Skip to main content

Calcium Signaling in Mast Cells: Focusing on L-Type Calcium Channels

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Mast cells play central roles in adaptive and innate immunity. IgE-dependent stimulation of the high-affinity IgE receptor (FcεRI) results in rapid secretion of various proinflammatory chemical mediators and cytokines. All of the outputs depend to certain degrees on an increase in the intracellular Ca2+ concentration, and influx of Ca2+ from the extracellular space is often required for their full activation. There is strong evidence that FcεRI stimulation induces two different modes of Ca2+ influx, store-operated Ca2+ entry (SOCE) and non-SOCE, which are activated in response to endoplasmic reticulum Ca2+ store depletion and independently of Ca2+ store depletion, respectively, in mast cells. Although Ca2+ release-activated Ca2+ channels are the major route of SOCE, recent evidence indicates that they are not the only Ca2+ channels activated by Ca2+ store depletion. The recent data suggest that L-type Ca2+ channels, which were thought to be a characteristic feature of excitable cells, exist in mast cells to mediate non-SOCE, which is critical for protecting mast cells against activation-induced mitochondrial cell death. In this chapter, we provide an overview of recent advances in our understanding of Ca2+ signaling in mast cells with a special attention to the emerging role for the L-type Ca2+ channels as a regulator of mast cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786

    Article  PubMed  CAS  Google Scholar 

  2. Church MK, Pao GJ, Holgate ST (1982) Characterization of histamine secretion from mechanically dispersed human lung mast cells: effects of anti-IgE, calcium ionophore A23187, compound 48/80, and basic polypeptides. J Immunol 129:2116–2121

    PubMed  CAS  Google Scholar 

  3. Baram D, Mekori YA, Sagi-Eisenberg R (2001) Synaptotagmin regulates mast cell functions. Immunol Rev 179:25–34

    Article  PubMed  CAS  Google Scholar 

  4. Blank U, Cyprien B, Martin-Verdeaux S, Paumet F, Pombo I, Rivera J, Roa M, Varin-Blank N (2002) SNAREs and associated regulators in the control of exocytosis in the RBL-2H3 mast cell line. Mol Immunol 38:1341–1345

    Article  PubMed  CAS  Google Scholar 

  5. Gijón MA, Spencer DM, Kaiser AL, Leslie CC (1999) Role of phosphorylation sites and the C2 domain in regulation of cytosolic phospholipase A2. J Cell Biol 145:1219–1232

    Article  PubMed  Google Scholar 

  6. Chang WC, Nelson C, Parekh AB (2006) Ca2+ influx through CRAC channels activates cytosolic phospholipase A2, leukotriene C4 secretion, and expression of c-fos through ERK-dependent and -independent pathways in mast cells. FASEB J 20:2381–2383

    Article  PubMed  CAS  Google Scholar 

  7. Chang WC, Di Capite J, Nelson C, Parekh AB (2007) All-or-none activation of CRAC channels by agonist elicits graded responses in populations of mast cells. J Immunol 179:5255–5263

    PubMed  CAS  Google Scholar 

  8. Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636

    Article  PubMed  CAS  Google Scholar 

  9. Masgrau R, Churchill GC, Morgan AJ, Ashcroft SJ, Galione A (2003) NAADP: a new second messenger for glucose-induced Ca2+ responses in clonal pancreatic β cells. Curr Biol 13:247–251

    Article  PubMed  CAS  Google Scholar 

  10. Guse AH (2003) Regulation of calcium signaling by the second messenger cyclic adenosine diphosphoribose (cADPR). Curr Mol Med 4:239–248

    Article  Google Scholar 

  11. Putney JW Jr (1987) Formation and actions of calcium-mobilizing messenger, inositol 1,4,5-trisphosphate. Am J Physiol 252:G149–G157

    PubMed  CAS  Google Scholar 

  12. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 88:841–886

    Article  PubMed  CAS  Google Scholar 

  13. Grafton G, Thwaite L (2001) Calcium channels in lymphocytes. Immunology 104:119–126

    Article  PubMed  CAS  Google Scholar 

  14. Fliegert R, Gasser A, Guse AH (2007) Regulation of calcium signalling by adenine-based second messengers. Biochem Soc Trans 35:109–114

    Article  PubMed  CAS  Google Scholar 

  15. Locke EG, Bonilla M, Liang L, Takita Y, Cunningham KW (2000) A homolog of voltage-gated Ca2+ channels stimulated by depletion of secretory Ca2+ in yeast. Mol Cell Biol 20:6686–6694

    Article  PubMed  CAS  Google Scholar 

  16. Partiseti M, Le Deist F, Hivroz C, Fischer A, Korn H, Choquet D (1994) The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J Biol Chem 269:32327–32335

    PubMed  CAS  Google Scholar 

  17. Montero M, Alvarez J, Garcia-Sancho J (1991) Agonist-induced Ca2+ influx in human neutrophils is secondary to the emptying of intracellular calcium stores. Biochem J 277:73–79

    PubMed  CAS  Google Scholar 

  18. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  19. Ma HT, Beaven MA (2009) Regulation of Ca2+ signaling with particular focus on mast cells. Crit Rev Immunol 29:155–186

    PubMed  CAS  Google Scholar 

  20. Di Capite JL, Bates GJ, Parekh AB (2011) Mast cell CRAC channel as a novel therapeutic target in allergy. Curr Opin Allergy Clin Immunol 11:33–38

    Article  PubMed  Google Scholar 

  21. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  PubMed  CAS  Google Scholar 

  22. Parekh AB (2010) Store-operated CRAC channels: function in health and disease. Nat Rev Drug Discov 9:399–410

    Article  PubMed  CAS  Google Scholar 

  23. Feske S (2010) CRAC channelopathies. Pflugers Arch 460:417–435

    Article  PubMed  CAS  Google Scholar 

  24. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  PubMed  CAS  Google Scholar 

  25. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  PubMed  CAS  Google Scholar 

  26. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  PubMed  CAS  Google Scholar 

  27. Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16:2073–2079

    Article  PubMed  CAS  Google Scholar 

  28. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    Article  PubMed  CAS  Google Scholar 

  29. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    Article  PubMed  CAS  Google Scholar 

  30. Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702

    Article  PubMed  CAS  Google Scholar 

  31. Baba Y, Nishida K, Fujii Y, Hirano T, Hikida M, Kurosaki T (2008) Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat Immunol 9:81–88

    Article  PubMed  CAS  Google Scholar 

  32. Vig M, DeHaven WI, Bird GS, Billingsley JM, Wang H, Rao PE, Hutchings AB, Jouvin MH, Putney JW, Kinet JP (2008) Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 9:89–96

    Article  PubMed  CAS  Google Scholar 

  33. Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez GJ, Putney JW Jr (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim Biophys Acta 1763:1147–1160

    Article  PubMed  CAS  Google Scholar 

  34. Shuttleworth TJ, Thompson JL, Mignen O (2007) STIM1 and the noncapacitative ARC channels. Cell Calcium 42:183–191

    Article  PubMed  CAS  Google Scholar 

  35. Mignen O, Thompson JL, Shuttleworth TJ (2001) Reciprocal regulation of capacitative and arachidonate-regulated noncapacitative Ca2+ entry pathways. J Biol Chem 276:35676–35683

    Article  PubMed  CAS  Google Scholar 

  36. Mignen O, Thompson JL, Shuttleworth TJ (2003) Ca2+ selectivity and fatty acid specificity of the noncapacitative, arachidonate-regulated Ca2+ (ARC) channels. J Biol Chem 278:10174–10181

    Article  PubMed  CAS  Google Scholar 

  37. Mignen O, Thompson JL, Shuttleworth TJ (2007) STIM1 regulates Ca2+ entry via arachidonate-regulated Ca2+-selective (ARC) channels without store depletion or translocation to the plasma membrane. J Physiol 579:703–715

    Article  PubMed  CAS  Google Scholar 

  38. Ching TT, Hsu AL, Johnson AJ, Chen CS (2001) Phosphoinositide 3-kinase facilitates antigen-stimulated Ca2+ influx in RBL-2H3 mast cells via a phosphatidylinositol 3,4,5-trisphosphate-sensitive Ca2+ entry mechanism. J Biol Chem 276:14814–14820

    Article  PubMed  CAS  Google Scholar 

  39. Bradding P, Okayama Y, Kambe N, Saito H (2003) Ion channel gene expression in human lung, skin, and cord blood-derived mast cells. J Leukoc Biol 73:614–620

    Article  PubMed  CAS  Google Scholar 

  40. Kahr H, Schindl R, Fritsch R, Heinze B, Hofbauer M, Hack ME, Mörtelmaier MA, Groschner K, Peng JB, Takanaga H, Hediger MA, Romanin C (2004) CaT1 knock-down strategies fail to affect CRAC channels in mucosal-type mast cells. J Physiol 557:121–132

    Article  PubMed  CAS  Google Scholar 

  41. Fasolato C, Hoth M, Matthews G, Penner R (1993) Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proc Natl Acad Sci USA 90:3068–3072

    Article  PubMed  CAS  Google Scholar 

  42. Suzuki Y, Yoshimaru T, Inoue T, Nunomura S, Ra C (2008) The high-affinity immunoglobulin E receptor (FcεRI) regulates mitochondrial calcium uptake and a dihydropyridine receptor-mediated calcium influx in mast cells: role of the FcεRIβ chain immunoreceptor tyrosine-based activation motif. Biochem Pharmacol 75:1492–1503

    Article  PubMed  CAS  Google Scholar 

  43. Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A (2005) The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115:3306–3317

    Article  PubMed  CAS  Google Scholar 

  44. Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48

    Article  PubMed  CAS  Google Scholar 

  45. Yoshimaru T, Suzuki Y, Inoue T, Ra C (2009) L-type Ca2+ channels in mast cells: activation by membrane depolarization and distinct roles in regulating mediator release from store-operated Ca2+ channels. Mol Immunol 46:1267–1277

    Article  PubMed  CAS  Google Scholar 

  46. Kotturi MF, Hunt SV, Jefferies WA (2006) Roles of CRAC and Cav-like channels in T cells: more than one gatekeeper? Trends Pharmacol Sci 27:360–367

    Article  PubMed  CAS  Google Scholar 

  47. Suzuki Y, Inoue T, Ra C (2010) L-type Ca2+ channels: a new player in the regulation of Ca2+ signaling, cell activation and cell survival in immune cells. Mol Immunol 47:640–648

    Article  PubMed  CAS  Google Scholar 

  48. Rivera J (2002) Molecular adapters in FcεRI signaling and the allergic response. Curr Opin Immunol 14:688–693

    Article  PubMed  CAS  Google Scholar 

  49. Inoue T, Suzuki Y, Yoshimaru T, Ra C (2008) Reactive oxygen species produced up- or downstream of calcium influx regulate proinflammatory mediator release from mast cells: role of NADPH oxidase and mitochondria. Biochim Biophys Acta 1783:789–802

    Article  PubMed  CAS  Google Scholar 

  50. Furumoto Y, Nunomura S, Terada T, Rivera J, Ra C (2004) The FcεRIβ immunoreceptor tyrosine-based activation motif exerts inhibitory control on MAPK and IκB kinase phosphorylation and mast cell cytokine production. J Biol Chem 279:49177–49187

    Article  PubMed  CAS  Google Scholar 

  51. Grisham MB, Jourd’Heuil D, Wink DA (1999) Nitric oxide. I. Physiological chemistry of nitric oxide and its metabolites: implications in inflammation. Am J Physiol 276:G315–G321

    PubMed  CAS  Google Scholar 

  52. Coleman JW (2002) Nitric oxide: a regulator of mast cell activation and mast cell-mediated inflammation. Clin Exp Immunol 129:4–10

    Article  PubMed  CAS  Google Scholar 

  53. Eastmond NC, Banks EM, Coleman JW (1997) Nitric oxide inhibits IgE-mediated degranulation of mast cells and is the principal intermediate in IFN-γ-induced suppression of exocytosis. J Immunol 159:1444–1450

    PubMed  CAS  Google Scholar 

  54. Davis BJ, Flanagan BF, Gilfillan AM, Metcalfe DD, Coleman JW (2004) Nitric oxide inhibits IgE-dependent cytokine production and Fos and Jun activation in mast cells. J Immunol 173:6914–6920

    PubMed  CAS  Google Scholar 

  55. Inoue T, Suzuki Y, Yoshimaru T, Ra C (2008) Nitric oxide protects mast cells from activation-induced cell death: the role of the phosphatidylinositol-3-kinase-Akt-endothelial nitric oxide synthase pathway. J Leukoc Biol 83:1218–1229

    Article  PubMed  CAS  Google Scholar 

  56. Gallis B, Corthals GL, Goodlett DR, Ueba H, Kim F, Presnell SR, Figeys D, Harrison DG, Berk BC, Aebersold R, Corson MA (1999) Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002. J Biol Chem 274:30101–30108

    Article  PubMed  CAS  Google Scholar 

  57. McCabe TJ, Fulton D, Roman LJ, Sessa WC (2000) Enhanced electron flux and reduced calmodulin dissociation may explain “calcium-independent” eNOS activation by phosphorylation. J Biol Chem 275:6123–6128

    Article  PubMed  CAS  Google Scholar 

  58. Suzuki Y, Inoue T, Ra C (2010) Endothelial nitric oxide synthase is essential for nitric oxide generation, L-type Ca2+ channel activation and survival in RBL-2H3 mast cells. Biochim Biophys Acta 1803:372–385

    Article  PubMed  CAS  Google Scholar 

  59. Badou A, Jha MK, Matza D, Mehal WZ, Freichel M, Flockerzi V, Flavell RA (2006) Critical role for the β regulatory subunits of Cav channels in T lymphocyte function. Proc Natl Acad Sci USA 103:15529–15534

    Article  PubMed  CAS  Google Scholar 

  60. Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL (2010) The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 330:105–109

    Article  PubMed  CAS  Google Scholar 

  61. Park CY, Shcheglovitov A, Dolmetsch R (2010) The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science 330:101–105

    Article  PubMed  CAS  Google Scholar 

  62. Togo K, Suzuki Y, Yoshimaru T, Inoue T, Terui T, Ochiai T, Ra C (2009) Aspirin and salicylates modulate IgE-mediated leukotriene secretion in mast cells through a dihydropyridine receptor-mediated Ca2+ influx. Clin Immunol 131:145–156

    Article  PubMed  CAS  Google Scholar 

  63. Matza D, Badou A, Kobayashi KS, Goldsmith-Pestana K, Masuda Y, Komuro A, McMahon-Pratt D, Marchesi VT, Flavell RA (2008) A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation. Immunity 28:64–74

    Article  PubMed  CAS  Google Scholar 

  64. Savignac M, Gomes B, Gallard A, Narbonnet S, Moreau M, Leclerc C, Paulet P, Mariamé B, Druet P, Saoudi A, Fournié GJ, Guéry JC, Pelletier L (2004) Dihydropyridine receptors are selective markers of Th2 cells and can be targeted to prevent Th2-dependent immunopathological disorders. J Immunol 172:5206–5212

    PubMed  CAS  Google Scholar 

  65. Pelletier L, Guéry JC (2008) Dihydropyridine receptor blockade in the treatment of asthma. Recent Pat Inflamm Allergy Drug Discov 2:109–116

    Article  PubMed  CAS  Google Scholar 

  66. Suzuki Y, Yoshimaru T, Inoue T, Ra C (2009) Cav1.2 L-type Ca2+ channel protects mast cells against activation-induced cell death by preventing mitochondrial integrity disruption. Mol Immunol 46:2370–2380

    Article  PubMed  CAS  Google Scholar 

  67. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  68. Yan N, Shi Y (2005) Mechanisms of apoptosis through structural biology. Annu Rev Cell Dev Biol 21:35–56

    Article  PubMed  CAS  Google Scholar 

  69. Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009) Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787:1395–1401

    Article  PubMed  CAS  Google Scholar 

  70. Halestrap AP, Brennerb C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525

    Article  PubMed  CAS  Google Scholar 

  71. Zhivotovsky B, Galluzzi L, Kepp O, Kroemer G (2009) Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery. Cell Death Differ 16:1419–1425

    Article  PubMed  CAS  Google Scholar 

  72. Hail N Jr (2005) Mitochondria: a novel target for the chemoprevention of cancer. Apoptosis 10:687–705

    Article  PubMed  CAS  Google Scholar 

  73. Tadakuma T, Kizaki H, Odaka C, Kubota R, Ishimura Y, Yagita H, Okumura K (1990) CD4+CD8+ thymocytes are susceptible to DNA fragmentation induced by phorbol ester, calcium ionophore and anti-CD3 antibody. Eur J Immunol 20:779–784

    Article  PubMed  CAS  Google Scholar 

  74. Ribeiro JM, Carson DA (1993) Ca2+/Mg2+-dependent endonuclease from human spleen: purification, properties, and role in apoptosis. Biochemistry 32:9129–9136

    Article  PubMed  CAS  Google Scholar 

  75. Merćep M, Noguchi PD, Ashwell JD (1989) The cell cycle block and lysis of an activated T cell hybridoma are distinct processes with different Ca2+ requirements and sensitivity to cyclosporine A. J Immunol 142:4085–4092

    PubMed  Google Scholar 

  76. McConkey DJ, Hartzell P, Amador-Perez FJ, Orrenius S, Jondal M (1989) Calcium-dependent killing of immature thymocytes by stimulation via the CD3/T cell receptor complex. J Immunol 143:1801–1806

    PubMed  CAS  Google Scholar 

  77. Rodriguez-Tarduchy G, Prupti M, Lopez-Rivas A, Collins MKL (1992) Inhibition of apoptosis by calcium ionophores in IL-3-dependent bone marrow cells is dependent upon production of IL-4. J Immunol 148:1416–1422

    PubMed  CAS  Google Scholar 

  78. Lampe PA, Cornbrooks EB, Juhasz A, Johnson EJ, Franklin JL (1995) Suppression of programmed neuronal death by a thapsigargin-induced Ca2+ influx. J Neurobiol 26:205–212

    Article  PubMed  CAS  Google Scholar 

  79. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  80. Zhu LP, Yu XD, Ling S, Brown RA, Kuo TH (2000) Mitochondrial Ca2+ homeostasis in the regulation of apoptotic and necrotic cell deaths. Cell Calcium 28:107–117

    Article  PubMed  CAS  Google Scholar 

  81. Kuo TH, Zhu L, Golden K, Marsh JD, Bhattacharya SK, Liu BF (2002) Altered Ca2+ homeostasis and impaired mitochondrial function in cardiomyopathy. Mol Cell Biochem 272:187–199

    Google Scholar 

  82. Visch HJ, Rutter GA, Koopman WJ, Koenderink JB, Verkaart S, de Groot T, Varadi A, Mitchell KJ, van den Heuvel LP, Smeitink JA, Willems PH (2004) Inhibition of mitochondrial Na+-Ca2+ exchange restores agonist-induced ATP production and Ca2+ handling in human complex I deficiency. J Biol Chem 279:40328–40336

    Article  PubMed  CAS  Google Scholar 

  83. Suzuki Y, Yoshimaru T, Matsui T, Inoue T, Niide O, Nunomura S, Ra C (2003) FcεRI signaling of mast cells activates intracellular production of hydrogen peroxide: role in the regulation of calcium signals. J Immunol 171:6119–6127

    PubMed  CAS  Google Scholar 

  84. Suzuki Y, Yoshimaru T, Inoue T, Niide O, Ra C (2005) Role of oxidants in mast cell activation. Chem Immunol Allergy 87:32–42

    Article  PubMed  CAS  Google Scholar 

  85. Suzuki Y, Yoshimaru T, Inoue T, Ra C (2009) Discrete generations of intracellular hydrogen peroxide and superoxide in antigen-stimulated mast cells: reciprocal regulation of store-operated Ca2+ channel activity. Mol Immunol 46:2200–2209

    Article  PubMed  CAS  Google Scholar 

  86. Devadas S, Zaritskaya L, Rhee SG, Oberley L, Williams MS (2002) Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J Exp Med 195:59–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. T. Yoshimaru, S. Nunomura, K. Mizuno, K. Togo, K. Hayama and T. Ochiai for their collaborations and/or technical assistance. This work was partially supported by a Grant-in-Aid for the High-Tech Research Center Project (2003–2007) for Private Universities and a matching fund subsidy for Private Universities (2007–2009) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and Grants-in-Aid from Nihon University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Suzuki, Y., Inoue, T., Ra, C. (2012). Calcium Signaling in Mast Cells: Focusing on L-Type Calcium Channels. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_44

Download citation

Publish with us

Policies and ethics