Skip to main content

Techniques and Methodologies to Study the Ryanodine Receptor at the Molecular, Subcellular and Cellular Level

  • Chapter
  • First Online:
Calcium Signaling

Abstract

In excitable tissues, the ryanodine receptor Ca2+ release channel (RyR) protein complex regulates excitation-contraction coupling, exocytosis, gene expression and apoptosis. Defects in RyR function, in genetic or acquired pathologies, lead to massive disruptions of Ca2+ release that can be lethal. Therefore, RyR has emerged as a putative therapeutic target and an increasing number of RyR-targeting drugs are currently being tested.

Nonetheless this large-size channel is still a mystery in terms of structure, which hinders full characterization of the properties of this central protein. This chapter is dedicated to the methods available to examine RyR structure and function. The aim of the article is to concentrate on contemporary methodologies rather than focusing overtly on the progress that has been achieved using these techniques. Here we review a series of reliable approaches that are routinely employed to investigate this channel. Technical limitations are discussed, and technological developments are presented. This work is not a handbook, but it can be used as a resource and a starting point for the investigation of RyR at different levels of resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  2. Lipp P, Laine M, Tovey SC, Burrell KM, Berridge MJ, Li W, Bootman MD (2000) Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr Biol 10:939–942

    Article  PubMed  CAS  Google Scholar 

  3. Gustafsson AJ, Ingelman-Sundberg H, Dzabic M, Awasum J, Nguyen KH, Ostenson CG, Pierro C, Tedeschi P, Woolcott O, Chiounan S, Lund PE, Larsson O, Islam MS (2005) Ryanodine receptor-operated activation of TRP-like channels can trigger critical Ca2+ signalling events in pancreatic beta-cells. FASEB J 19:301–303

    PubMed  CAS  Google Scholar 

  4. Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Exp Biol 200:315–319

    PubMed  CAS  Google Scholar 

  5. Islam MS (2002) The ryanodine receptor calcium channel of beta-cells: molecular regulation and physiological significance. Diabetes 51:1299–1309

    Article  PubMed  CAS  Google Scholar 

  6. Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V (1995) The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 128:893–904

    Article  PubMed  CAS  Google Scholar 

  7. Benkusky NA, Farrell EF, Valdivia HH (2004) Ryanodine receptor channelopathies. Biochem Biophys Res Commun 322:1280–1285

    Article  PubMed  CAS  Google Scholar 

  8. Mickelson JR, Louis CF (1996) Malignant hyperthermia: excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. Physiol Rev 76:537–592

    PubMed  CAS  Google Scholar 

  9. Lyfenko AD, Goonasekera SA, Dirksen RT (2004) Dynamic alterations in myoplasmic Ca2+ in malignant hyperthermia and central core disease. Biochem Biophys Res Commun 322:1256–1266

    Article  PubMed  CAS  Google Scholar 

  10. Mathews KD, Moore SA (2004) Multiminicore myopathy, central core disease, malignant hyperthermia susceptibility, and RYR1 mutations: one disease with many faces? Arch Neurol 61:27–29

    Article  PubMed  Google Scholar 

  11. Brini M (2004) Ryanodine receptor defects in muscle genetic diseases. Biochem Biophys Res Commun 322:1245–1255

    Article  PubMed  CAS  Google Scholar 

  12. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino V, Danieli GA (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103:196–200

    PubMed  CAS  Google Scholar 

  13. Thomas NL, Maxwell C, Mukherjee S, Williams AJ (2010) Ryanodine receptor mutations in arrhythmia: the continuing mystery of channel dysfunction. FEBS Lett 584:2153–2160

    Article  PubMed  CAS  Google Scholar 

  14. Ikemoto N, Yamamoto T (2000) Postulated role of inter-domain interaction within the ryanodine receptor in Ca(2+) channel regulation. Trends Cardiovasc Med 10:310–316

    Article  PubMed  CAS  Google Scholar 

  15. Yamamoto T, El-Hayek R, Ikemoto N (2000) Postulated role of interdomain interaction within the ryanodine receptor in Ca(2+) channel regulation. J Biol Chem 275:11618–11625

    Article  PubMed  CAS  Google Scholar 

  16. Yamamoto T, Ikemoto N (2002) Peptide probe study of the critical regulatory domain of the cardiac ryanodine receptor. Biochem Biophys Res Commun 291:1102–1108

    Article  PubMed  CAS  Google Scholar 

  17. Kobayashi S, Bannister ML, Gangopadhyay JP, Hamada T, Parness J, Ikemoto N (2005) Dantrolene stabilizes domain interactions within the ryanodine receptor. J Biol Chem 280:6580–6587

    Article  PubMed  CAS  Google Scholar 

  18. Tateishi H, Yano M, Mochizuki M, Suetomi T, Ono M, Xu X, Uchinoumi H, Okuda S, Oda T, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M (2009) Defective domain-domain interactions within the ryanodine receptor as a critical cause of diastolic Ca2+ leak in failing hearts. Cardiovasc Res 81:536–545

    Article  PubMed  CAS  Google Scholar 

  19. Oda T, Yano M, Yamamoto T, Tokuhisa T, Okuda S, Doi M, Ohkusa T, Ikeda Y, Kobayashi S, Ikemoto N, Matsuzaki M (2005) Defective regulation of interdomain interactions within the ryanodine receptor plays a key role in the pathogenesis of heart failure. Circulation 111:3400–3410

    Article  PubMed  CAS  Google Scholar 

  20. Yamamoto T, Yano M, Kohno M, Hisaoka T, Ono K, Tanigawa T, Saiki Y, Hisamatsu Y, Ohkusa T, Matsuzaki M (1999) Abnormal Ca2+ release from cardiac sarcoplasmic reticulum in tachycardia-induced heart failure. Cardiovasc Res 44:146–155

    Article  PubMed  CAS  Google Scholar 

  21. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376

    Article  PubMed  CAS  Google Scholar 

  22. Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L, Matecki S, Lacampagne A, Marks AR (2009) Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 15:325–330

    Article  PubMed  CAS  Google Scholar 

  23. Curran J, Hinton MJ, Rios E, Bers DM, Shannon TR (2007) Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ Res 100:391–398

    Article  PubMed  CAS  Google Scholar 

  24. Stange M, Xu L, Balshaw D, Yamaguchi N, Meissner G (2003) Characterization of recombinant skeletal muscle (Ser-2843) and cardiac muscle (Ser-2809) ryanodine receptor phosphorylation mutants. J Biol Chem 278:51693–51702

    Article  PubMed  CAS  Google Scholar 

  25. Liu N, Colombi B, Raytcheva-Buono EV, Bloise R, Priori SG (2007) Catecholaminergic polymorphic ventricular tachycardia. Herz 32:212–217

    Article  PubMed  Google Scholar 

  26. Currie S, Elliott EB, Smith GL, Loughrey CM (2011) Two candidates at the heart of dysfunction: the ryanodine receptor and calcium/calmodulin protein kinase II as potential targets for therapeutic intervention – an in vivo perspective. Pharmacol Ther 131:204–220

    Article  PubMed  CAS  Google Scholar 

  27. George CH, Jundi H, Thomas NL, Fry DL, Lai FA (2007) Ryanodine receptors and ventricular arrhythmias: emerging trends in mutations, mechanisms and therapies. J Mol Cell Cardiol 42:34–50

    Article  PubMed  CAS  Google Scholar 

  28. Thireau J, Pasquie JL, Martel E, Le Guennec JY, Richard S (2011) New drugs vs. old concepts: a fresh look at antiarrhythmics. Pharmacol Ther. doi:10.1016/j.pharmthera.2011.03.003

  29. Serysheva II, Ludtke SJ, Baker ML, Cong Y, Topf M, Eramian D, Sali A, Hamilton SL, Chiu W (2008) Subnanometer-resolution electron cryomicroscopy-based domain models for the cytoplasmic region of skeletal muscle RyR channel. Proc Natl Acad Sci USA 105:9610–9615

    Article  PubMed  CAS  Google Scholar 

  30. Bhat MB, Hayek SM, Zhao J, Zang W, Takeshima H, Wier WG, Ma J (1999) Expression and functional characterization of the cardiac muscle ryanodine receptor Ca(2+) release channel in Chinese hamster ovary cells. Biophys J 77:808–816

    Article  PubMed  CAS  Google Scholar 

  31. George CH, Sorathia R, Bertrand BM, Lai FA (2003) In situ modulation of the human cardiac ryanodine receptor (hRyR2) by FKBP12.6. Biochem J 370:579–589

    Article  PubMed  CAS  Google Scholar 

  32. Rossi D, Simeoni I, Micheli M, Bootman M, Lipp P, Allen PD, Sorrentino V (2002) RyR1 and RyR3 isoforms provide distinct intracellular Ca2+ signals in HEK 293 cells. J Cell Sci 115:2497–2504

    PubMed  CAS  Google Scholar 

  33. Xu X, Bhat MB, Nishi M, Takeshima H, Ma J (2000) Molecular cloning of cDNA encoding a drosophila ryanodine receptor and functional studies of the carboxyl-terminal calcium release channel. Biophys J 78:1270–1281

    Article  PubMed  CAS  Google Scholar 

  34. Tung CC, Lobo PA, Kimlicka L, Van Petegem F (2010) The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 468:585–588

    Article  PubMed  CAS  Google Scholar 

  35. Lobo PA, Van Petegem F (2009) Crystal structures of the N-terminal domains of cardiac and skeletal muscle ryanodine receptors: insights into disease mutations. Structure 17:1505–1514

    Article  PubMed  CAS  Google Scholar 

  36. Uchinoumi H, Yano M, Suetomi T, Ono M, Xu X, Tateishi H, Oda T, Okuda S, Doi M, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M (2010) Catecholaminergic polymorphic ventricular tachycardia is caused by mutation-linked defective conformational regulation of the ryanodine receptor. Circ Res 106:1413–1424

    Article  PubMed  CAS  Google Scholar 

  37. Kannankeril PJ, Mitchell BM, Goonasekera SA, Chelu MG, Zhang W, Sood S, Kearney DL, Danila CI, De Biasi M, Wehrens XH, Pautler RG, Roden DM, Taffet GE, Dirksen RT, Anderson ME, Hamilton SL (2006) Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proc Natl Acad Sci USA 103:12179–12184

    Article  PubMed  CAS  Google Scholar 

  38. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2:a003996

    Article  PubMed  CAS  Google Scholar 

  39. Hamilton SL, Serysheva II (2009) Ryanodine receptor structure: progress and challenges. J Biol Chem 284:4047–4051

    Article  PubMed  CAS  Google Scholar 

  40. Wagenknecht TC, Liu Z (2010) Electron microscopy of ryanodine receptors. In: Serysheva I (ed) Structure and function of calcium release channels, Current topics in membranes. Elsevier/Academic, Amsterdam, pp 28–47

    Google Scholar 

  41. Franzini-Armstrong C (2004) Functional implications of RyR-dHPR relationships in skeletal and cardiac muscles. Biol Res 37:507–512

    Article  PubMed  Google Scholar 

  42. Wagenknecht T, Grassucci R, Frank J, Saito A, Inui M, Fleischer S (1989) Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 338:167–170

    Article  PubMed  CAS  Google Scholar 

  43. Cheng Y, Walz T (2009) The advent of near-atomic resolution in single-particle electron microscopy. Annu Rev Biochem 78:723–742

    Article  PubMed  CAS  Google Scholar 

  44. Wagenknecht TC, Liu Z (2010) Electron microscopy of ryanodine receptors. In: Serysheva I (ed) Structure and function of calcium release channels. Academic Press, San Diego, CA. Curr Top Membr, Vol 66, pp 27–47

    Article  PubMed  CAS  Google Scholar 

  45. Ludtke SJ, Serysheva II, Hamilton SL, Chiu W (2005) The pore structure of the closed RyR1 channel. Structure 13:1203–1211

    Article  PubMed  CAS  Google Scholar 

  46. Samso M, Wagenknecht T, Allen PD (2005) Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM. Nat Struct Mol Biol 12:539–544

    Article  PubMed  CAS  Google Scholar 

  47. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  48. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417:523–526

    Article  PubMed  CAS  Google Scholar 

  49. Radermacher M, Rao V, Grassucci R, Frank J, Timerman AP, Fleischer S, Wagenknecht T (1994) Cryo-electron microscopy and three-dimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle. J Cell Biol 127:411–423

    Article  PubMed  CAS  Google Scholar 

  50. Capes EM, Loaiza R, Valdivia HH (2011) Ryanodine receptors. Skeletal Muscle 1:1–13

    Article  CAS  Google Scholar 

  51. Zissimopoulos S, Lai FA (2005) Interaction of FKBP12.6 with the cardiac ryanodine receptor C-terminal domain. J Biol Chem 280:5475–5485

    Article  PubMed  CAS  Google Scholar 

  52. Yang D, Zhu WZ, Xiao B, Brochet DX, Chen SR, Lakatta EG, Xiao RP, Cheng H (2007) Ca2+/calmodulin kinase II-dependent phosphorylation of ryanodine receptors suppresses Ca2+ sparks and Ca2+ waves in cardiac myocytes. Circ Res 100:399–407

    Article  PubMed  CAS  Google Scholar 

  53. Samso M, Shen X, Allen PD (2006) Structural characterization of the RyR1-FKBP12 interaction. J Mol Biol 356:917–927

    Article  PubMed  CAS  Google Scholar 

  54. Samso M, Wagenknecht T (2002) Apocalmodulin and Ca2+-calmodulin bind to neighboring locations on the ryanodine receptor. J Biol Chem 277:1349–1353

    Article  PubMed  CAS  Google Scholar 

  55. Meng X, Wang G, Viero C, Wang Q, Mi W, Su XD, Wagenknecht T, Williams AJ, Liu Z, Yin CC (2009) CLIC2-RyR1 interaction and structural characterization by cryo-electron microscopy. J Mol Biol 387:320–334

    Article  PubMed  CAS  Google Scholar 

  56. Samso M, Trujillo R, Gurrola GB, Valdivia HH, Wagenknecht T (1999) Three-dimensional location of the imperatoxin A binding site on the ryanodine receptor. J Cell Biol 146:493–499

    Article  PubMed  CAS  Google Scholar 

  57. Zhou Q, Wang QL, Meng X, Shu Y, Jiang T, Wagenknecht T, Yin CC, Sui SF, Liu Z (2008) Structural and functional characterization of ryanodine receptor-natrin toxin interaction. Biophys J 95:4289–4299

    Article  PubMed  CAS  Google Scholar 

  58. Kratz PA, Bottcher B, Nassal M (1999) Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc Natl Acad Sci USA 96:1915–1920

    Article  PubMed  CAS  Google Scholar 

  59. Liu Z, Zhang J, Li P, Chen SR, Wagenknecht T (2002) Three-dimensional reconstruction of the recombinant type 2 ryanodine receptor and localization of its divergent region 1. J Biol Chem 277:46712–46719

    Article  PubMed  CAS  Google Scholar 

  60. Liu Z, Zhang J, Wang R, Chen SRW, Wagenknecht T (2004) Location of divergent region 2 on the three-dimensional structure of cardiac muscle ryanodine receptor/calcium release channel. J Mol Biol 338:533–545

    Article  PubMed  CAS  Google Scholar 

  61. Zhang J, Liu Z, Masumiya H, Wang R, Jiang D, Li F, Wagenknecht T, Chen SR (2003) Three-dimensional localization of divergent region 3 of the ryanodine receptor to the clamp-shaped structures adjacent to the FKBP binding sites. J Biol Chem 278:14211–14218

    Article  PubMed  CAS  Google Scholar 

  62. Jones PP, Meng X, Xiao B, Cai S, Bolstad J, Wagenknecht T, Liu Z, Chen SR (2008) Localization of PKA phosphorylation site, Ser (2030), in the three-dimensional structure of cardiac ryanodine receptor. Biochem J 410:261–270

    Article  PubMed  CAS  Google Scholar 

  63. Meng X, Xiao B, Cai S, Huang X, Li F, Bolstad J, Trujillo R, Airey J, Chen SR, Wagenknecht T, Liu Z (2007) Three-dimensional localization of serine 2808, a phosphorylation site in cardiac ryanodine receptor. J Biol Chem 282:25929–25939

    Article  PubMed  CAS  Google Scholar 

  64. Liu Z, Wang R, Zhang J, Chen SR, Wagenknecht T (2005) Localization of a disease-associated mutation site in the three-dimensional structure of the cardiac muscle ryanodine receptor. J Biol Chem 280:37941–37947

    Article  PubMed  CAS  Google Scholar 

  65. Wang R, Chen W, Cai S, Zhang J, Bolstad J, Wagenknecht T, Liu Z, Chen SR (2007) Localization of an NH(2)-terminal disease-causing mutation hot spot to the “clamp” region in the three-dimensional structure of the cardiac ryanodine receptor. J Biol Chem 282:17785–17793

    Article  PubMed  CAS  Google Scholar 

  66. George CH (2008) Sarcoplasmic reticulum Ca2+ leak in heart failure: mere observation or functional relevance? Cardiovasc Res 77:302–314

    Article  PubMed  CAS  Google Scholar 

  67. Bray D, Levin MD, Morton-Firth CJ (1998) Receptor clustering as a cellular mechanism to control sensitivity. Nature 393:85–88

    Article  PubMed  CAS  Google Scholar 

  68. Yin CC, Lai FA (2000) Intrinsic lattice formation by the ryanodine receptor calcium-release channel. Nat Cell Biol 2:669–671

    Article  PubMed  CAS  Google Scholar 

  69. Yin CC, Han H, Wei R, Lai FA (2005) Two-dimensional crystallization of the ryanodine receptor Ca2+ release channel on lipid membranes. J Struct Biol 149:219–224

    Article  PubMed  CAS  Google Scholar 

  70. Amador FJ, Liu S, Ishiyama N, Plevin MJ, Wilson A, MacLennan DH, Ikura M (2009) Crystal structure of type I ryanodine receptor amino-terminal beta-trefoil domain reveals a disease-associated mutation “hot spot” loop. Proc Natl Acad Sci USA 106:11040–11044

    Article  PubMed  CAS  Google Scholar 

  71. Nettleship JE, Brown J, Groves MR, Geerlof A (2008) Methods for protein characterization by mass spectrometry, thermal shift (ThermoFluor) assay, and multiangle or static light scattering. Methods Mol Biol 426:299–318

    Article  PubMed  CAS  Google Scholar 

  72. Kobayashi S, Yamamoto T, Parness J, Ikemoto N (2004) Antibody probe study of Ca2+ channel regulation by interdomain interaction within the ryanodine receptor. Biochem J 380:561–569

    Article  PubMed  CAS  Google Scholar 

  73. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  74. Muschol M, Dasgupta BR, Salzberg BM (1999) Caffeine interaction with fluorescent ­calcium indicator dyes. Biophys J 77:577–586

    Article  PubMed  CAS  Google Scholar 

  75. Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744

    Article  PubMed  CAS  Google Scholar 

  76. Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88:1491–1545

    Article  PubMed  CAS  Google Scholar 

  77. Thomas D, Tovey SC, Collins TJ, Bootman MD, Berridge MJ, Lipp P (2000) A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28:213–223

    Article  PubMed  CAS  Google Scholar 

  78. Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Looking forward to seeing calcium. Nat Rev Mol Cell Biol 4:579–586

    Article  PubMed  CAS  Google Scholar 

  79. Hammer K, Ruppenthal S, Viero C, Scholz A, Edelmann L, Kaestner L, Lipp P (2010) Remodelling of Ca2+ handling organelles in adult rat ventricular myocytes during long term culture. J Mol Cell Cardiol 49:427–437

    Article  PubMed  CAS  Google Scholar 

  80. Farrell EF, Antaramian A, Rueda A, Gomez AM, Valdivia HH (2003) Sorcin inhibits calcium release and modulates excitation-contraction coupling in the heart. J Biol Chem 278:34660–34666

    Article  PubMed  CAS  Google Scholar 

  81. Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gomez AM (2006) Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55:608–615

    Article  PubMed  CAS  Google Scholar 

  82. Rodney GG, Schneider MF (2003) Calmodulin modulates initiation but not termination of spontaneous Ca2+ sparks in frog skeletal muscle. Biophys J 85:921–932

    Article  PubMed  CAS  Google Scholar 

  83. Remillard CV, Zhang WM, Shimoda LA, Sham JS (2002) Physiological properties and functions of Ca(2+) sparks in rat intrapulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 283:L433–L444

    PubMed  CAS  Google Scholar 

  84. Shorofsky SR, Izu L, Wier WG, Balke CW (1998) Ca2+ sparks triggered by patch depolarization in rat heart cells. Circ Res 82:424–429

    PubMed  CAS  Google Scholar 

  85. Cannell MB, McMorland AJC, Soeller C (2005) Imaging microscopic calcium signals in excitable cells. In: Yuste AKR (ed) Imaging in neuroscience and development: a laboratory manual. Cold Spring Harbor Labortory Press, Cold Spring Harbor, pp 299–305

    Google Scholar 

  86. Cannell MB, Cody SH (2006) Fluorescent ion measurement. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer Science+Business Media, New York, pp 736–745

    Chapter  Google Scholar 

  87. Lipp P, Hammer KP, Flockerzi A, Zeug A, Kaestner L (2009) Automatic calcium spark detection and analysis in time series of two-dimensional confocal images. Biophys J 96:278a

    Article  Google Scholar 

  88. Picht E, Zima AV, Blatter LA, Bers DM (2007) SparkMaster: automated calcium spark analysis with ImageJ. Am J Physiol Cell Physiol 293:C1073–C1081

    Article  PubMed  CAS  Google Scholar 

  89. Niggli E, Shirokova N (2007) A guide to sparkology: the taxonomy of elementary cellular Ca2+ signalling events. Cell Calcium 42:379–387

    Article  PubMed  CAS  Google Scholar 

  90. Sebille S, Cantereau A, Vandebrouck C, Balghi H, Constantin B, Raymond G, Cognard C (2005) Calcium sparks in muscle cells: interactive procedures for automatic detection and measurements on line-scan confocal images series. Comput Methods Programs Biomed 77:57–70

    Article  PubMed  CAS  Google Scholar 

  91. Wegner FV, Both M, Fink RH (2006) Automated detection of elementary calcium release events using the a trous wavelet transform. Biophys J 90:2151–2163

    Article  CAS  Google Scholar 

  92. Bray MA, Geisse NA, Parker KK (2007) Multidimensional detection and analysis of Ca2+ sparks in cardiac myocytes. Biophys J 92:4433–4443

    Article  PubMed  CAS  Google Scholar 

  93. Cheng H, Song LS, Shirokova N, Gonzalez A, Lakatta EG, Rios E, Stern MD (1999) Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method. Biophys J 76:606–617

    Article  PubMed  CAS  Google Scholar 

  94. Apostol S, Ursu D, Lehmann-Horn F, Melzer W (2009) Local calcium signals induced by hyper-osmotic stress in mammalian skeletal muscle cells. J Muscle Res Cell Motil 30:97–109

    Article  PubMed  CAS  Google Scholar 

  95. Ferrier GR, Smith RH, Howlett SE (2003) Calcium sparks in mouse ventricular myocytes at physiological temperature. Am J Physiol Heart Circ Physiol 285:H1495–H1505

    PubMed  CAS  Google Scholar 

  96. Zahradnikova A Jr, Polakova E, Zahradnik I, Zahradnikova A (2007) Kinetics of calcium spikes in rat cardiac myocytes. J Physiol 578:677–691

    Article  PubMed  CAS  Google Scholar 

  97. Pratusevich VR, Balke CW (1996) Factors shaping the confocal image of the calcium spark in cardiac muscle cells. Biophys J 71:2942–2957

    Article  PubMed  CAS  Google Scholar 

  98. Wang SQ, Stern MD, Rios E, Cheng H (2004) The quantal nature of Ca2+ sparks and in situ operation of the ryanodine receptor array in cardiac cells. Proc Natl Acad Sci USA 101:3979–3984

    Article  PubMed  CAS  Google Scholar 

  99. Lipp P, Niggli E (1998) Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in Guinea-pig cardiac myocytes. J Physiol 508(Pt 3): 801–809

    Article  PubMed  CAS  Google Scholar 

  100. Zahradnikova A, Valent I, Zahradnik I (2010) Frequency and release flux of calcium sparks in rat cardiac myocytes: a relation to RYR gating. J Gen Physiol 136:101–116

    Article  PubMed  CAS  Google Scholar 

  101. Porta M, Zima AV, Nani A, Diaz-Sylvester PL, Copello JA, Ramos-Franco J, Blatter LA, Fill M (2011) Single ryanodine receptor channel basis of caffeine’s action on Ca2+ sparks. Biophys J 100:931–938

    Article  PubMed  CAS  Google Scholar 

  102. Brochet DX, Xie W, Yang D, Cheng H, Lederer WJ (2011) Quarky calcium release in the heart. Circ Res 108:210–218

    Article  PubMed  CAS  Google Scholar 

  103. Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin HB, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci USA 103:4753–4758

    Article  PubMed  CAS  Google Scholar 

  104. Canato M, Scorzeto M, Giacomello M, Protasi F, Reggiani C, Stienen GJ (2010) Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe. Proc Natl Acad Sci USA 107:22326–22331

    Article  PubMed  CAS  Google Scholar 

  105. Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M, Matsu-ura T, Miyawaki A, Michikawa T, Mikoshiba K, Nagai T (2010) Spontaneous network activity visualized by ultrasensitive Ca(2+) indicators, yellow Cameleon-Nano. Nat Methods 7:729–732

    Article  PubMed  CAS  Google Scholar 

  106. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T, Numa S (1989) Primary structure and expression from complementary-DNA of skeletal- muscle ryanodine receptor. Nature 339:439–445

    Article  PubMed  CAS  Google Scholar 

  107. Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH (1990) Molecular-cloning of cDNA-encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac-muscle sarcoplasmic-reticulum. J Biol Chem 265:13472–13483

    PubMed  CAS  Google Scholar 

  108. Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai FA, Meissner G, MacLennan DH (1990) Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265:2244–2256

    PubMed  CAS  Google Scholar 

  109. Leeb T, Brenig B (1998) cDNA cloning and sequencing of the human ryanodine receptor type 3 (RyR3) reveals a novel alternative splice site in the RyR3 gene. FEBS Lett 423:367–370

    Article  PubMed  CAS  Google Scholar 

  110. Marziali G, Rossi D, Giannini G, Charlesworth A, Sorrentino V (1996) cDNA cloning reveals a tissue specific expression of alternatively spliced transcripts of the ryanodine receptor type 3 (RyR3) calcium release channel. FEBS Lett 394:76–82

    Article  PubMed  CAS  Google Scholar 

  111. Tunwell REA, Wickenden C, Bertrand BMA, Shevchenko VI, Walsh MB, Allen PD, Lai FA (1996) The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J 318:477–487

    PubMed  CAS  Google Scholar 

  112. George CH, Higgs GV, Lai FA (2003) Ryanodine receptor mutations associated with stress-induced ventricular tachycardia mediate increased calcium release in stimulated cardiomyocytes. Circ Res 93:531–540

    Article  PubMed  CAS  Google Scholar 

  113. Niu TK, Ashley RH (2000) Expression of full-length and truncated recombinant human brain type I inositol 1,4,5-trisphosphate receptors in mammalian and insect cells. Biochem Biophys Res Commun 273:123–128

    Article  PubMed  CAS  Google Scholar 

  114. George CH, Yin CC, Lai FA (2005) Toward a molecular understanding of the structure:function of ryanodine receptor Ca2+ release channels: perspectives from recombinant expression systems. Cell Biochem Biophys 42:197–222

    Article  PubMed  CAS  Google Scholar 

  115. Chen C, Okayama H (1987) High efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752

    PubMed  CAS  Google Scholar 

  116. George CH, Higgs GV, Mackrill JJ, Lai FA (2003) Dysregulated ryanodine receptors mediate cellular toxicity: restoration of normal phenotype by FKBP12.6. J Biol Chem 278:28856–28864

    Article  PubMed  CAS  Google Scholar 

  117. George CH, Rogers SA, Bertrand BMA, Tunwell REA, Thomas NL, Steele DS, Cox EV, Pepper C, Hazeel CJ, Claycomb WC, Lai FA (2007) Alternative splicing of ryanodine receptors modulates cardiomyocyte Ca2+ signalling and susceptibility to apoptosis. Circ Res 100:874–883

    Article  PubMed  CAS  Google Scholar 

  118. George CH, Jundi H, Thomas NL, Walters N, West RR, Lai FA (2006) Arrhythmogenic mutation-linked defects in ryanodine receptor autoregulation reveal a novel mechanism of Ca2+ release channel dysfunction. Circ Res 98:88–97

    Article  PubMed  CAS  Google Scholar 

  119. Jiang D, Chen W, Wang R, Zhang L, Chen SRW (2007) Loss of luminal Ca2+ activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death. Proc Natl Acad Sci USA 104:18309–18314

    Article  PubMed  CAS  Google Scholar 

  120. George CH, Jundi H, Thomas NL, Scoote M, Walters N, Williams AJ, Lai FA (2004) Ryanodine receptor regulation by intramolecular interaction between cytoplasmic and transmembrane domains. Mol Biol Cell 15:2627–2638

    Article  PubMed  CAS  Google Scholar 

  121. Moore RA, Nguyen H, Galceran J, Pessah IN, Allen PD (1998) A transgenic myogenic cell line lacking ryanodine receptor protein for homologous expression studies: reconstitution of Ry1R protein and function. J Cell Biol 140:843–851

    Article  PubMed  CAS  Google Scholar 

  122. Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG, Allen PD (1996) Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380:72–75

    Article  PubMed  CAS  Google Scholar 

  123. Xiao B, Masumiya H, Jiang D, Wang R, Sei Y, Zhang L, Murayama T, Ogawa Y, Lai FA, Wagenknecht T, Chen SRW (2002) Isoform dependent formation of heteromeric Ca2+ release channels (ryanodine receptors). J Biol Chem 277:41778–41785

    Article  PubMed  CAS  Google Scholar 

  124. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    Article  PubMed  CAS  Google Scholar 

  125. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  126. Lorenzon NM, Grabner M, Suda N, Beam KG (2001) Structure and targeting of RyR1: implications from fusion of green fluorescent protein and the amino-terminal. Arch Biochem Biophys 388:13–17

    Article  PubMed  CAS  Google Scholar 

  127. Stewart R, Zissimopoulos S, Lai FA (2003) Oligomerization of the cardiac ryanodine receptor C-terminal tail. Biochem J 376:795–799

    Article  PubMed  CAS  Google Scholar 

  128. George CH (2008) Sarcoplasmic reticulum Ca2+ leak in heart failure: mere observation or functional relevance? Cardiovasc Res 77:302–314

    Article  PubMed  CAS  Google Scholar 

  129. Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY (2000) The structure of the chromophore within dsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11990–11995

    Article  PubMed  CAS  Google Scholar 

  130. Liu Z, Wang R, Tian X, Zhong X, Gangopadhyay JP, Cole R, Ikemoto N, Chen SRW, Wagenknecht T (2010) Dynamic, inter-subunit interactions between the N-terminal and central mutation regions of cardiac ryanodine receptor. J Cell Sci 123:1775–1784

    Article  PubMed  CAS  Google Scholar 

  131. George CH, Yeung WY, Walters N, Thomas NL, Claycomb WC, Lai FA (2006) A novel cardiomyocyte FRET-based bioassay for investigating the molecular basis of RyR2 dysfunction in arrhythmogenesis. Biophys J (Suppl.S) 90:264a

    Google Scholar 

  132. Cerrone M, Colombi B, Santoro M, di Barletta MR, Scelsi M, Villani L, Napolitano C, Priori SG (2005) Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor (RyR2). Circ Res 96:e77–e82

    Article  PubMed  CAS  Google Scholar 

  133. Kannankeril PJ, Mitchell BM, Goonasekera SA, Chelu MG, Zhang W, Subeena S, Kearney DL, Danila CI, De Biasi M, Wehrens XHT, Pautler RG, Roden DM, Taffet GE, Dirksen RT, Anderson ME, Hamilton SL (2006) Mice with R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proc Natl Acad Sci USA 32:12179–12184

    Article  CAS  Google Scholar 

  134. Goddard CA, Ghais NS, Zhang Y, Williams AJ, Colledge WH, Grace AA, Huang CL-H (2008) Physiological consequences of the P2328S mutation in the ryanodine receptor (RyR2) gene in genetically modified murine hearts. Acta Physiol (Oxf) 194:123–140

    Article  CAS  Google Scholar 

  135. Giulivi C, Ross-Inta C, Omanska-Klusek A, Napoli E, Sakaguchi D, Barrientos G, Allen PD, Pessah IN (2011) Basal bioenergetic abnormalities in skeletal muscle from ryanodine receptor malignant hyperthermia-susceptible R163C knock-in mice. J Biol Chem 286:99–113

    Article  PubMed  CAS  Google Scholar 

  136. Lehnart SE, Mongillo M, Bellinger AM, Lindegger N, Chen B-X, Hseuh W, Reiken S, Wronska A, Drew LJ, Ward CW, Lederer WJ, Kass RS, Morley G, Marks AR (2008) Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 118:2230–2245

    PubMed  CAS  Google Scholar 

  137. Hidalgo C, Gonzalez ME, Garcia AM (1986) Calcium transport in transverse tubules isolated from rabbit skeletal muscle. Biochim Biophys Acta 854:279–286

    Article  PubMed  CAS  Google Scholar 

  138. Meissner G, Henderson JS (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem 262:3065–3073

    PubMed  CAS  Google Scholar 

  139. Palade P (1987) Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. II. Releases involving a Ca2+-induced Ca2+ release channel. J Biol Chem 262:6142–6148

    PubMed  CAS  Google Scholar 

  140. Ohnishi T, Ebashi S (1963) Spectrophotometrical measurement of instantaneous calcium binding of the relaxing factor of muscle. J Biochem 54:506–511

    PubMed  CAS  Google Scholar 

  141. Ogawa Y, Harafuji H, Kurebayashi N (1980) Comparison of the characteristics of four metallochromic dyes as potential calcium indicators for biological experiments. J Biochem 87:1293–1303

    PubMed  CAS  Google Scholar 

  142. El-Hayek R, Yano M, Antoniu B, Mickelson JR, Louis CF, Ikemoto N (1995) Altered E-C coupling in triads isolated from malignant hyperthermia-susceptible porcine muscle. Am J Physiol 268:C1381–C1386

    PubMed  CAS  Google Scholar 

  143. Currie S, Smith GL (1999) Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc Res 41:135–146

    Article  PubMed  CAS  Google Scholar 

  144. Smith GL, Duncan AM, Neary P, Bruce L, Burton FL (2000) P(i) inhibits the SR Ca2+ pump and stimulates pump-mediated Ca2+ leak in rabbit cardiac myocytes. Am J Physiol Heart Circ Physiol 279:H577–H585

    PubMed  CAS  Google Scholar 

  145. Ikemoto N, Yano M, El-Hayek R, Antoniu B, Morii M (1994) Chemical depolarization-induced SR calcium release in triads isolated from rabbit skeletal muscle. Biochemistry 33:10961–10968

    Article  PubMed  CAS  Google Scholar 

  146. Ikemoto N, Yamamoto T (2002) Regulation of calcium release by interdomain interaction within ryanodine receptors. Front Biosci 7:d671–d683

    Article  PubMed  CAS  Google Scholar 

  147. Zucchi R, Ronca-Testoni S (1997) The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49:1–51

    PubMed  CAS  Google Scholar 

  148. Pessah IN, Waterhouse AL, Casida JE (1985) The calcium-ryanodine receptor complex of skeletal and cardiac muscle. Biochem Biophys Res Commun 128:449–456

    Article  PubMed  CAS  Google Scholar 

  149. Lai FA, Meissner G (1989) The muscle ryanodine receptor and its intrinsic Ca2+ channel activity. J Bioenerg Biomembr 21:227–246

    Article  PubMed  CAS  Google Scholar 

  150. Chu A, Diaz-Munoz M, Hawkes MJ, Brush K, Hamilton SL (1990) Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel. Mol Pharmacol 37:735–741

    PubMed  CAS  Google Scholar 

  151. Zhao M, Li P, Li X, Zhang L, Winkfein RJ, Chen SR (1999) Molecular identification of the ryanodine receptor pore-forming segment. J Biol Chem 274:25971–25974

    Article  PubMed  CAS  Google Scholar 

  152. Chen SR, Li P, Zhao M, Li X, Zhang L (2002) Role of the proposed pore-forming segment of the Ca2+ release channel (ryanodine receptor) in ryanodine interaction. Biophys J 82:2436–2447

    Article  PubMed  CAS  Google Scholar 

  153. Gao L, Balshaw D, Xu L, Tripathy A, Xin C, Meissner G (2000) Evidence for a role of the lumenal M3-M4 loop in skeletal muscle Ca2+ release channel (ryanodine receptor) activity and conductance. Biophys J 79:828–840

    Article  PubMed  CAS  Google Scholar 

  154. Fessenden JD, Feng W, Pessah IN, Allen PD (2004) Mutational analysis of putative calcium binding motifs within the skeletal ryanodine receptor isoform, RyR1. J Biol Chem 279:53028–53035

    Article  PubMed  CAS  Google Scholar 

  155. Gibb AJ (1995) Patch-clamp recording. In: Ashley RH (ed) Ion channels: a practical approach. IRL Press, Oxford, pp 1–42

    Google Scholar 

  156. Mortensen M, Smart TG (2007) Single-channel recording of ligand-gated ion channels. Nat Protoc 2:2826–2841

    Article  PubMed  CAS  Google Scholar 

  157. Smith JS, Coronado R, Meissner G (1986) Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. J Gen Physiol 88:573–588

    Article  PubMed  CAS  Google Scholar 

  158. Holmberg SR, Williams AJ (1989) Single channel recordings from human cardiac sarcoplasmic reticulum. Circ Res 65:1445–1449

    PubMed  CAS  Google Scholar 

  159. Ashley RH, Williams AJ (1990) Divalent cation activation and inhibition of single calcium release channels from sheep cardiac sarcoplasmic reticulum. J Gen Physiol 95:981–1005

    Article  PubMed  CAS  Google Scholar 

  160. Lai FA, Erickson HP, Rousseau E, Liu QY, Meissner G (1988) Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331:315–319

    Article  PubMed  CAS  Google Scholar 

  161. Lindsay AR, Williams AJ (1991) Functional characterisation of the ryanodine receptor purified from sheep cardiac muscle sarcoplasmic reticulum. Biochim Biophys Acta 1064:89–102

    Article  PubMed  CAS  Google Scholar 

  162. Williams AJ (1995) The measurement of the function of ion channels reconstituted into artificial membranes. In: Ashley RH (ed) Ion channels: a practical approach. IRL Press, Oxford, pp 43–67

    Google Scholar 

  163. Favre I, Sun YM, Moczydlowski E (1999) Reconstitution of native and cloned channels into planar bilayers. Methods Enzymol 294:287–304

    Article  PubMed  CAS  Google Scholar 

  164. Sitsapesan R, Williams AJ (1994) Gating of the native and purified cardiac SR Ca(2+)-release channel with monovalent cations as permeant species. Biophys J 67:1484–1494

    Article  PubMed  CAS  Google Scholar 

  165. Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922

    PubMed  CAS  Google Scholar 

  166. Laver D (2001) The power of single channel recording and analysis: its application to ryanodine receptors in lipid bilayers. Clin Exp Pharmacol Physiol 28:675–686

    Article  PubMed  CAS  Google Scholar 

  167. Cukierman S, Yellen G, Miller C (1985) The K+ channel of sarcoplasmic reticulum. A new look at Cs+ block. Biophys J 48:477–484

    Article  PubMed  CAS  Google Scholar 

  168. Tester DJ, Dura M, Carturan E, Reiken S, Wronska A, Marks AR, Ackerman MJ (2007) A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm 4:733–739

    Article  PubMed  Google Scholar 

  169. Tu Q, Velez P, Brodwick M, Fill M (1994) Streaming potentials reveal a short ryanodine-sensitive selectivity filter in cardiac Ca2+ release channel. Biophys J 67:2280–2285

    Article  PubMed  CAS  Google Scholar 

  170. Tomaskova Z, Gaburjakova M (2008) The cardiac ryanodine receptor: looking for anomalies in permeation properties. Biochim Biophys Acta 1778:2564–2572

    Article  PubMed  CAS  Google Scholar 

  171. Williams AJ, West DJ, Sitsapesan R (2001) Light at the end of the Ca2+-release channel tunnel: structures and mechanisms involved in ion translocation in ryanodine receptor channels. Q Rev Biophys 34:61–104

    Article  PubMed  CAS  Google Scholar 

  172. Du GG, Guo X, Khanna VK, MacLennan DH (2001) Functional characterization of mutants in the predicted pore region of the rabbit cardiac muscle Ca2+ release channel (ryanodine receptor isoform 2). J Biol Chem 276:31760–31771

    Article  PubMed  CAS  Google Scholar 

  173. Wang R, Bolstad J, Kong H, Zhang L, Brown C, Chen SR (2004) The predicted TM10 transmembrane sequence of the cardiac Ca2+ release channel (ryanodine receptor) is crucial for channel activation and gating. J Biol Chem 279:3635–3642

    Article  PubMed  CAS  Google Scholar 

  174. Mead-Savery FC, Wang R, Tanna-Topan B, Chen SR, Welch W, Williams AJ (2009) Changes in negative charge at the luminal mouth of the pore alter ion handling and gating in the cardiac ryanodine-receptor. Biophys J 96:1374–1387

    Article  PubMed  CAS  Google Scholar 

  175. Wang Y, Xu L, Pasek DA, Gillespie D, Meissner G (2005) Probing the role of negatively charged amino acid residues in ion permeation of skeletal muscle ryanodine receptor. Biophys J 89: 256–265

    Article  PubMed  CAS  Google Scholar 

  176. Xu L, Wang Y, Gillespie D, Meissner G (2006) Two rings of negative charges in the cytosolic vestibule of type-1 ryanodine receptor modulate ion fluxes. Biophys J 90:443–453

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very much obliged to the British Heart Foundation, which provides the financial support for all researchers involved in this work. Moreover we would like to thank Prof. Peter Lipp and Dr. Lars Kaestner from the Institute of Molecular Cell Biology (Medical Faculty, Saarland University, Homburg/Saar, Germany) for their great support and help in monitoring Ca2+ dynamics in rat heart muscle cells and the use of confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cedric Viero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Viero, C., Thomas, N.L., Euden, J., Mason, S.A., George, C.H., Williams, A.J. (2012). Techniques and Methodologies to Study the Ryanodine Receptor at the Molecular, Subcellular and Cellular Level. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_8

Download citation

Publish with us

Policies and ethics