Skip to main content

Supported Ionic Liquid Membranes: Preparation, Stability and Applications

  • Chapter
  • First Online:
Green Solvents II

Abstract

Supported ionic liquid membranes (SILMs) consist of a thin ­microporous support whose pores are filled with an ionic liquid. The liquid supported membranes have been extensively used for the selective separation of organic compounds and mixed gases during the last decade. The unique properties of ionic liquids such as negligible vapour pressure, greater viscosity and the possibility of minimization of solubility in the surrounding phases by adequate selection of the cation and anion could overcome the instability associated with supported liquid membranes based on organic solvents. Furthermore, it is possible to tailor ionic liquids for specific separation problems by changing the nature of the cation and/or the anion, which opened up new fields of application of supported ionic liquid membranes. In this chapter, an overview is given of methods of preparation and characterization, stability, transport mechanisms and fields of application of supported ionic liquid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kemperman AJB, Bargeman D, Boomgaard T, Strathmann H (1996) Stability of supported liquid membranes: state of the art. Sep Sci Technol 31:2733–2762

    Article  CAS  Google Scholar 

  2. Takeuchi H, Takahashi K, Goto G (1987) Some observations on the stability of supported ­liquid membranes. J Membr Sci 34:19–31

    Article  CAS  Google Scholar 

  3. de los Ríos AP, Hernández-Fernández FJ, Tomas-Alonso F, Palacios JM, Gómez D, Rubio M, Villora G (2007) A SEM–EDX study of highly stable supported liquid membranes based on ionic liquids. J Membr Sci 300:88–94

    Article  Google Scholar 

  4. Fortunato R, Afonso CAM, Benavente J, Rodriguez-Castellon E, Crespo JG (2005) Stability of supported ionic liquid membranes as studied by x-ray photoelectron spectroscopy. J Membr Sci 256:216–223

    CAS  Google Scholar 

  5. Fortunato R, Afonso CAM, Reis MAM, Crespo JG (2004) Supported liquid membranes using ionic liquids: study of stability and transport mechanism. J Membr Sci 242:197–209

    Article  CAS  Google Scholar 

  6. Brennecke FJ, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AIChE J 47:2384–2389

    Article  CAS  Google Scholar 

  7. Branco LC, Grespo JG, Afonso CAM (2002) Studies on the selective transport of organic compounds by using ionic liquids as a novel supported liquid membranes. Chem Eur J 8:3865–3871

    Article  CAS  Google Scholar 

  8. Bonhote P, Dias AP, Papageourgio N, Kalayanasundaram K, Gratzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  CAS  Google Scholar 

  9. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  10. Seddon K (2002) Ionic liquids: designer solvents for green synthesis. Chem Eng 730:33–35

    CAS  Google Scholar 

  11. Ruiz A, de los Rios AP, Hernandez-Fernandez FJ, Janssen MHA, Schoevaart R, van Rantwijk F, Sheldon RA (2007) A cross-linked enzyme aggregate of Candida antarctica lipase B is active in denaturing ionic liquids. Enzyme Microb Technol 40:1095–1099

    Article  Google Scholar 

  12. de los Ríos AP, Hernández-Fernández FJ, Rubio M, Gómez D, Víllora G (2007) Stabilization of native penicillin G acylase by ionic liquids. J Chem Technol Biotechnol 82:190–195

    Article  Google Scholar 

  13. Feher E, Illeova V, Kelemen-Horvath I, Belafi-Bako K, Polakovic M, Gubicza L (2008) Enzymatic production of isoamyl acetate in an ionic liquid–alcohol biphasic system. J Mol Catal B: Enzym 50:28–32

    Article  CAS  Google Scholar 

  14. Frater T, Gubicza L, Szollösy A, Bakos J (2006) Enantioselective hydrogenation in ionic liquids: recyclability of the [Rh(COD)(DIPAMP)]BF4 catalyst in [bmim][BF4]. Inorg Chim Acta 359:2756–2759

    Article  CAS  Google Scholar 

  15. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407

    Article  Google Scholar 

  16. Hernández FJ, de los Ríos AP, Rubio M, Tomás-Alonso F, Gómez D, Víllora G (2007) A novel application of supported liquid membranes based on ionic liquids to the selective simultaneous separation of the substrates and products of a transesterification reaction. J Membr Sci 293:73–80

    Article  Google Scholar 

  17. Fortunato R, González-Muñoz MJ, Kubasiewicz M, Luque S, Alvarez JR, Afonso CAM, Coelhoso IM, Crespo JG (2005) Liquid membranes using ionic liquids: the influence of water on solute transport. J Membr Sci 249:153–162

    Article  CAS  Google Scholar 

  18. Branco LC, Crespo JG, Afonso CAM (2002) High selective transport of organic compounds by using supported liquid membranes based on ionic liquids. Angew Chem Int Ed 41:2771–2773

    Article  CAS  Google Scholar 

  19. Matsumoto M, Inomoto Y, Kondo K (2005) Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. J Membr Sci 246:77–81

    Article  CAS  Google Scholar 

  20. Martak J, Schlosser S, Vlckova S (2008) Pertraction of lactic acid through supported liquid membranes containing phosphonium ionic liquid. J Membr Sci 318:298–310

    Article  CAS  Google Scholar 

  21. Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble R (2004) Gas separations using non-hexafluorophosphate anion supported ionic liquid membranes. J Membr Sci 238:57–63

    Article  CAS  Google Scholar 

  22. de los Rios AP, Hernandez-Fernandez FJ, Rubio M, Tomas-Alonso F, Gomez D, Víllora G (2008) Prediction of the selectivity in the recovery of transesterification reaction products using supported liquid membranes based on ionic liquids. J Membr Sci 307:225–232

    Article  Google Scholar 

  23. Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kubota F, Goto M (2008) CO2 separation facilitated by task-specific ionic liquids using a ­supported liquid membrane. J Membr Sci 314:1–4

    Article  CAS  Google Scholar 

  24. Scovazzo P, Havard D, McShea M, Mixon S, Morgan D (2009) Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes. J Membr Sci 327:41–48

    Article  CAS  Google Scholar 

  25. Ilconich J, Myers C, Pennline H, Luebke D (2007) Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125°C. J Membr Sci 298:41–47

    Article  CAS  Google Scholar 

  26. Hernández-Fernández FJ, de los Ríos AP, Tomás-Alonso F, Gómez D, Víllora G (2009) Preparation of supported ionic liquid membranes: influence of the ionic liquid immobilization method on their operational stability. J Membr Sci 341:172–177

    Article  Google Scholar 

  27. Ropel L, Belvèze LS, Aki SNVK, Stadtherr MA, Brennecke JF (2005) Octanol–water partition coefficients of imidazolium-based ionic liquids. Green Chem 7:83–90

    Article  CAS  Google Scholar 

  28. Gan Q, Rooney D, Xue M, Thompson G, Zou Y (2006) An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes. J Membr Sci 280:948–956

    Article  CAS  Google Scholar 

  29. de los Ríos AP, Hernández-Fernández FJ, Tomás-Alonso F, Palacios JM, Víllora G (2009) Stability studies of supported liquid membranes based on ionic liquids: effect of surrounding phase nature. Desalination 245:776–782

    Article  Google Scholar 

  30. Bijani S, Fortunato R, de Yuso MVM, Heredia-Guerrero FA, Rodríguez-Castellón E, Coehloso I, Crespo J, Benavente J (2009) Physical–chemical and electrical characterizations of membranes modified with room temperature ionic liquids: age effect. Vacuum 83:1283–1286

    Article  CAS  Google Scholar 

  31. Cserjési P, Nemestóthy N, Vass A, Csanádi Zs, Bélafi-Bakó K (2009) Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination 245:743–747

    Article  Google Scholar 

  32. Myers C, Pennline H, Luebke D, Ilconichb J, Dixon JK, Maginn EJ, Brennecke JF (2008) High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes. J Membr Sci 322:28–31

    Article  CAS  Google Scholar 

  33. Hernández-Fernández FJ, de los Ríos AP, Tomás-Alonso F, Gómez D, Víllora G (2007) Kinetic resolution of 1-phenylethanol integrated with separation of substrates and products by a ­supported ionic liquid membrane. J Chem Technol Biotechnol 82:190–195

    Article  Google Scholar 

  34. Scott K, Basov N, Jachuck RJJ, Winterton N, Cooper A, Davies C (2005) Reactor studies of supported ionic liquids rhodium-catalysed hydrogenation of propene. Chem Eng Res Des 83:1179–1185

    Article  CAS  Google Scholar 

  35. Ansari SA, Mahopatra PK, Prabhu DR, Manchanda VK (2006) Transport of Americium(III) through a supported liquid membrane containing N, N, N′, N′-tertraoctyl-3-oxapentane diamide (TODGA) in n-dodecane as the carrier. J Membr Sci 282:133–141

    Article  CAS  Google Scholar 

  36. Bara JE, Gabriel CJ, Carlisle TK, Camper DE, Finotello A, Gin DL, Noble RD (2009) Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported ­liquid membranes. Chem Eng J 147:43–50

    Article  CAS  Google Scholar 

  37. de los Ríos AP, Hernández-Fernández FJ, Tomás-Alonso F, Gómez D, Víllora G (2008) Synthesis of flavour esters using free Candida antarctica lipase B in ionic liquids. Flavour Frag J 23:319–322

    Article  Google Scholar 

  38. Hernández-Fernández FJ, de los Ríos AP, Tomás-Alonso F, Gómez D, Víllora G (2009) Improvement in the separation efficiency of transesterification reaction compounds by the use of supported ionic liquid membranes based on the dicyanamide anion. Desalination 244:122–129

    Article  Google Scholar 

  39. de los Ríos AP, Hernández-Fernández FJ, Rubio M, Gómez D, Víllora G (2010) Highly selective transport of transesterification reaction compounds through supported liquid membranes containing ionic liquids based on the tetrafluoroborate anion. Desalination 250:101–104

    Article  Google Scholar 

  40. de los Ríos AP, Hernández-Fernández FJ, Presa H, Gómez D, Víllora G (2009) Tailoring ­supported ionic liquid membranes for the selective separation of transesterification reaction compounds. J Membr Sci 328:81–85

    Article  Google Scholar 

  41. Scovazzo P (2009) Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research. J Membr Sci 343:199–211

    Article  CAS  Google Scholar 

  42. Bara JE, Camper DE, Gin DL, Noble RD (2010) Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Accounts Chem Res 43:152–159

    Article  CAS  Google Scholar 

  43. Bara JE, Carlisle TK, Gabriel JC, Camper D, Finotello A, Gin DL, Noble RD (2009) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48:2739–2751

    Article  CAS  Google Scholar 

  44. Izák P, Köckerling M, Kragl U (2006) Solute transport from aqueous mixture through ­supported ionic liquid membrane by pervaporation. Desalination 199:96–98

    Article  Google Scholar 

  45. Izák P, Ruth W, Fei Z, Dyson PJ, Kragl U (2008) Selective removal of acetone and butan-1-ol from water with supported ionic liquid-polydimethylsiloxane membrane by pervaporation. Chem Eng J 139:318–321

    Article  Google Scholar 

  46. Matsumoto M, Ueba K, Kondo K (2009) Vapor permeation of hydrocarbons through ­supported liquid membranes based on ionic liquids. Desalination 241:365–371

    Article  CAS  Google Scholar 

  47. Alguacil FJ, Alonso M, Lopez FA, Lopez-Delgado A (2009) Application of pseudo-emulsion based hollow fiber strip dispersion (PEHFSD) for recovery of Cr(III) from alkaline solutions. Sep Purif Technol 66:586–590

    Article  CAS  Google Scholar 

  48. Alguacil FJ, Alonso M, Lopez FA, Lopez-Delgado A, Padilla I, Tayibi H (2010) Pseudo-emulsion based hollow fiber with strip dispersion pertraction of iron(III) using (PJMTH+)2(SO 2−4 ) ionic liquid as carrier. Chem Eng J 157:366–272

    Article  CAS  Google Scholar 

  49. Alguacil FJ, Alonso M, Lopez FA, Lopez-Delgado A (2010) Pseudo emulsion membrane strip dispersion (PEMSD) pertraction of chromium(VI) using CYPHOS IL101 ionic liquid as carrier. Environ Sci Technol, 44:7504–7508

    Google Scholar 

  50. Peng J, Liu J, Hu X, Jiang G (2007) Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. J Chromatogr A 1139:165–170

    Article  CAS  Google Scholar 

  51. Tao Y, Liu J, Hu X, Li H, Wang T, Jiang G (2009) Hollow fiber supported ionic liquid ­membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography. J Chromatogr A 1216:6259–6266

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the MICINN ENE2010-18687 and SENECA Foundation 15260/PI/10 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. de los Ríos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de los Ríos, A.P., Hernández-Fernández, F.J., Lozano, L.J., Godínez, C. (2012). Supported Ionic Liquid Membranes: Preparation, Stability and Applications. In: Mohammad, A., Inamuddin, D. (eds) Green Solvents II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2891-2_11

Download citation

Publish with us

Policies and ethics