Skip to main content

Stability and Activity of Enzymes in Ionic Liquids

  • Chapter
  • First Online:
Green Solvents II

Abstract

This chapter discusses the potential usefulness of ionic liquids with respect to biocatalysis by illustrating the stability and activity of enzymes in ionic liquids in the presence or absence of water. Ionic liquids are a class of coulombic fluids composed of organic cations like alkyl-substituted imidazolium, pyrrolidinium, and tetraalkylammonium ions and anions such as halides, tetrafluoroborates, hexafluorophosphates, tosylates, etc. The possibility of tunable solvent properties by alternation of cations and anions has made ionic liquids attractive to study biocatalysis which warrants an understanding of enzyme stability and activity in ionic liquids. This chapter systematically outlines the recent studies on the stability of enzymes and their reactivity toward a wide range of catalytic reactions. A careful approach has been taken toward analysis of relationship between stability/activity of enzymes versus chaotropic/kosmotropic nature of cations and anions of ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Short PL (2006) Out of the ivory tower. Chem Eng News 84:15–21

    Google Scholar 

  2. Wilkes JS (2002) A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem 4:73–80

    Article  CAS  Google Scholar 

  3. Sheldon RA, Madeira R, Sorgedrager MJ et al (2002) Biocatalysis in ionic liquids. Green Chem 4:147–151

    Article  CAS  Google Scholar 

  4. Kragl U, Eckstein M, Kaftzik N (2002) Enzyme catalysis in ionic liquids. Curr Opin Biotechnol 13:565–571

    Article  CAS  Google Scholar 

  5. Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68:351–356

    Article  CAS  Google Scholar 

  6. Wasserscheid P, Keim W (2000) Ionic liquids-new ‘solutions’ for transition metal catalysis. Angew Chem Int Ed 39:3773–3789

    Google Scholar 

  7. Fujita K, Macfarlane DR, Forsyth M (2005) Protein solubilizing and stabilizing ionic liquids. Chem Commun (38):4804–4806

    Google Scholar 

  8. Anderson JL, Ding J, Welton T et al (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124:14247–14254

    Article  CAS  Google Scholar 

  9. Swatloski RP, Spear SK, Holbrey JD et al (2002) Novel Brønsted acidic ionic liquids and their use as dual solvent – catalysts. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  10. Lau RM, Sorgetrager MJ, Carrea G et al (2004) Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity. Green Chem 6:483–487

    Article  CAS  Google Scholar 

  11. Constantinescu D, Weingartner H, Herrmann C (2007) Protein denaturation by ionic liquids and the Hofmeister series: a case study of aqueous solutions of ribonuclease A. Angew Chem Int Ed 46:8887–8889

    Article  CAS  Google Scholar 

  12. Zhao H (2006) Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids. J Chem Technol Biotechnol 81:877–891

    Article  CAS  Google Scholar 

  13. Magnuson DK, Bodley JW, Evans DF (1984) The activity and stability of alkaline phosphatase in solutions of water and the fused salt ethylammonium nitrate. J Solut Chem 13:583–587

    Article  CAS  Google Scholar 

  14. Erbeldinger M, Mesiano AJ, Russel AJ (2000) Enzymatic catalysis of formation of Z-aspartame in ionic liquid-an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog 16:1129–1131

    Article  CAS  Google Scholar 

  15. Lau RM, Rantwijk FV, Sheddon KR et al (2000) Lipase-catalyzed reactions in ionic liquids. Org Lett 2:4189–4191

    Article  CAS  Google Scholar 

  16. Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144:12–22

    Article  CAS  Google Scholar 

  17. Lozano P, De Diego T, Gmouh S et al (2004) Criteria to design green enzymatic processes in ionic liquid/supercritical carbon dioxide systems. Biotechnol Prog 20:661–669

    Article  CAS  Google Scholar 

  18. Park S, Kazlauskas RJ (2001) Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem 66:8395–8401

    Article  CAS  Google Scholar 

  19. Schofer SH, Kaftzik N, Wasserscheid P et al (2001) Enzyme catalysis in ionic liquids: lipase catalyzed kinetic resolution of 1-phenylethanol with improved enantioselectivity. Chem Commun (5):425–426

    Google Scholar 

  20. Nara SJ, Harjani JR, Salunkhe MM (2002) Lipase-catalyzed transesterification in ionic liquids and organic solvents: a comparative study. Tetrahedron Lett 43:2979–2982

    Article  CAS  Google Scholar 

  21. Xin J-Y, Zhao Y-J, Zhao G-L et al (2005) Enzymatic resolution of (R, S)-naproxen in water-saturated ionic liquid. Biocatal Biotransform 23:353–361

    Article  CAS  Google Scholar 

  22. Lozano P, De Diego T, Guegan JP et al (2001) Stabilization of α-chymotrypsin by ionic liquids in transesterification reactions. Biotechnol Bioeng 75:563–569

    Article  CAS  Google Scholar 

  23. Rumbau V, Marcilla R, Ochoteco E et al (2006) Ionic liquid immobilized enzyme for biocatalytic synthesis of conducting polyaniline. Macromolecules 39:8547–8549

    Article  CAS  Google Scholar 

  24. Wang S-F, Chen T, Zhang Z-L et al (2005) Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room temperature ionic liquids. Langmuir 21:9260–9266

    Article  CAS  Google Scholar 

  25. Laszlo JA, Compton DL (2002) Comparison of peroxidase activities of hemin, cytochrome c and microperoxidase-11 in molecular solvents and imidazolium-based ionic liquids. J Mol Catal B: Enzym 18:109–120

    Article  CAS  Google Scholar 

  26. Liu Y, Shi L, Wang M et al (2005) A novel room temperature ionic liquid sol–gel matrix for amperometric biosensor application. Green Chem 7:655–658

    Article  CAS  Google Scholar 

  27. Itoh T, Nishimura Y, Kashiwagi M et al (2003) Efficient lipase catalyzed enantioselective acylation in an ionic liquid solvent system. In: Rogers RD (ed) Ionic liquids as green solvents. American Chemical Society, Washington, DC, p 251

    Chapter  Google Scholar 

  28. Itoh T, Han S, Matsushita Y et al (2004) Enhanced enantioselectivity and remarkable acceleration on the lipase-catalyzed transesterification using novel ionic liquids. Green Chem 6:437–439

    Article  CAS  Google Scholar 

  29. Lou W-Y, Zong M-H, Smith TJ et al (2006) Impact of ionic liquids on papain: an investigation of structure–function relationships. Green Chem 8:509–512

    Article  CAS  Google Scholar 

  30. Machado MF, Saraiva JM (2005) Thermal stability and activity regain of horseradish peroxidase in aqueous mixtures of imidazolium-based ionic liquids. Biotechnol Lett 27:1233–1239

    Article  CAS  Google Scholar 

  31. Zhao H, Olubajo O, Song Z et al (2006) Effect of kosmotropicity of ionic liquids on the enzyme stability in aqueous solutions. Bioorg Chem 34:15–25

    Article  CAS  Google Scholar 

  32. Kaftzik N, Wasserscheid P, Kragl U (2002) Use of ionic liquids to increase the yield and enzymatic stability in the β-galactosidase catalyzed synthesis of N-acetyllactosamine. Org Process Res Dev 6:553–557

    Article  CAS  Google Scholar 

  33. Lou W-Y, Xu R, Zong M-H (2005) Hydroxynitrile lyase catalysis in ionic liquid-containing systems. Biotechnol Lett 27:1387–1390

    Article  CAS  Google Scholar 

  34. Van Deurzen MPJ, Seelbach K, Van Rantwijk F et al (1997) Chloroperoxidase: use of a hydrogen peroxide-stat for controlling reactions and improving enzyme performance. Biocatal Biotransform 15:1–16

    Article  Google Scholar 

  35. Lozano P, De Diego T, Carrie D et al (2001) Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol Lett 23:1529–1533

    Article  CAS  Google Scholar 

  36. Margolin AL (1996) Novel crystalline catalysts. Trends Biotechnol 14:219–259

    Article  Google Scholar 

  37. Margolin AL, Navia M (2001) Protein crystals as novel catalytic materials. Angew Chem Int Ed 40:2204–2222

    Article  CAS  Google Scholar 

  38. St. Clair NL, Navia M (1992) Cross linked enzyme crystals. J Am Chem Soc 114:7314–7316

    Article  Google Scholar 

  39. Cao L, van Langen LM, van Rantwijk F et al (2001) Cross-linked aggregates of penicillin acylase: robust catalysts for the synthesis of β-lactam antibiotics. J Mol Catal B: Enzym 11:665–670

    Article  CAS  Google Scholar 

  40. Cao L, van Rantwijk F, Sheldon RA (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett 2:1361–1364

    Article  CAS  Google Scholar 

  41. Ha SH, Lee SH, Dang DT et al (2008) Enhanced stability of Candida antarctica lipase B in ionic liquids. Korean J Chem Eng 25:291–294

    Article  CAS  Google Scholar 

  42. De Diego T, Lozano P, Gmouh S et al (2005) Understanding structure-stability relationships of Candida antarctica lipase B in ionic liquids. Biomacromolecules 6:1457–1564

    Article  CAS  Google Scholar 

  43. Kotorman M, Lackzko I, Szabo A et al (2003) Effects of Ca2+ on catalytic activity and conformation of trypsin and α-chymotrypsin in aqueous ethanol. Biochem Biophys Res Commun 304:18–21

    Article  CAS  Google Scholar 

  44. Lozano P, De Diego T, Iborra JL (1997) Dynamic structure/function relationships in the α-chymotrypsin deactivation process by heat and pH. Eur J Biochem 248:80–85

    Article  CAS  Google Scholar 

  45. Mei Y, Miller L, Gao W et al (2003) Imaging the distribution and secondary structure of immobilized enzymes using infrared microspectroscopy. Biomacromolecules 4:70–74

    Article  CAS  Google Scholar 

  46. Simon LM, Kotorman M, Garab G et al (2001) Structure and activity of α-chymotrypsin and trypsin in aqueous organic media. Biochem Biophys Res Commun 280:1367–1371

    Article  CAS  Google Scholar 

  47. Zhao H, Jones CL, Cowins JV (2009) Lipase dissolution and stabilization in ether-functionalized ionic liquids. Green Chem 11:1128–1138

    Article  CAS  Google Scholar 

  48. Baker SN, McClesky TM, Pandey S et al (2004) Fluorescence studies of protein thermostability in ionic liquids. Chem Commun (8):940–941

    Google Scholar 

  49. Fujita K, Macfarlane DR, Forsyth M et al (2007) Solubility and stability of cytochrome c in hydrated ionic liquids: effect of oxo acid residues and kosmotropicity. Biomacromolecules 8:2080–2086

    Article  CAS  Google Scholar 

  50. Fujita K, Forsynth M, MacFarlane DR et al (2006) Unexpected improvement in stability and utility of cytochrome c by solution in biocompatible ionic liquids. Biotechnol Bioeng 94:1209–1213

    Article  CAS  Google Scholar 

  51. De Diego T, Lozano P, Gmouh S et al (2004) Fluorescence and CD spectroscopic analysis of the α-chymotrypsin stabilization by the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnol Bioeng 88:916–924

    Article  CAS  Google Scholar 

  52. Kudryashova EV, Gladilin AK, Vakurov AV et al (1997) Enzyme-polyelectrolyte complexes in water-ethanol mixtures: negatively charged groups artificially introduced into α-chymotrypsin provide additional activation and stabilization effects. Biotechnol Bioeng 55:267–277

    Article  CAS  Google Scholar 

  53. de los Rios AP, Hernandez-Fernandez FJ, Rubio M et al (2007) Stabilization of native penicillin G acylase by ionic liquids. J Chem Technol Biotechnol 82:190–195

    Article  CAS  Google Scholar 

  54. Hernandez-Fernandez FJ, de los Rios AP, Tomas-Alonso F et al (2009) Stability of hydrolase enzymes in ionic liquids. Can J Chem Eng 87:910–914

    Article  CAS  Google Scholar 

  55. Sanghamitra NJM, Mazumdar S (2008) Conformational dynamics coupled to protonation equilibrium at the CuA Site of Thermus thermophilus: insights into the origin of thermostability. Biochemistry 47:1309–1318

    Article  CAS  Google Scholar 

  56. Xie T, Wang A, Huang L et al (2009) Recent advances in the support and technology used in enzyme immobilization. Afr J Biotechnol 8:4724–4733

    CAS  Google Scholar 

  57. Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids-a review. J Chem Technol Biotechnol 85:891–907

    Article  CAS  Google Scholar 

  58. Lee JK, Kim M-J (2002) Ionic liquid-coated enzyme for biocatalysis in organic solvent. J Org Chem 67:6845–6847

    Article  CAS  Google Scholar 

  59. Lozano P, De Diego T, Iborra JL (2004) Immobilization of enzymes for use in ionic liquids. Methods Biotechnol: Immobil Enzyme Cell 22:257–268

    Google Scholar 

  60. Kim K-L, Kang H-Y, Lee J-C et al (2009) Fabrication of a multi-walled nanotube (MWNT) ionic liquid electrode and its application for sensing phenolics in red wines. Sensors 9:6701–6714

    Article  CAS  Google Scholar 

  61. Du P, Liu S, Wu P et al (2007) Preparation and characterization of room temperature ionic liquid/single walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes. Electrochim Acta 52:6534–6547

    Article  CAS  Google Scholar 

  62. Eker B, Asuri P, Murugesan S et al (2007) Enzyme-carbon nanotube conjugates in room temperature ionic liquids. Appl Biochem Biotechnol 143:153–163

    Article  CAS  Google Scholar 

  63. Shah S, Solanki K, Gupta MN (2007) Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes. Chem Cent J 1(30):1–6

    Google Scholar 

  64. Jiang Y, Guo C, Xia H et al (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilization: enzyme activity in catalyzing esterification. J Mol Catal B: Enzym 58:103–109

    Article  CAS  Google Scholar 

  65. Okada Y, Sawada H (2009) Preparation of novel cross-linked fluoroalkyl end-capped cooligomeric nanoparticles-encapsulated cytochrome c in water and ionic liquids. Colloid Polym Sci 287:1359–1363

    Article  CAS  Google Scholar 

  66. Turner MB, Spear SK, Holbery JD et al (2005) Ionic liquid-reconstituted cellulose composites as solid support matrices for biocatalyst immobilization. Biomacromolecules 6:2497–2502

    Article  CAS  Google Scholar 

  67. Wang S-F, Chen T, Zhang Z-L et al (2007) Effects of hydrophilic room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films. Electrochem Commun 9:1709–1714

    Article  CAS  Google Scholar 

  68. Brusova Z, Gorton L, Magner E (2006) Comment on “direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room temperature ionic liquids”. Langmuir 22:11453–11455

    Article  CAS  Google Scholar 

  69. Shah S, Gupta MN (2007) Kinetic resolution of (±) 1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases. Bioorg Med Chem Lett 17:921–924

    Article  CAS  Google Scholar 

  70. Toral AR, de los Rios AP, Hernandez FJ et al (2007) Cross linked Candida antarctica lipase B is active in denaturing ionic liquids. Enzyme Microb Technol 40:1095–1099

    Article  CAS  Google Scholar 

  71. Maruyama T, Nagasawa S, Goto M (2002) Poly(ethylene glycol)-lipase complex that is catalytically active for alcoholysis reactions in ionic liquids. Biotechnol Lett 24:1341–1345

    Article  CAS  Google Scholar 

  72. Maruyama T, Yamamura H, Kotani T et al (2004) Poly(ethylene glycol)-lipase complexes that are highly active and enantioselective in ionic liquids. Org Biomol Chem 2:1239–1244

    Article  CAS  Google Scholar 

  73. Laszlo JA, Compton DL (2001) Alpha-chymotrypsin catalysis in imidazolium based ionic liquids. Biotechnol Bioeng 75:181–186

    Article  CAS  Google Scholar 

  74. Zhao H, Baker GA, Song Z et al (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705

    Article  CAS  Google Scholar 

  75. Moniruzzaman M, Kamiya N, Nakashima K et al (2008) Water in ionic liquid microemulsions as a new medium for enzymatic reactions. Green Chem 10:497–500

    Article  CAS  Google Scholar 

  76. Zhang Y, Huang X, Li Y (2008) Negative effect of [bmim][PF6] on the catalytic activity of alcohol dehydrogenase: mechanism and prevention. J Chem Technol Biotechnol 83:1230–1235

    Article  CAS  Google Scholar 

  77. Zhou G-P, hang Y, Huang X-R et al (2008) Catalytic activities of fungal oxidases in hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate based microemulsion. Colloids Surf B: Biointerfaces 66:146–149

    Article  CAS  Google Scholar 

  78. Pavlidis IV, Gournis D, Papadopoulos GK et al (2009) Lipases in water-in-ionic liquid microemulsions. J Mol Catal B: Enzym 60:50–56

    Article  CAS  Google Scholar 

  79. Yu H, Wu J, Ching CB (2005) Kinetic resolution of ibuprofen catalyzed by Candida rugosa lipase in ionic liquids. Chirality 17:16–21

    Article  CAS  Google Scholar 

  80. Kim K-W, Song B, Choi M-Y et al (2001) Biocatalysis in ionic liquids: markedly enhanced enantioselectivity of lipase. Org Lett 3:1507–1509

    Article  CAS  Google Scholar 

  81. Abe Y, Kude K, Hayase S et al (2008) Design of phosphonium ionic liquids for lipase-catalyzed transesterification. J Mol Catal B: Enzym 51:81–85

    Article  CAS  Google Scholar 

  82. Binns F, Harffey P, Roberts SM et al (1999) Studies leading to the large scale synthesis of polyesters using enzymes. J Chem Soc Perkin Trans 1:2671–2676

    Article  Google Scholar 

  83. Marcilla R, De Geus M, Mecerreyes D et al (2006) Enzymatic polyester synthesis in ionic liquids. Eur Polym J 42:1215–1221

    Article  CAS  Google Scholar 

  84. Uyama H, Takamoto T, Kobayashi S (2002) Enzymatic synthesis of polyesters in ionic liquids. Polym J 34:94–95

    Article  CAS  Google Scholar 

  85. Mohile SS, Potdar MK, Harjani JR et al (2004) Ionic liquids: efficient additives for Candida rugosa lipase-catalysed enantioselective hydrolysis of butyl 2-(4-chlorophenoxy)propionate. J Mol Catal B: Enzym 30:185–188

    Article  CAS  Google Scholar 

  86. Eckstein M, Wasserscheid P, Kragl U (2002) Enhanced enantioselectivity of lipase from Pseudomonas sp. at high temperatures and fixed water activity in the ionic liquid 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnol Lett 24:763–767

    Article  CAS  Google Scholar 

  87. Rantwijk FV, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785

    Article  CAS  Google Scholar 

  88. Kim M-J, Kim HM, Kim D et al (2004) Dynamic kinetic resolution of secondary alcohols by enzyme-metal combinations in ionic liquid. Green Chem 6:471–474

    Article  CAS  Google Scholar 

  89. Zhao H, Luo RG, Malhotra SV (2003) Kinetic study on the enzymatic resolution of homophenylalanine ester using ionic liquids. Biotechnol Prog 19:1016–1018

    Article  CAS  Google Scholar 

  90. Zhao H, Malhotra SV (2002) Enzymatic resolution of amino acid esters using ionic liquid N-ethyl pyridinium trifluoroacetate. Biotechnol Lett 24:1257–1260

    Article  CAS  Google Scholar 

  91. Liu Y-Y, Lou W-Y, Zong M-H et al (2005) Increased enantioselectivity in the enzymatic hydrolysis of amino acid esters in the ionic liquid 1-butyl-3-methyl-imidazolium tetrafluoroborate. Biocatal Biotransform 23:89–95

    Article  CAS  Google Scholar 

  92. Zhao H, Jackson L, Song Z et al (2006) Enhancing protease enantioselectivity by ionic liquids based on chiral- or ω-amino acids. Tetrahedron: Asymmetr 17:1549–1533

    Article  CAS  Google Scholar 

  93. Kaftzik N, Wasserscheid P, Kragl U (2003) Ionic liquids as green solvents, vol 856, ACS symposium series. American Chemical Society, Washington, DC, p 206

    Chapter  Google Scholar 

  94. Lang M, Kamrat T, Nidetzky B (2006) Influence of ionic liquid cosolvent on transgalactosylation reactions catalyzed by thermostable β-glycosylhydrolase CelB from Pyrococcus furiosus. Biotechnol Bioeng 95:1093–1100

    Article  CAS  Google Scholar 

  95. Brusse J, van der Gen A (2000) Biocatalysis in the enantioselective formation of chiral cyanohydrins, valuable building blocks in organic synthesis. In: Patel RN (ed) Stereoselective biocatalysis. Marcel Dekker, New York/Basel, pp 289–320

    Google Scholar 

  96. Effenberger F (2000) Hydroxynitrile lyases in stereoselective synthesis. In: Patel RN (ed) Stereoselective biocatalysis. Marcel Dekker, New York/Basel, pp 321–342

    Chapter  Google Scholar 

  97. Fechter MH, Griengel H (2002) Enzyme catalysis in organic synthesis. In: Drauz K, Waldmann H (eds) vol 2, Wiley-VCH GmbH, Weinheim, pp 974–989

    Google Scholar 

  98. van der Gen A, Brusse J (2000) Stereoselective biocatalytic formation of cyanohydrins, versatile building blocks for organic synthesis. In: Zwanenberg B, Micolaczyk M, Kielbasinski P (eds) Enzymes in action. Kluwer, Netherlands, pp 365–396

    Chapter  Google Scholar 

  99. Gaisberger RP, Fechter MH, Griengl H (2004) The first hydroxynitrile lyase catalyzed cyanohydrin formation in ionic liquids. Tetrahedron: Asymmetr 15:2959–2963

    Article  CAS  Google Scholar 

  100. Eckstein M, Filho MV, Liese A et al (2004) Use of an ionic liquid in a two phase system to improve an alcohol dehydrogenase catalyzed reduction. Chem Commun (9):1084–1085

    Google Scholar 

  101. Walker AJ, Bruce NC (2004) Cofactor-dependent enzyme catalysis in functionalized ionic solvents. Chem Commun (22):2570–2571

    Google Scholar 

  102. Faber K (1997) Biotransformations in organic chemistry: a text book. Springer, Berlin, pp 8–10

    Google Scholar 

  103. Liese A, Seelbach K, Wandrey C (2000) Industrial biotransformations. Wiley-VCH, Weinheim, pp 25–27

    Book  Google Scholar 

  104. Pfruender H, Amidjojo M, Kragl U et al (2004) Efficient whole-cell biotransformation in a biphasic ionic liquid/water system. Angew Chem Int Ed 43:4529–4531

    Article  CAS  Google Scholar 

  105. Schmid A, Dordick JS, Hauer B et al (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  Google Scholar 

  106. Howarth J, James P, Dai J (2001) Immobilized baker’s yeast reduction of ketones in an ionic liquid, [bmim]PF6 and water mix. Tetrahedron Lett 42:7517–7519

    Article  CAS  Google Scholar 

  107. Chiappe C, Neri L, Peiraccini D (2006) Application of hydrophilic ionic liquids as co-solvents in chloroperoxidase catalyzed oxidations. Tetrahedron Lett 47:5089–5093

    Article  CAS  Google Scholar 

  108. Okrasa K, Guibe-Jampel E, Therisod M (2003) Ionic liquids as a new reaction medium for oxidase-peroxidase-catalyzed sulfoxidation. Tetrahedron: Asymmetr 14:2487–2490

    Article  CAS  Google Scholar 

  109. Ohno H, Suzuki C, Fukumoto K et al (2003) Electron transfer process of poly (ethylene oxide)-modified cytochrome c in imidazolium type ionic liquid. Chem Lett 32:450–452

    Article  CAS  Google Scholar 

  110. Moniruzzaman M, Nakashima K, Kamiya N et al (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295–314

    Article  CAS  Google Scholar 

  111. Gorke JT, Okrasa K, Louwagie RJ et al (2007) Enzymatic synthesis of poly(hydroxyalkanoates) in ionic liquids. J Biotechnol 132:306–313

    Article  CAS  Google Scholar 

  112. Eker B, Zagorevski D, Zhu G et al (2009) Enzymatic polymerization of phenols in room temperature ionic liquids. J Mol Catal B: Enzym 59:177–184

    Article  CAS  Google Scholar 

  113. Fujita MY, Saito C, Takeoka Y et al (2008) Lipase-catalyzed polymerization of L-lactide in ionic liquids. Polym Adv Technol 19:1396–1400

    Article  CAS  Google Scholar 

  114. Lange C, Patil S, Rudolph R (2005) Ionic liquids as refolding additives: N′ -alkyl and N′-(ω-hydroxylalkyl) N-methylimidazolium chlorides. Prot Sci 14:2693–2701

    Article  CAS  Google Scholar 

  115. Zhao H, Campbell SM, Jackson L et al (2006) Hofmeister series of ionic liquids: kosmotropic effect of ionic liquids on the enzymatic hydrolysis of enantiomeric phenylalanine methyl ester. Tetrahedron: Asymmetr 17:377–383

    Article  CAS  Google Scholar 

  116. Jenkins HDB, Marcus Y (1995) Viscosity B coefficients of ions in solution. Chem Rev 95:2695–2724

    Article  CAS  Google Scholar 

  117. Mutschler J, Rausis T, Bourgeois J-M et al (2009) Ionic liquid-coated immobilized lipase for the synthesis of methylglucose fatty acid esters. Green Chem 11:1793–1800

    Article  CAS  Google Scholar 

  118. Guo Z, Chen B, Murillo RL et al (2006) Functional dependency of structures of ionic liquids: do substituents govern the selectivity of enzymatic glycerolysis. Org Biomol Chem 4:2772–2776

    Article  CAS  Google Scholar 

  119. Zhao H (2005) Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J Mol Catal B: Enzym 37:16–25

    Article  CAS  Google Scholar 

  120. Yang Z, Yue Y-Y, Huang W-C et al (2009) Importance of the ionic nature of ionic liquids in affecting enzyme performance. J Biochem 145:355–364

    Article  CAS  Google Scholar 

  121. Eggers DK, Valentine JS (2001) Crowding and hydration effects on protein conformations: a study with sol–gel encapsulated proteins. J Mol Biol 314:911–922

    Article  CAS  Google Scholar 

  122. Baldwin RL (1996) How Hofmeister ion interactions affect protein stability. Biophys J 71:2056–2063

    Article  CAS  Google Scholar 

  123. Kosmulski M, Gustafsson J, Rosenholm JB (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412:47–53

    Article  CAS  Google Scholar 

  124. Kroon MC, Van Spronsen J, Peters JC et al (2006) Recovery of pure products from ionic liquids using supercritical carbon dioxide as a co-solvent in extractions or as an anti-solvent in precipitations. Green Chem 8:246–249

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nusrat J. M. Sanghamitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sanghamitra, N.J.M., Ueno, T. (2012). Stability and Activity of Enzymes in Ionic Liquids. In: Mohammad, A., Inamuddin, D. (eds) Green Solvents II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2891-2_10

Download citation

Publish with us

Policies and ethics