Skip to main content

Ca2+ Signaling: An Outlook on the Characterization of Ca2+ Channels and Their Importance in Cellular Functions

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Calcium (Ca2+) is essential in regulating a plethora of cellular functions that includes cell proliferation and differentiation, axonal guidance and cell migration, neuro/enzyme secretion and exocytosis, development/maintenance of neural circuits, cell death and many more. Since Ca2+ regulates so many fundamental processes, it could be anticipated that numerous Ca2+ channels and transporters will assist in regulating Ca2+ entry across the plasma membrane. Towards this several Ca2+ channels such as voltage-gated channels, store-operated Ca2+ entry (SOCE) channels, NMDA, AMPA and other ligand gated channels have been identified. In recent years research focus has been targeted towards identification of the precise function of these essential channels. Furthermore, characterization of these individual Ca2+ channels has also gained much attention, since specific Ca2+ channels have been shown to influence a particular cellular response. Moreover, perturbations in these Ca2+ channels have also been implicated in a spectrum of pathological conditions. Hence, understanding the precise involvement of these Ca2+ channels in disease conditions would presumably unveil avenues for plausible therapeutic interventions. We thus review the role of Ca2+ signaling in select ­disease conditions and also provide experimental evidence as how they can be characterized in a given cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058, Dec 14

    Article  PubMed  CAS  Google Scholar 

  2. Guerini D, Coletto L, Carafoli E (2005) Exporting calcium from cells. Cell Calcium 38 (3–4):281–289, Sep-Oct

    Article  PubMed  CAS  Google Scholar 

  3. Benarroch EE (2010) Neuronal voltage-gated calcium channels: brief overview of their function and clinical implications in neurology. Neurology 74(16):1310–1315, Apr 20

    Article  PubMed  Google Scholar 

  4. Cahalan MD (2009) STIMulating store-operated ca(2+) entry. Nat Cell Biol 11(6):669–677

    Article  PubMed  CAS  Google Scholar 

  5. Kurosaki T, Baba Y (2010) Ca2+ signaling and STIM1. Prog Biophys Mol Biol 103(1):51–58, Sep

    Article  PubMed  CAS  Google Scholar 

  6. Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793(6):933–940, Jun

    Article  PubMed  CAS  Google Scholar 

  7. Skelding KA, Rostas JA (2009) Regulation of CaMKII in vivo: the importance of targeting and the intracellular microenvironment. Neurochem Res 34(10):1792–1804, Oct

    Article  PubMed  CAS  Google Scholar 

  8. Dobrev D, Wehrens XH (2010) Calmodulin kinase II, sarcoplasmic reticulum Ca2+ leak, and atrial fibrillation. Trends Cardiovasc Med 20(1):30–34, Jan

    Article  PubMed  CAS  Google Scholar 

  9. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    Article  PubMed  CAS  Google Scholar 

  10. Liu X, Groschner K, Ambudkar IS (2004) Distinct Ca(2+)-permeable cation currents are activated by internal Ca(2+)-store depletion in RBL-2H3 cells and human salivary gland cells, HSG and HSY. J Membr Biol 200(2):93–104

    Article  PubMed  CAS  Google Scholar 

  11. Christian EP, Spence KT, Togo JA, Dargis PG, Warawa E (1996) Extracellular site for econazole-mediated block of Ca2+ release activated Ca2+ current (Icrac) in T lymphocytes. Br J Pharmacol 119:647–654

    PubMed  CAS  Google Scholar 

  12. Zweifach A, Lewis RS (1995) Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 105:209–226

    Article  PubMed  CAS  Google Scholar 

  13. Fierro L, Parekh AB (1999) Fast calcium-dependent inactivation of calcium release-activated calcium current (CRAC) in RBL-1 cells. J Membr Biol 168:9–17

    Article  PubMed  CAS  Google Scholar 

  14. Liu X, Rojas E, Ambudkar IS (1998) Regulation of KCa current by store-operated Ca2+ influx depends on internal Ca2+ release in HSG cells. Am J Physiol 275(2 Pt 1):C571–C580, Aug

    PubMed  CAS  Google Scholar 

  15. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430(7000):631–639, Aug 5

    Article  PubMed  CAS  Google Scholar 

  16. Berridge MJ (2010) Calcium hypothesis of Alzheimer’s disease. Pflugers Arch 459(3):441–449, Feb

    Article  PubMed  CAS  Google Scholar 

  17. Bezprozvanny I, Hayden MR (2004) Deranged neuronal calcium signaling and huntington disease. Biochem Biophys Res Commun 322(4):1310–1317, Oct 1

    Article  PubMed  CAS  Google Scholar 

  18. Supnet C, Bezprozvanny I (2010) The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 47:183–189, Jan 15

    Article  PubMed  CAS  Google Scholar 

  19. Green KN, LaFerla FM (2008) Linking calcium to abeta and Alzheimer’s disease. Neuron 59(2):190–194, Jul 31

    Article  PubMed  CAS  Google Scholar 

  20. Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41, Jan

    Article  PubMed  Google Scholar 

  21. Berridge MJ (2010) Calcium signalling and Alzheimer’s disease. Neurochem Res 36:1149–1156, Dec 24

    Article  PubMed  Google Scholar 

  22. Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies abeta-induced synaptic depression and dendritic spine loss. Neuron 52(5):831–843, Dec 7

    Article  PubMed  CAS  Google Scholar 

  23. Lynch G, Kramar EA, Rex CS, Jia Y, Chappas D, Gall CM, Simmons DA (2007) Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of huntington’s disease. J Neurosci 27(16):4424–4434, Apr 18

    Article  PubMed  CAS  Google Scholar 

  24. Quintanilla RA, Johnson GV (2009) Role of mitochondrial dysfunction in the pathogenesis of huntington’s disease. Brain Res Bull 80(4–5):242–247, Oct 28

    Article  PubMed  CAS  Google Scholar 

  25. Milnerwood AJ, Raymond LA (2010) Early synaptic pathophysiology in neurodegeneration: insights from huntington’s disease. Trends Neurosci 33(11):513–523, Nov

    Article  PubMed  CAS  Google Scholar 

  26. Moller T (2010) Neuroinflammation in huntington’s disease. J Neural Transm 117(8):1001–1008, Aug

    Article  PubMed  Google Scholar 

  27. Carafoli E (2004) Calcium-mediated cellular signals: a story of failures. Trends Biochem Sci 29(7):371–379, Jul

    Article  PubMed  CAS  Google Scholar 

  28. Chen N, Luo T, Wellington C, Metzler M, McCutcheon K, Hayden MR, Raymond LA (1999) Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem 72(5):1890–1898, May

    Article  PubMed  CAS  Google Scholar 

  29. Sun Y, Savanenin A, Reddy PH, Liu YF (2001) Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem 276(27):24713–24718, Jul 6

    Article  PubMed  CAS  Google Scholar 

  30. Ali DW, Salter MW (2001) NMDA receptor regulation by src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol 11(3):336–342, Jun

    Article  PubMed  CAS  Google Scholar 

  31. Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39(2):227–239, Jul 17

    Article  PubMed  CAS  Google Scholar 

  32. Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhaes PJ, Di Virgilio F, Pozzan T (2003) Calcium and apoptosis: facts and hypotheses. Oncogene 22(53):8619–8627, Nov 24

    Article  PubMed  CAS  Google Scholar 

  33. Hajnoczky G, Davies E, Madesh M (2003) Calcium signaling and apoptosis. Biochem Biophys Res Commun 304(3):445–454, May 9

    Article  PubMed  CAS  Google Scholar 

  34. Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    Article  PubMed  CAS  Google Scholar 

  35. Bers DM (2006) Altered cardiac myocyte Ca 2+ regulation in heart failure. Physiology (Bethesda) 21:380–387, Dec

    Article  CAS  Google Scholar 

  36. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001) Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res 88(11):1159–1167, Jun 8

    Article  PubMed  CAS  Google Scholar 

  37. MacLennan DH, Asahi M, Tupling AR (2003) The regulation of SERCA-type pumps by phospholamban and sarcolipin. Ann NY Acad Sci 986:472–480, Apr

    Article  PubMed  CAS  Google Scholar 

  38. Lehnart SE, Maier LS, Hasenfuss G (2009) Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail Rev 14(4):213–224, Dec

    Article  PubMed  CAS  Google Scholar 

  39. Stange M, Xu L, Balshaw D, Yamaguchi N, Meissner G (2003) Characterization of recombinant skeletal muscle (ser-2843) and cardiac muscle (ser-2809) ryanodine receptor phosphorylation mutants. J Biol Chem 278(51):51693–51702, Dec 19

    Article  PubMed  CAS  Google Scholar 

  40. Wehrens XH, Lehnart SE, Marks AR (2005) Intracellular calcium release and cardiac disease. Annu Rev Physiol 67:69–98

    Article  PubMed  CAS  Google Scholar 

  41. Mudd JO, Kass DA (2008) Tackling heart failure in the twenty-first century. Nature 451(7181):919–928, Feb 21

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brij B. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Karlstad, J., Sun, Y., Singh, B.B. (2012). Ca2+ Signaling: An Outlook on the Characterization of Ca2+ Channels and Their Importance in Cellular Functions. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_6

Download citation

Publish with us

Policies and ethics