., Adam, C.G. (2012). Ionic Liquids as Binary Mixtures with Selected Molecular Solvents, Reactivity Characterisation and Molecular-Microscopic Properties. In: Mohammad, A., Inamuddin, D. (eds) Green Solvents II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2891-2_13

Download citation

Publish with us

Policies and ethics