Skip to main content

Ryanodine Receptor Calcium Release Channels: An Evolutionary Perspective

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Ryanodine receptors (RyRs), along with the related inositol 1,4,5-trisphosphate receptors (IP3Rs), mediate the release of Ca2+ from intracellular organelles of eukaryotes. As discussed in other chapters, such increases in intracellular Ca2+ levels act a fundamental second messenger, regulating a diverse array of cellular processes. For over two decades, it has been reported that vertebrates express multiple RYR genes, whereas non-vertebrate multicellular organisms possess a single homologue within their genomes. Recently, the existence of RyR-like channels in unicellular organisms has also been reported. This chapter exploits recent expansions in available genome data to generate an overview of the expression of RyR-like genes in organisms representing a broad range of viral, archaeal, bacterial and eukaryotic taxa. Analyses of the multidomain structures and phylogenetic relationships of these proteins has lead to a model in which, early during eukaryotic evolution, IP3R-like ancestral Ca2+ release channels were converted to RyR proteins via the addition of promiscuous protein domains, possibly via horizontal gene transfer mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Case RM, Eisner D, Gurney A, Jones O, Muallem S, Verkhratsky A (2007) Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium 42:345–350

    Article  PubMed  CAS  Google Scholar 

  2. Dominguez DC (2004) Calcium signalling in bacteria. Mol Microbiol 54:291–297

    Article  PubMed  CAS  Google Scholar 

  3. Norris V, Grant S, Freestone P, Canvin J, Sheikh FN, Toth I, Trinei M, Modha K, Norman RI (1996) Calcium signalling in bacteria. J Bacteriol 178:3677–3682

    PubMed  CAS  Google Scholar 

  4. Naseem R, Davies SR, Jones H, Wann KT, Holland IB, Campbell AK (2007) Cytosolic Ca2+ regulates protein expression in E. coli through release from inclusion bodies. Biochem Biophys Res Commun 360:33–39

    Article  PubMed  CAS  Google Scholar 

  5. Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46:1–42

    PubMed  CAS  Google Scholar 

  6. Roger AJ (1999) Reconstructing early events in eukaryotic evolution. Am Nat 154:S146–S163

    Article  PubMed  Google Scholar 

  7. Cavalier-Smith T (1975) The origin of nuclei and of eukaryotic cells. Nature 256:463–468

    Article  Google Scholar 

  8. Negulescu PA, Machen TE (1993) Ca transport by plasma membrane and intracellular stores of gastric cells. Am J Physiol 264:C843–C851

    PubMed  CAS  Google Scholar 

  9. Endo M (2006) Calcium ion as a second messenger with special reference to excitation-contraction coupling. J Pharmacol Sci 100:519–524

    Article  PubMed  CAS  Google Scholar 

  10. Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116:675–682

    Article  PubMed  CAS  Google Scholar 

  11. Liang W, Buluc M, van Breemen C, Wang X (2004) Vectorial Ca2+ release via ryanodine receptors contributes to Ca2+ extrusion from freshly isolated rabbit aortic endothelial cells. Cell Calcium 36:431–443

    Article  PubMed  CAS  Google Scholar 

  12. Berkelman T, Garret-Engele P, Hoffman NE (1994) The pacL gene of Synechococcus sp. strain PCC 7942 encodes a Ca(2+)-transporting ATPase. J Bacteriol 176:4430–4436

    PubMed  CAS  Google Scholar 

  13. Shigaki T, Rees I, Nakhleh L, Hirschi KD (2006) Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. J Mol Evol 63:815–825

    Article  PubMed  CAS  Google Scholar 

  14. Kung C, Blount P (2004) Channels in microbes: so many holes to fill. Mol Microbiol 53:373–380

    Article  PubMed  CAS  Google Scholar 

  15. Jegla TJ, Zmasek CM, Batalov S, Nayak SK (2009) Evolution of the human ion channel set. Comb Chem High Throughput Screen 12:2–23

    Article  PubMed  CAS  Google Scholar 

  16. Dolphin AC (2009) Calcium channel diversity: multiple roles of calcium channel subunits. Curr Opin Neurobiol 19:237–244

    Article  PubMed  CAS  Google Scholar 

  17. Flucher BE, Takekura H, Franzini-Armstrong C (1993) Development of the excitation-­contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev Biol 160:135–147

    Article  PubMed  CAS  Google Scholar 

  18. Franzini-Armstrong C, Protasi F, Tijskens P (2005) The assembly of calcium release units in cardiac muscle. Ann NY Acad Sci 1047:76–85

    Article  PubMed  CAS  Google Scholar 

  19. Meissner G (2002) Regulation of mammalian ryanodine receptors. Front Biosci 7:d2072–d2080

    Article  PubMed  CAS  Google Scholar 

  20. Franzini-Armstrong C (1970) STUDIES OF THE TRIAD: I. Structure of the junction in frog twitch fibers. J Cell Biol 47:488–499

    Article  PubMed  CAS  Google Scholar 

  21. Di Biase V, Franzini-Armstrong C (2005) Evolution of skeletal type e-c coupling: a novel means of controlling calcium delivery. J Cell Biol 171:695–704

    Article  PubMed  CAS  Google Scholar 

  22. Rogers EF, Koniuszy FR et al (1948) Plant insecticides; ryanodine, a new alkaloid from Ryania speciosa Vahl. J Am Chem Soc 70:3086–3088

    Article  PubMed  CAS  Google Scholar 

  23. West DJ, Williams AJ (2007) Pharmacological regulators of intracellular calcium release channels. Curr Pharm Des 13:2428–2442

    Article  PubMed  CAS  Google Scholar 

  24. Lai FA, Erickson HP, Rousseau E, Liu QY, Meissner G (1988) Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331:315–319

    Article  PubMed  CAS  Google Scholar 

  25. Campbell KP, Knudson CM, Imagawa T, Leung AT, Sutko JL, Kahl SD, Raab CR, Madson L (1987) Identification and characterization of the high affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J Biol Chem 262:6460–6463

    PubMed  CAS  Google Scholar 

  26. Inui M, Saito A, Fleischer S (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262:1740–1747

    PubMed  CAS  Google Scholar 

  27. Lai FA, Misra M, Xu L, Smith HA, Meissner G (1989) The ryanodine receptor-Ca2+ release channel complex of skeletal muscle sarcoplasmic reticulum. Evidence for a cooperatively coupled, negatively charged homotetramer. J Biol Chem 264:16776–16785

    PubMed  CAS  Google Scholar 

  28. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T et al (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439–445

    Article  PubMed  CAS  Google Scholar 

  29. Mignery GA, Sudhof TC, Takei K, De Camilli P (1989) Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342:192–195

    Article  PubMed  CAS  Google Scholar 

  30. Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342:32–38

    Article  PubMed  CAS  Google Scholar 

  31. Coussin F, Macrez N, Morel JL, Mironneau J (2000) Requirement of ryanodine receptor subtypes 1 and 2 for Ca(2+)-induced Ca(2+) release in vascular myocytes. J Biol Chem 275:9596–9603

    Article  PubMed  CAS  Google Scholar 

  32. Sei Y, Gallagher KL, Basile AS (1999) Skeletal muscle type ryanodine receptor is involved in calcium signaling in human B lymphocytes. J Biol Chem 274:5995–6002

    Article  PubMed  CAS  Google Scholar 

  33. O’Connell PJ, Klyachko VA, Ahern GP (2002) Identification of functional type 1 ryanodine receptors in mouse dendritic cells. FEBS Lett 512:67–70

    Article  PubMed  Google Scholar 

  34. Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V (1995) The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 128:893–904

    Article  PubMed  CAS  Google Scholar 

  35. Giannini G, Clementi E, Ceci R, Marziali G, Sorrentino V (1992) Expression of a ryanodine receptor-Ca2+ channel that is regulated by TGF-beta. Science 257:91–94

    Article  PubMed  CAS  Google Scholar 

  36. Olivares EB, Tanksley SJ, Airey JA, Beck CF, Ouyang Y, Deerinck TJ, Ellisman MH, Sutko JL (1991) Nonmammalian vertebrate skeletal muscles express two triad junctional foot protein isoforms. Biophys J 59:1153–1163

    Article  PubMed  CAS  Google Scholar 

  37. Airey JA, Grinsell MM, Jones LR, Sutko JL, Witcher D (1993) Three ryanodine receptor isoforms exist in avian striated muscles. Biochemistry 32:5739–5745

    Article  PubMed  CAS  Google Scholar 

  38. Ottini L, Marziali G, Conti A, Charlesworth A, Sorrentino V (1996) Alpha and beta isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3. Biochem J 315(Pt 1):207–216

    PubMed  CAS  Google Scholar 

  39. Darbandi S, Franck JP (2009) A comparative study of ryanodine receptor (RyR) gene expression levels in a basal ray-finned fish, bichir (Polypterus ornatipinnis) and the derived euteleost zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 154:443–448

    Article  PubMed  CAS  Google Scholar 

  40. Schredelseker J, Shrivastav M, Dayal A, Grabner M (2010) Non-Ca2+-conducting Ca2+ channels in fish skeletal muscle excitation-contraction coupling. Proc Natl Acad Sci USA 107:5658–5663

    Article  PubMed  CAS  Google Scholar 

  41. Hasan G, Rosbash M (1992) Drosophila homologs of two mammalian intracellular Ca(2+)-release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development 116:967–975

    PubMed  CAS  Google Scholar 

  42. Takeshima H, Nishi M, Iwabe N, Miyata T, Hosoya T, Masai I, Hotta Y (1994) Isolation and characterization of a gene for a ryanodine receptor/calcium release channel in Drosophila melanogaster. FEBS Lett 337:81–87

    Article  PubMed  CAS  Google Scholar 

  43. Sullivan KM, Scott K, Zuker CS, Rubin GM (2000) The ryanodine receptor is essential for larval development in Drosophila melanogaster. Proc Natl Acad Sci USA 97:5942–5947

    Article  PubMed  CAS  Google Scholar 

  44. Formelova J, Hurnak O, Novotova M, Zachar J (1990) Ryanodine receptor purified from crayfish skeletal muscle. Gen Physiol Biophys 9:445–453

    PubMed  CAS  Google Scholar 

  45. Seok JH, Xu L, Kramarcy NR, Sealock R, Meissner G (1992) The 30S lobster skeletal muscle Ca2+ release channel (ryanodine receptor) has functional properties distinct from the mammalian channel proteins. J Biol Chem 267:15893–15901

    PubMed  CAS  Google Scholar 

  46. Sakube Y, Ando H, Kagawa H (1993) Cloning and mapping of a ryanodine receptor homolog gene of Caenorhabditis elegans. Ann NY Acad Sci 707:540–545

    Article  PubMed  CAS  Google Scholar 

  47. Maryon EB, Coronado R, Anderson P (1996) unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle contraction. J Cell Biol 134:885–893

    Article  PubMed  CAS  Google Scholar 

  48. Quinn KE, Castellani L, Ondrias K, Ehrlich BE (1998) Characterization of the ryanodine receptor/channel of invertebrate muscle. Am J Physiol 274:R494–R502

    PubMed  CAS  Google Scholar 

  49. Silva CL, Cunha VM, Mendonca-Silva DL, Noel F (1998) Evidence for ryanodine receptors in Schistosoma mansoni. Biochem Pharmacol 56:997–1003

    Article  PubMed  CAS  Google Scholar 

  50. Lovett JL, Marchesini N, Moreno SN, Sibley LD (2002) Toxoplasma gondii microneme secretion involves intracellular Ca(2+) release from inositol 1,4,5-triphosphate (IP(3))/ryanodine-sensitive stores. J Biol Chem 277:25870–25876

    Article  PubMed  CAS  Google Scholar 

  51. Muir SR, Sanders D (1996) Pharmacology of Ca2+ release from red beet microsomes suggests the presence of ryanodine receptor homologs in higher plants. FEBS Lett 395:39–42

    Article  PubMed  CAS  Google Scholar 

  52. Meimoun P, Vidal G, Bohrer AS, Lehner A, Tran D, Briand J, Bouteau F, Rona JP (2009) Intracellular Ca2+ stores could participate to abscisic acid-induced depolarization and stomatal closure in Arabidopsis thaliana. Plant Signal Behav 4:830–835

    Article  PubMed  CAS  Google Scholar 

  53. Sorrentino V, Barone V, Rossi D (2000) Intracellular Ca(2+) release channels in evolution. Curr Opin Genet Dev 10:662–667

    Article  PubMed  CAS  Google Scholar 

  54. Mackrill JJ (1999) Protein-protein interactions in intracellular Ca2+-release channel function. Biochem J 337(Pt 3):345–361

    Article  PubMed  CAS  Google Scholar 

  55. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  56. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    PubMed  CAS  Google Scholar 

  57. Felsenstein J (1985) Confidence-limits on phylogenies – an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  58. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Google Scholar 

  59. Benterbusch R, Herberg FW, Melzer W, Thieleczek R (1992) Excitation-contraction coupling in a pre-vertebrate twitch muscle: the myotomes of Branchiostoma lanceolatum. J Membr Biol 129:237–252

    PubMed  CAS  Google Scholar 

  60. Seo HC, Kube M, Edvardsen RB, Jensen MF, Beck A, Spriet E, Gorsky G, Thompson EM, Lehrach H, Reinhardt R, Chourrout D (2001) Miniature genome in the marine chordate Oikopleura dioica. Science 294:2506

    Article  PubMed  CAS  Google Scholar 

  61. Nagata T, Iizumi S, Satoh K, Ooka H, Kawai J, Carninci P, Hayashizaki Y, Otomo Y, Murakami K, Matsubara K, Kikuchi S (2004) Comparative analysis of plant and animal calcium signal transduction element using plant full-length cDNA data. Mol Biol Evol 21:1855–1870

    Article  PubMed  CAS  Google Scholar 

  62. Krinke O, Novotna Z, Valentova O, Martinec J (2007) Inositol trisphosphate receptor in higher plants: is it real? J Exp Bot 58:361–376

    Article  PubMed  CAS  Google Scholar 

  63. Dasgupta S, Dasgupta D, Sen M, Biswas S, Biswas BB (1996) Interaction of myoinositoltrisphosphate-phytase complex with the receptor for intercellular Ca2+ mobilization in plants. Biochemistry 35:4994–5001

    Article  PubMed  CAS  Google Scholar 

  64. Verret F, Wheeler G, Taylor AR, Farnham G, Brownlee C (2010) Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signalling. New Phytol 187:23–43

    Article  PubMed  CAS  Google Scholar 

  65. Wheeler GL, Brownlee C (2008) Ca2+ signalling in plants and green algae – changing channels. Trends Plant Sci 13:506–514

    Article  PubMed  CAS  Google Scholar 

  66. Zelter A, Bencina M, Bowman BJ, Yarden O, Read ND (2004) A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genet Biol 41:827–841

    Article  PubMed  CAS  Google Scholar 

  67. Mack MM, Molinski TF, Buck ED, Pessah IN (1994) Novel modulators of skeletal muscle FKBP12/calcium channel complex from Ianthella basta. Role of FKBP12 in channel gating. J Biol Chem 269:23236–23249

    PubMed  CAS  Google Scholar 

  68. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960

    Article  PubMed  CAS  Google Scholar 

  69. Schierwater B (2005) My favorite animal, Trichoplax adhaerens. Bioessays 27:1294–1302

    Article  PubMed  CAS  Google Scholar 

  70. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Queinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Worheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712

    Article  PubMed  CAS  Google Scholar 

  71. Moreira D, von der Heyden S, Bass D, Lopez-Garcia P, Chao E, Cavalier-Smith T (2007) Global eukaryote phylogeny: combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogenet Evol 44:255–266

    Article  PubMed  CAS  Google Scholar 

  72. King N (2005) Choanoflagellates. Curr Biol 15:R113–R114

    Article  PubMed  CAS  Google Scholar 

  73. Cai X (2008) Unicellular Ca2+ signaling ‘toolkit’ at the origin of metazoa. Mol Biol Evol 25:1357–1361

    Article  PubMed  CAS  Google Scholar 

  74. Ruiz-Trillo I, Inagaki Y, Davis LA, Sperstad S, Landfald B, Roger AJ (2004) Capsaspora owczarzaki is an independent opisthokont lineage. Curr Biol 14:R946–R947

    Article  PubMed  CAS  Google Scholar 

  75. Sebe-Pedros A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I (2011) Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 28:1241–1254

    Article  PubMed  CAS  Google Scholar 

  76. Ladenburger EM, Sehring IM, Korn I, Plattner H (2009) Novel types of Ca2+ release channels participate in the secretory cycle of Paramecium cells. Mol Cell Biol 29:3605–3622

    Article  PubMed  CAS  Google Scholar 

  77. Ladenburger EM, Korn I, Kasielke N, Wassmer T, Plattner H (2006) An Ins(1,4,5)P3 receptor in Paramecium is associated with the osmoregulatory system. J Cell Sci 119:3705–3717

    Article  PubMed  CAS  Google Scholar 

  78. Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM, Tallon LJ, Delcher AL, Salzberg SL, Silva JC, Haas BJ, Majoros WH, Farzad M, Carlton JM, Smith RK Jr, Garg J, Pearlman RE, Karrer KM, Sun L, Manning G, Elde NC, Turkewitz AP, Asai DJ, Wilkes DE, Wang Y, Cai H, Collins K, Stewart BA, Lee SR, Wilamowska K, Weinberg Z, Ruzzo WL, Wloga D, Gaertig J, Frankel J, Tsao CC, Gorovsky MA, Keeling PJ, Waller RF, Patron NJ, Cherry JM, Stover NA, Krieger CJ, del Toro C, Ryder HF, Williamson SC, Barbeau RA, Hamilton EP, Orias E (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4:e286

    Article  PubMed  CAS  Google Scholar 

  79. Cock JM, Sterck L, Rouze P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collen J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, Gachon CM, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Kupper FC, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR, Nyvall-Collen P, Peters AF, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing SA, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder DC, Segurens B, Strittmatter M, Tonon T, Tregear JW, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  PubMed  CAS  Google Scholar 

  80. Mackrill JJ (2010) Ryanodine receptor calcium channels and their partners as drug targets. Biochem Pharmacol 79:1535–1543

    Article  PubMed  CAS  Google Scholar 

  81. Tani S, Yatzkan E, Judelson HS (2004) Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. Mol Plant Microbe Interact 17:330–337

    Article  PubMed  CAS  Google Scholar 

  82. Basu MK, Poliakov E, Rogozin IB (2009) Domain mobility in proteins: functional and evolutionary implications. Brief Bioinform 10:205–216

    Article  PubMed  CAS  Google Scholar 

  83. Long M, Betran E, Thornton K, Wang W (2003) The origin of new genes: glimpses from the young and old. Nat Rev Genet 4:865–875

    Article  PubMed  CAS  Google Scholar 

  84. Valas RE, Yang S, Bourne PE (2009) Nothing about protein structure classification makes sense except in the light of evolution. Curr Opin Struct Biol 19:329–334

    Article  PubMed  CAS  Google Scholar 

  85. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  PubMed  Google Scholar 

  86. Welch W, Rheault S, West DJ, Williams AJ (2004) A model of the putative pore region of the cardiac ryanodine receptor channel. Biophys J 87:2335–2351

    Article  PubMed  CAS  Google Scholar 

  87. Ponting CP (2000) Novel repeats in ryanodine and IP3 receptors and protein O-mannosyltransferases. Trends Biochem Sci 25:48–50

    PubMed  CAS  Google Scholar 

  88. Kiselyov K, Mignery GA, Zhu MX, Muallem S (1999) The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol Cell 4:423–429

    Article  PubMed  CAS  Google Scholar 

  89. Kiselyov KI, Shin DM, Wang Y, Pessah IN, Allen PD, Muallem S (2000) Gating of store-operated channels by conformational coupling to ryanodine receptors. Mol Cell 6:421–431

    Article  PubMed  CAS  Google Scholar 

  90. Schug ZT, da Fonseca PC, Bhanumathy CD, Wagner L 2nd, Zhang X, Bailey B, Morris EP, Yule DI, Joseph SK (2008) Molecular characterization of the inositol 1,4,5-trisphosphate receptor pore-forming segment. J Biol Chem 283:2939–2948

    Article  PubMed  CAS  Google Scholar 

  91. Mead-Savery FC, Wang R, Tanna-Topan B, Chen SR, Welch W, Williams AJ (2009) Changes in negative charge at the luminal mouth of the pore alter ion handling and gating in the cardiac ryanodine-receptor. Biophys J 96:1374–1387

    Article  PubMed  CAS  Google Scholar 

  92. Montell C (2001) Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 2001:re1

    Article  PubMed  CAS  Google Scholar 

  93. Ponting C, Schultz J, Bork P (1997) SPRY domains in ryanodine receptors (Ca(2+)-release channels). Trends Biochem Sci 22:193–194

    Article  PubMed  CAS  Google Scholar 

  94. Tae H, Casarotto MG, Dulhunty AF (2009) Ubiquitous SPRY domains and their role in the skeletal type ryanodine receptor. Eur Biophys J 39:51–59

    Article  PubMed  CAS  Google Scholar 

  95. van de Graaf SF, van der Kemp AW, van den Berg D, van Oorschot M, Hoenderop JG, Bindels RJ (2006) Identification of BSPRY as a novel auxiliary protein inhibiting TRPV5 activity. J Am Soc Nephrol 17:26–30

    Article  PubMed  CAS  Google Scholar 

  96. Cui Y, Tae HS, Norris NC, Karunasekara Y, Pouliquin P, Board PG, Dulhunty AF, Casarotto MG (2009) A dihydropyridine receptor alpha1s loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor. Int J Biochem Cell Biol 41:677–686

    Article  PubMed  CAS  Google Scholar 

  97. Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH (1990) Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 265:13472–13483

    PubMed  CAS  Google Scholar 

  98. Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai FA, Meissner G, MacLennan DH (1990) Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265:2244–2256

    PubMed  CAS  Google Scholar 

  99. Durell SR, Hao Y, Nakamura T, Bakker EP, Guy HR (1999) Evolutionary relationship between K(+) channels and symporters. Biophys J 77:775–788

    Article  PubMed  CAS  Google Scholar 

  100. Aravind L, Koonin EV (1998) A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease. Trends Biochem Sci 23:17–19

    Article  PubMed  CAS  Google Scholar 

  101. Anantharaman V, Koonin EV, Aravind L (2001) Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J Mol Biol 307:1271–1292

    Article  PubMed  CAS  Google Scholar 

  102. Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    Article  PubMed  CAS  Google Scholar 

  103. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912

    Article  PubMed  CAS  Google Scholar 

  104. Whitaker JW, McConkey GA, Westhead DR (2009) The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes. Genome Biol 10:R36

    Article  PubMed  CAS  Google Scholar 

  105. Torruella G, Suga H, Riutort M, Pereto J, Ruiz-Trillo I (2009) The evolutionary history of lysine biosynthesis pathways within eukaryotes. J Mol Evol 69:240–248

    Article  PubMed  CAS  Google Scholar 

  106. Richards TA, Soanes DM, Foster PG, Leonard G, Thornton CR, Talbot NJ (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21:1897–1911

    Article  PubMed  CAS  Google Scholar 

  107. Goulas T, Arolas JL, Gomis-Ruth FX (2011) Structure, function and latency regulation of a bacterial enterotoxin potentially derived from a mammalian adamalysin/ADAM xenolog. Proc Natl Acad Sci USA 108:1856–1861

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Mackrill Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mackrill, J.J. (2012). Ryanodine Receptor Calcium Release Channels: An Evolutionary Perspective. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_7

Download citation

Publish with us

Policies and ethics