Skip to main content

Calcium in Epidermis

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Calcium is the ubiquitous second messenger system in cell biology (e.g., [1, 2]), as shown in great detail in this volume. In contrast, calcium has been implicated in a host of functions in skin, which have seen only partial clarification to date. Within this chapter, we will present an overview of known physiologic and pathophysiologic aspects to give a perspective of the overall role of calcium, focusing on epidermis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dupont G, Combettes L, Leybaert L (2007) Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. Int Rev Cytol 261:193–245

    Article  PubMed  CAS  Google Scholar 

  2. Parekh AB (2003) Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J Physiol 547:333–348

    Article  PubMed  CAS  Google Scholar 

  3. Menon GK, Elias PM, Lee SH, Feingold KR (1992) Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell Tissue Res 270:503–512

    Article  PubMed  CAS  Google Scholar 

  4. Powell DW (1981) Barrier function of epithelia. Am J Physiol 241:G275–G288

    PubMed  CAS  Google Scholar 

  5. Scheuplein RJ (1976) Percutaneous absorption after twenty-five years: or “old wine in new wineskins”. J Invest Dermatol 67:31–38

    Article  PubMed  CAS  Google Scholar 

  6. Behne MJ, Sanchez S, Barry NP, Kirschner N, Meyer W, Mauro TM, Moll I, Gratton E (2011) Major translocation of calcium upon epidermal barrier insult: imaging and quantification via FLIM/Fourier vector analysis. Arch Dermatol Res 303:103–115

    Article  PubMed  CAS  Google Scholar 

  7. Forslind B, Werner-Linde Y, Lindberg M, Pallon J (1999) Elemental analysis mirrors epidermal differentiation. Acta Derm Venereol 79:12–17

    Article  PubMed  CAS  Google Scholar 

  8. Hu Z, Bonifas JM, Beech J, Bench G, Shigihara T, Ogawa H, Ikeda S, Mauro T, Epstein EH Jr (2000) Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Nat Genet 24:61–65

    Article  PubMed  CAS  Google Scholar 

  9. Menon GK, Elias PM (1991) Ultrastructural localization of calcium in psoriatic and normal human epidermis. Arch Dermatol 127:57–63

    Article  PubMed  CAS  Google Scholar 

  10. Jamora C, Fuchs E (2002) Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol 4:E101–E108

    Article  PubMed  CAS  Google Scholar 

  11. Segre J (2003) Complex redundancy to build a simple epidermal permeability barrier. Curr Opin Cell Biol 15:776–782

    Article  PubMed  CAS  Google Scholar 

  12. Yuspa SH, Kilkenny AE, Steinert PM, Roop DR (1989) Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol 109:1207–1217

    Article  PubMed  CAS  Google Scholar 

  13. Tu CL, Oda Y, Komuves L, Bikle DD (2004) The role of the calcium-sensing receptor in epidermal differentiation. Cell Calcium 35:265–273

    Article  PubMed  CAS  Google Scholar 

  14. Elias PM, Nau P, Hanley K, Cullander C, Crumrine D, Bench G, Sideras-Haddad E, Mauro T, Williams ML, Feingold KR (1998) Formation of the epidermal calcium gradient coincides with key milestones of barrier ontogenesis in the rodent. J Invest Dermatol 110:399–404

    Article  PubMed  CAS  Google Scholar 

  15. Lee SH, Elias PM, Proksch E, Menon GK, Mao-Quiang M, Feingold KR (1992) Calcium and potassium are important regulators of barrier homeostasis in murine epidermis. J Clin Invest 89:530–538

    Article  PubMed  CAS  Google Scholar 

  16. Mauro T, Bench G, Sidderas-Haddad E, Feingold K, Elias P, Cullander C (1998) Acute barrier perturbation abolishes the Ca2+ and K+ gradients in murine epidermis: quantitative measurement using PIXE. J Invest Dermatol 111:1198–1201

    Article  PubMed  CAS  Google Scholar 

  17. Menon GK, Price LF, Bommannan B, Elias PM, Feingold KR (1994) Selective obliteration of the epidermal calcium gradient leads to enhanced lamellar body secretion. J Invest Dermatol 102:789–795

    Article  PubMed  CAS  Google Scholar 

  18. Lee SH, Elias PM, Feingold KR, Mauro T (1994) A role for ions in barrier recovery after acute perturbation. J Invest Dermatol 102:976–979

    Article  PubMed  CAS  Google Scholar 

  19. Elias P, Ahn S, Brown B, Crumrine D, Feingold KR (2002) Origin of the epidermal calcium gradient: regulation by barrier status and role of active vs passive mechanisms. J Invest Dermatol 119:1269–1274

    Article  PubMed  CAS  Google Scholar 

  20. Elias PM, Ahn SK, Denda M, Brown BE, Crumrine D, Kimutai LK, Komuves L, Lee SH, Feingold KR (2002) Modulations in epidermal calcium regulate the expression of differentiation-specific markers. J Invest Dermatol 119:1128–1136

    Article  PubMed  CAS  Google Scholar 

  21. Hwang SM, Ahn SK, Menon GK, Choi EH, Lee SH (2001) Basis of occlusive therapy in psoriasis: correcting defects in permeability barrier and calcium gradient. Int J Dermatol 40:223–231

    Article  PubMed  CAS  Google Scholar 

  22. Fuchs E (1990) Epidermal differentiation: the bare essentials. J Cell Biol 111:2807–2814

    Article  PubMed  CAS  Google Scholar 

  23. Kalinin AE, Kajava AV, Steinert PM (2002) Epithelial barrier function: assembly and structural features of the cornified cell envelope. Bioessays 24:789–800

    Article  PubMed  CAS  Google Scholar 

  24. Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H (2000) Abnormal intracellular ca(2+) homeostasis and disease. Cell Calcium 28:1–21

    Article  PubMed  CAS  Google Scholar 

  25. Denda M, Tomitaka A, Akamatsu H, Matsunaga K (2003) Altered distribution of calcium in facial epidermis of aged adults. J Invest Dermatol 121:1557–1558

    Article  PubMed  CAS  Google Scholar 

  26. Karvonen SL, Korkiamaki T, Yla-Outinen H, Nissinen M, Teerikangas H, Pummi K, Karvonen J, Peltonen J (2000) Psoriasis and altered calcium metabolism: downregulated capacitative calcium influx and defective calcium-mediated cell signaling in cultured psoriatic keratinocytes. J Invest Dermatol 114:693–700

    Article  PubMed  CAS  Google Scholar 

  27. McNally NJ, Williams HC, Phillips DR, Smallman-Raynor M, Lewis S, Venn A, Britton J (1998) Atopic eczema and domestic water hardness. Lancet 352:527–531

    Article  PubMed  CAS  Google Scholar 

  28. Pallon J, Malmqvist KG, Werner-Linde Y, Forslind B (1996) Pixe analysis of pathological skin with special reference to psoriasis and atopic dry skin. Cell Mol Biol (Noisy-le-Grand) 42:111–118

    CAS  Google Scholar 

  29. Li M, Hener P, Zhang Z, Kato S, Metzger D, Chambon P (2006) Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. Proc Natl Acad Sci USA 103:11736–11741

    Article  PubMed  CAS  Google Scholar 

  30. Momose A, Kudo S, Sato M, Saito H, Nagai K, Katabira Y, Funyu T (2004) Calcium ions are abnormally distributed in the skin of haemodialysis patients with uraemic pruritus. Nephrol Dial Transplant 19:2061–2066

    Article  PubMed  CAS  Google Scholar 

  31. Manenti L, Tansinda P, Vaglio A (2009) Uraemic pruritus: clinical characteristics, pathophysiology and treatment. Drugs 69:251–263

    Article  PubMed  CAS  Google Scholar 

  32. Reiter N, El-Shabrawi L, Leinweber B, Berghold A, Aberer E (2011) Calcinosis cutis Part II. Treatment options. J Am Acad Dermatol 65:15–22

    Article  PubMed  Google Scholar 

  33. Reiter N, El-Shabrawi L, Leinweber B, Berghold A, Aberer E (2011) Calcinosis cutis Part I. Diagnostic pathway. J Am Acad Dermatol 65:1–12

    Article  PubMed  CAS  Google Scholar 

  34. Imokawa G (2009) A possible mechanism underlying the ceramide deficiency in atopic dermatitis: expression of a deacylase enzyme that cleaves the N-acyl linkage of sphingomyelin and glucosylceramide. J Dermatol Sci 55:1–9

    Article  PubMed  CAS  Google Scholar 

  35. Jensen JM, Folster-Holst R, Baranowsky A, Schunck M, Winoto-Morbach S, Neumann C, Schutze S, Proksch E (2004) Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J Invest Dermatol 122:1423–1431

    Article  PubMed  CAS  Google Scholar 

  36. Sudbeck BD, Pilcher BK, Pentland AP, Parks WC (1997) Modulation of intracellular calcium levels inhibits secretion of collagenase 1 by migrating keratinocytes. Mol Biol Cell 8:811–824

    PubMed  CAS  Google Scholar 

  37. Glaser R, Meyer-Hoffert U, Harder J, Cordes J, Wittersheim M, Kobliakova J, Folster-Holst R, Proksch E, Schroder JM, Schwarz T (2009) The antimicrobial protein psoriasin (S100A7) is upregulated in atopic dermatitis and after experimental skin barrier disruption. J Invest Dermatol 129:641–649

    Article  PubMed  Google Scholar 

  38. Morizane S, Yamasaki K, Kabigting FD, Gallo RL (2010) Kallikrein expression and cathelicidin processing are independently controlled in keratinocytes by calcium, vitamin D(3), and retinoic acid. J Invest Dermatol 130:1297–1306

    Article  PubMed  CAS  Google Scholar 

  39. Yamasaki K, Kanada K, Macleod DT, Borkowski AW, Morizane S, Nakatsuji T, Cogen AL, Gallo RL (2011) TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol 131:688–697

    Article  PubMed  CAS  Google Scholar 

  40. Calugaru SV, Swanson R, Olson ST (2001) The pH dependence of serpin-proteinase complex dissociation reveals a mechanism of complex stabilization involving inactive and active conformational states of the proteinase which are perturbable by calcium. J Biol Chem 276:32446–32455

    Article  PubMed  CAS  Google Scholar 

  41. Bissett DL, McBride JF, Patrick LF (1987) Role of protein and calcium in stratum corneum cell cohesion. Arch Dermatol Res 279:184–189

    Article  PubMed  CAS  Google Scholar 

  42. Eissa A, Amodeo V, Smith CR, Diamandis EP (2011) Kallikrein-related peptidase-8 (KLK8) is an active serine protease in human epidermis and sweat and is involved in a skin barrier proteolytic cascade. J Biol Chem 286:687–706

    Article  PubMed  CAS  Google Scholar 

  43. Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407:923–926

    Article  PubMed  CAS  Google Scholar 

  44. Twining SS (1994) Regulation of proteolytic activity in tissues. Crit Rev Biochem Mol Biol 29:315–383

    Article  PubMed  CAS  Google Scholar 

  45. Brini M, Carafoli E (2000) Calcium signalling: a historical account, recent developments and future perspectives. Cell Mol Life Sci 57:354–370

    Article  PubMed  CAS  Google Scholar 

  46. Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Looking forward to seeing calcium. Nat Rev Mol Cell Biol 4:579–586

    Article  PubMed  CAS  Google Scholar 

  47. Hennings H, Holbrook KA, Yuspa SH (1983) Factors influencing calcium-induced terminal differentiation in cultured mouse epidermal cells. J Cell Physiol 116:265–281

    Article  PubMed  CAS  Google Scholar 

  48. Bikle DD, Ratnam A, Mauro T, Harris J, Pillai S (1996) Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor. J Clin Invest 97:1085–1093

    Article  PubMed  CAS  Google Scholar 

  49. Li L, Tucker RW, Hennings H, Yuspa SH (1995) Chelation of intracellular Ca2+ inhibits murine keratinocyte differentiation in vitro. J Cell Physiol 163:105–114

    Article  PubMed  CAS  Google Scholar 

  50. Grundin TG, Roomans GM, Forslind B, Lindberg M, Werner Y (1985) X-ray microanalysis of psoriatic skin. J Invest Dermatol 85:378–380

    Article  PubMed  CAS  Google Scholar 

  51. Celli A, Mackenzie DS, Crumrine DS, Tu CL, Hupe M, Bikle DD, Elias PM, Mauro TM (2011) Endoplasmic reticulum Ca(2+) depletion activates XBP1 and controls terminal differentiation in keratinocytes and epidermis. Br J Dermatol 164(1):16–25

    Article  PubMed  CAS  Google Scholar 

  52. Celli A, Sanchez S, Behne M, Hazlett T, Gratton E, Mauro T (2010) The epidermal Ca(2+) gradient: measurement using the phasor representation of fluorescent lifetime imaging. Biophys J 98:911–921

    Article  PubMed  CAS  Google Scholar 

  53. Reichrath J, Kamradt J, Zhu XH, Kong XF, Tilgen W, Holick MF (1999) Analysis of 1,25-dihydroxyvitamin D(3) receptors (VDR) in basal cell carcinomas. Am J Pathol 155:583–589

    Article  PubMed  CAS  Google Scholar 

  54. Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ (2006) Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126:789–799

    Article  PubMed  CAS  Google Scholar 

  55. Oda Y, Uchida Y, Moradian S, Crumrine D, Elias PM, Bikle DD (2009) Vitamin D receptor and coactivators SRC2 and 3 regulate epidermis-specific sphingolipid production and permeability barrier formation. J Invest Dermatol 129:1367–1378

    Article  PubMed  CAS  Google Scholar 

  56. Oda Y, Sihlbom C, Chalkley RJ, Huang L, Rachez C, Chang CP, Burlingame AL, Freedman LP, Bikle DD (2003) Two distinct coactivators, DRIP/mediator and SRC/p160, are differentially involved in vitamin D receptor transactivation during keratinocyte differentiation. Mol Endocrinol 17:2329–2339

    Article  PubMed  CAS  Google Scholar 

  57. Bikle DD (2004) Vitamin D and skin cancer. J Nutr 134:3472S–3478S

    PubMed  CAS  Google Scholar 

  58. Tu CL, Chang W, Xie Z, Bikle DD (2008) Inactivation of the calcium sensing receptor inhibits E-cadherin-mediated cell-cell adhesion and calcium-induced differentiation in human epidermal keratinocytes. J Biol Chem 283:3519–3528

    Article  PubMed  CAS  Google Scholar 

  59. Tu CL, Chang W, Bikle DD (2007) The role of the calcium sensing receptor in regulating intracellular calcium handling in human epidermal keratinocytes. J Invest Dermatol 127:1074–1083

    Article  PubMed  CAS  Google Scholar 

  60. Hailey H, Hailey H (1939) Familial benign chronic pemphigus. Arch Dermatol Syphilol 39:679–685

    Article  Google Scholar 

  61. Harada M, Hashimoto K, Fujiwara K (1994) Immunohistochemical distribution of CD44 and desmoplakin I & II in Hailey-Hailey’s disease and Darier’s disease. J Dermatol 21:389–393

    PubMed  CAS  Google Scholar 

  62. Hashimoto K, Fujiwara K, Harada M, Setoyama M, Eto H (1995) Junctional proteins of keratinocytes in Grover’s disease. Hailey-Hailey’s disease and Darier’s disease. J Dermatol 22:159–170

    PubMed  CAS  Google Scholar 

  63. Metze D, Hamm H, Schorat A, Luger T (1996) Involvement of the adherens junction-actin filament system in acantholytic dyskeratosis of Hailey-Hailey disease. A histological, ultrastructural, and histochemical study of lesional and non-lesional skin. J Cutan Pathol 23:211–222

    Article  PubMed  CAS  Google Scholar 

  64. Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100:209–219

    Article  PubMed  CAS  Google Scholar 

  65. Inohara S, Tatsumi Y, Tanaka Y, Sagami S (1990) Immunohistochemical localization of desmosomal and cytoskeletal proteins in the epidermis of healthy individuals and patients with Hailey-Hailey’s disease. Acta Derm Venereol 70:239–241

    PubMed  CAS  Google Scholar 

  66. Aronchik I, Behne MJ, Leypoldt L, Crumrine D, Epstein E, Ikeda S, Mizoguchi M, Bench G, Pozzan T, Mauro T (2003) Actin reorganization is abnormal and cellular ATP is decreased in Hailey-Hailey keratinocytes. J Invest Dermatol 121:681–687

    Article  PubMed  CAS  Google Scholar 

  67. Sudbrak R, Brown J, Dobson-Stone C, Carter S, Ramser J, White J, Healy E, Dissanayake M, Larregue M, Perrussel M, Lehrach H, Munro CS, Strachan T, Burge S, Hovnanian A, Monaco AP (2000) Hailey-Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca(2+) pump. Hum Mol Genet 9:1131–1140

    Article  PubMed  CAS  Google Scholar 

  68. Behne MJ, Tu CL, Aronchik I, Epstein E, Bench G, Bikle DD, Pozzan T, Mauro TM (2003) Human keratinocyte ATP2C1 localizes to the Golgi and controls Golgi Ca2+ stores. J Invest Dermatol 121:688–694

    Article  PubMed  CAS  Google Scholar 

  69. Antebi A, Fink GR (1992) The yeast Ca(2+)-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol Biol Cell 3:633–654

    PubMed  CAS  Google Scholar 

  70. Van Baelen K, Vanoevelen J, Missiaen L, Raeymaekers L, Wuytack F (2001) The Golgi PMR1 P-type ATPase of Caenorhabditis elegans. Identification of the gene and demonstration of calcium and manganese transport. J Biol Chem 276:10683–10691

    Article  PubMed  Google Scholar 

  71. Pinton P, Pozzan T, Rizzuto R (1998) The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 17:5298–5308

    Article  PubMed  CAS  Google Scholar 

  72. Lavrijsen AP, Oestmann E, Hermans J, Bodde HE, Vermeer BJ, Ponec M (1993) Barrier function parameters in various keratinization disorders: transepidermal water loss and vascular response to hexyl nicotinate. Br J Dermatol 129:547–553

    Article  PubMed  CAS  Google Scholar 

  73. Foggia L, Hovnanian A (2004) Calcium pump disorders of the skin. Am J Med Genet C Semin Med Genet 131C:20–31

    Article  PubMed  Google Scholar 

  74. Sakuntabhai A, Ruiz-Perez V, Carter S, Jacobsen N, Burge S, Monk S, Smith M, Munro CS, O’Donovan M, Craddock N, Kucherlapati R, Rees JL, Owen M, Lathrop GM, Monaco AP, Strachan T, Hovnanian A (1999) Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 21:271–277

    Article  PubMed  CAS  Google Scholar 

  75. Verboomen H, Wuytack F, De Smedt H, Himpens B, Casteels R (1992) Functional difference between SERCA2a and SERCA2b Ca2+ pumps and their modulation by phospholamban. Biochem J 286(Pt 2):591–595

    PubMed  CAS  Google Scholar 

  76. Cialfi S, Oliviero C, Ceccarelli S, Marchese C, Barbieri L, Biolcati G, Uccelletti D, Palleschi C, Barboni L, De Bernardo C, Grammatico P, Magrelli A, Salvatore M, Taruscio D, Frati L, Gulino A, Screpanti I, Talora C (2010) Complex multipathways alterations and oxidative stress are associated with Hailey-Hailey disease. Br J Dermatol 162:518–526

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin J. Behne MD or Jens-Michael Jensen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Behne, M.J., Jensen, JM. (2012). Calcium in Epidermis. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_43

Download citation

Publish with us

Policies and ethics