Skip to main content

Calcium Signaling in Renal Tubular Cells

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

The kidney handles calcium by filtration and reabsorption. About 60% of the plasma calcium is filterable, and 99% is reabsorbed in the tubule. In the proximal tubule, the reabsorption is passive and paracellular, but in the distal tubule is active and transcellular. Thus, renal tubular cells are exposed to very high concentrations of calcium in both, the extracellular and the intracellular compartments. Extracellular calcium signaling is transmitted by the calcium sensing receptor, located both in the luminal and basolateral sides of tubular cells. This receptor is able to control levels of extracellular calcium and acts in consequence to maintain calcium homeostasis. Furthermore, renal tubular cells possess several calcium channels that regulate some of the cell functions. Among those, voltage gated calcium channels, transient receptor potential channels and N-methyl-D-aspartate receptor channels have been reported to control several functions. Those functions include survival, apoptosis, differentiation, epithelial-mesenchymal transition, and active vitamin D and renin synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman PA, Gesek FA (1995) Cellular calcium transport in renal epithelia: measurement, mechanisms, and regulation. Physiol Rev 75:429–471

    PubMed  CAS  Google Scholar 

  2. Hoenderop JG, Willems PH, Bindels RJ (2000) Toward a comprehensive molecular model of active calcium reabsorption. Am J Physiol Renal Physiol 278:F352–F360

    PubMed  CAS  Google Scholar 

  3. Barry EL, Gesek FA, Yu AS, Lytton J, Friedman PA (1998) Distinct calcium channel isoforms mediate parathyroid hormone and chlorothiazide-stimulated calcium entry in transporting epithelial cells. J Membr Biol 161:55–64

    Article  PubMed  CAS  Google Scholar 

  4. Cantiello HF (2004) Regulation of calcium signaling by polycystin-2. Am J Physiol Renal Physiol 286:F1012–F1029

    Article  PubMed  CAS  Google Scholar 

  5. Leung FP, Yung LM, Yao X, Laher I, Huang Y (2008) Store-operated calcium entry in vascular smooth muscle. Br J Pharmacol 153:846–857

    Article  PubMed  CAS  Google Scholar 

  6. Andreasen D, Jensen BL, Hansen PB, Kwon TH, Nielsen S, Skott O (2000) The alpha(1G)-subunit of a voltage-dependent Ca(2+) channel is localized in rat distal nephron and collecting duct. Am J Physiol Renal Physiol 279:F997–F1005

    PubMed  CAS  Google Scholar 

  7. Tykocki NR, Watts SW (2010) The interdependence of endothelin-1 and calcium: a review. Clin Sci (Lond) 119:361–372

    Article  CAS  Google Scholar 

  8. Lynch DR, Guttmann RP (2001) NMDA receptor pharmacology: perspectives from molecular biology. Curr Drug Targets 2:215–231

    Article  PubMed  CAS  Google Scholar 

  9. Peng JB, Hediger MA (2002) A family of calcium-permeable channels in the kidney: distinct roles in renal calcium handling. Curr Opin Nephrol Hypertens 11:555–561

    Article  PubMed  Google Scholar 

  10. Giamarchi A, Padilla F, Coste B, Raoux M, Crest M, Honore E, Delmas P (2006) The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep 7:787–793

    Article  PubMed  CAS  Google Scholar 

  11. Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13:2384–2398

    Article  PubMed  CAS  Google Scholar 

  12. Fu X, Wang Y, Schetle N, Gao H, Putz M, von Gersdorff G, Walz G, Kramer-Zucker AG (2008) The subcellular localization of TRPP2 modulates its function. J Am Soc Nephrol 19:1342–1351

    Article  PubMed  CAS  Google Scholar 

  13. Minor DL Jr, Findeisen F (2010) Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 4:459–474

    Google Scholar 

  14. Zhao PL, Wang XT, Zhang XM, Cebotaru V, Cebotaru L, Guo G, Morales M, Guggino SE (2002) Tubular and cellular localization of the cardiac L-type calcium channel in rat kidney. Kidney Int 61:1393–1406

    Article  PubMed  CAS  Google Scholar 

  15. Tanaka T, Nangaku M, Miyata T, Inagi R, Ohse T, Ingelfinger JR, Fujita T (2004) Blockade of calcium influx through L-type calcium channels attenuates mitochondrial injury and apoptosis in hypoxic renal tubular cells. J Am Soc Nephrol 15:2320–2333

    Article  PubMed  CAS  Google Scholar 

  16. Wu D, Chen X, Ding R, Qiao X, Shi S, Xie Y, Hong Q, Feng Z (2008) Ischemia/reperfusion induce renal tubule apoptosis by inositol 1,4,5-trisphosphate receptor and L-type Ca2+ channel opening. Am J Nephrol 28:487–499

    Article  PubMed  CAS  Google Scholar 

  17. Brunette MG, Leclerc M, Couchourel D, Mailloux J, Bourgeois Y (2004) Characterization of three types of calcium channel in the luminal membrane of the distal nephron. Can J Physiol Pharmacol 82:30–37

    Article  PubMed  CAS  Google Scholar 

  18. Hayashi K, Wakino S, Sugano N, Ozawa Y, Homma K, Saruta T (2007) Ca2+ channel subtypes and pharmacology in the kidney. Circ Res 100:342–353

    Article  PubMed  CAS  Google Scholar 

  19. Sugano N, Wakino S, Kanda T, Tatematsu S, Homma K, Yoshioka K, Hasegawa K, Hara Y, Suetsugu Y, Yoshizawa T, Hara Y, Utsunomiya Y, Tokudome G, Hosoya T, Saruta T, Hayashi K (2008) T-type calcium channel blockade as a therapeutic strategy against renal injury in rats with subtotal nephrectomy. Kidney Int 73:826–834

    Article  PubMed  CAS  Google Scholar 

  20. Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472

    PubMed  CAS  Google Scholar 

  21. Geng L, Segal Y, Peissel B, Deng N, Pei Y, Carone F, Rennke HG, Glucksmann-Kuis AM, Schneider MC, Ericsson M, Reeders ST, Zhou J (1996) Identification and localization of polycystin, the PKD1 gene product. J Clin Invest 98:2674–2682

    Article  PubMed  CAS  Google Scholar 

  22. Newby LJ, Streets AJ, Zhao Y, Harris PC, Ward CJ, Ong AC (2002) Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J Biol Chem 277:20763–20773

    Article  PubMed  CAS  Google Scholar 

  23. Foggensteiner L, Bevan AP, Thomas R, Coleman N, Boulter C, Bradley J, Ibraghimov-Beskrovnaya O, Klinger K, Sandford R (2000) Cellular and subcellular distribution of polycystin-2, the protein product of the PKD2 gene. J Am Soc Nephrol 11:814–827

    PubMed  CAS  Google Scholar 

  24. Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Article  PubMed  CAS  Google Scholar 

  25. Markowitz GS, Cai Y, Li L, Wu G, Ward LC, Somlo S, D’Agati VD (1999) Polycystin-2 expression is developmentally regulated. Am J Physiol 277:F17–F25

    PubMed  CAS  Google Scholar 

  26. Nickel C, Benzing T, Sellin L, Gerke P, Karihaloo A, Liu ZX, Cantley LG, Walz G (2002) The polycystin-1 C-terminal fragment triggers branching morphogenesis and migration of tubular kidney epithelial cells. J Clin Invest 109:481–489

    PubMed  CAS  Google Scholar 

  27. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408:990–994

    Article  PubMed  CAS  Google Scholar 

  28. Boletta A, Qian F, Onuchic LF, Bhunia AK, Phakdeekitcharoen B, Hanaoka K, Guggino W, Monaco L, Germino GG (2000) Polycystin-1, the gene product of PKD1, induces resistance to apoptosis and spontaneous tubulogenesis in MDCK cells. Mol Cell 6:1267–1273

    Article  PubMed  CAS  Google Scholar 

  29. Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (1998) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93:177–188

    Article  PubMed  CAS  Google Scholar 

  30. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231

    Article  PubMed  CAS  Google Scholar 

  31. Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, Hediger MA (1999) Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 274:22739–22746

    Article  PubMed  CAS  Google Scholar 

  32. van Abel M, Hoenderop JG, Bindels RJ (2005) The epithelial calcium channels TRPV5 and TRPV6: regulation and implications for disease. Naunyn Schmiedebergs Arch Pharmacol 371:295–306

    Article  PubMed  CAS  Google Scholar 

  33. van Abel M, Hoenderop JG, Dardenne O, St Arnaud R, Van Os CH, Van Leeuwen HJ, Bindels RJ (2002) 1,25-dihydroxyvitamin D(3)-independent stimulatory effect of estrogen on the expression of ECaC1 in the kidney. J Am Soc Nephrol 13:2102–2109

    Article  PubMed  Google Scholar 

  34. van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ (2003) Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol Gastrointest Liver Physiol 285:G78–G85

    PubMed  Google Scholar 

  35. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    PubMed  CAS  Google Scholar 

  36. Fudge NJ, Kovacs CS (2004) Physiological studies in heterozygous calcium sensing receptor (CaSR) gene-ablated mice confirm that the CaSR regulates calcitonin release in vivo. BMC Physiol 4:5

    Article  PubMed  Google Scholar 

  37. Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaitre X, Paillard M, Planelles G, Dechaux M, Miller RT, Antignac C (2002) Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol 13:2259–2266

    Article  PubMed  CAS  Google Scholar 

  38. Garrett JE, Tamir H, Kifor O, Simin RT, Rogers KV, Mithal A, Gagel RF, Brown EM (1995) Calcitonin-secreting cells of the thyroid express an extracellular calcium receptor gene. Endocrinology 136:5202–5211

    Article  PubMed  CAS  Google Scholar 

  39. Yamaguchi T, Chattopadhyay N, Kifor O, Brown EM (1998) Extracellular calcium (Ca2+(o))-sensing receptor in a murine bone marrow-derived stromal cell line (ST2): potential mediator of the actions of Ca2+(o) on the function of ST2 cells. Endocrinology 139:3561–3568

    Article  PubMed  CAS  Google Scholar 

  40. Riccardi D, Hall AE, Chattopadhyay N, Xu JZ, Brown EM, Hebert SC (1998) Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am J Physiol 274:F611–F622

    PubMed  CAS  Google Scholar 

  41. Riccardi D, Lee WS, Lee K, Segre GV, Brown EM, Hebert SC (1996) Localization of the extracellular Ca(2+)-sensing receptor and PTH/PTHrP receptor in rat kidney. Am J Physiol 271:F951–F956

    PubMed  CAS  Google Scholar 

  42. Egbuna O, Quinn S, Kantham L, Butters R, Pang J, Pollak M, Goltzman D, Brown E (2009) The full-length calcium-sensing receptor dampens the calcemic response to 1alpha,25(OH)2 vitamin D3 in vivo independently of parathyroid hormone. Am J Physiol Renal Physiol 297:F720–F728

    Article  PubMed  CAS  Google Scholar 

  43. Maiti A, Beckman MJ (2007) Extracellular calcium is a direct effecter of VDR levels in proximal tubule epithelial cells that counter-balances effects of PTH on renal Vitamin D metabolism. J Steroid Biochem Mol Biol 103:504–508

    Article  PubMed  CAS  Google Scholar 

  44. Riccardi D, Brown EM (2010) Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol 298:F485–F499

    Article  PubMed  CAS  Google Scholar 

  45. Sands JM, Naruse M, Baum M, Jo I, Hebert SC, Brown EM, Harris HW (1997) Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest 99:1399–1405

    Article  PubMed  CAS  Google Scholar 

  46. Renkema KY, Velic A, Dijkman HB, Verkaart S, van der Kemp AW, Nowik M, Timmermans K, Doucet A, Wagner CA, Bindels RJ, Hoenderop JG (2009) The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol 20:1705–1713

    Article  PubMed  CAS  Google Scholar 

  47. Maillard MP, Tedjani A, Perregaux C, Burnier M (2009) Calcium-sensing receptors modulate renin release in vivo and in vitro in the rat. J Hypertens 27:1980–1987

    Article  PubMed  CAS  Google Scholar 

  48. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    PubMed  CAS  Google Scholar 

  49. Cull-Candy SG, Brickley SG, Misra C, Feldmeyer D, Momiyama A, Farrant M (1998) NMDA receptor diversity in the cerebellum: identification of subunits contributing to functional receptors. Neuropharmacology 37:1369–1380

    Article  PubMed  CAS  Google Scholar 

  50. Magnusson KR (1998) The aging of the NMDA receptor complex. Front Biosci 3:e70–e80

    PubMed  CAS  Google Scholar 

  51. Guttmann RP, Sokol S, Baker DL, Simpkins KL, Dong Y, Lynch DR (2002) Proteolysis of the N-methyl-d-aspartate receptor by calpain in situ. J Pharmacol Exp Ther 302:1023–1030

    Article  PubMed  CAS  Google Scholar 

  52. Bellone C, Nicoll RA (2007) Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55:779–785

    Article  PubMed  CAS  Google Scholar 

  53. Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47

    Article  PubMed  CAS  Google Scholar 

  54. Rebola N, Srikumar BN, Mulle C (2010) Activity-dependent synaptic plasticity of NMDA receptors. J Physiol 588:93–99

    Article  PubMed  CAS  Google Scholar 

  55. Luo J, Wang Y, Yasuda RP, Dunah AW, Wolfe BB (1997) The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol Pharmacol 51:79–86

    PubMed  CAS  Google Scholar 

  56. Haddad JJ (2005) N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention? Prog Neurobiol 77:252–282

    Article  PubMed  CAS  Google Scholar 

  57. Chazot PL (2004) The NMDA receptor NR2B subunit: a valid therapeutic target for multiple CNS pathologies. Curr Med Chem 11:389–396

    Article  PubMed  CAS  Google Scholar 

  58. Leung JC, Travis BR, Verlander JW, Sandhu SK, Yang SG, Zea AH, Weiner ID, Silverstein DM (2002) Expression and developmental regulation of the NMDA receptor subunits in the kidney and cardiovascular system. Am J Physiol Regul Integr Comp Physiol 283:R964–R971

    PubMed  Google Scholar 

  59. Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268:2836–2843

    PubMed  CAS  Google Scholar 

  60. Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357:70–74

    Article  PubMed  CAS  Google Scholar 

  61. Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    Article  PubMed  CAS  Google Scholar 

  62. Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA (1995) Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15:6498–6508

    PubMed  CAS  Google Scholar 

  63. Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, Rayudu PV, Cheung W, Chen HS, Lipton SA, Nakanishi N (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393:377–381

    Article  PubMed  CAS  Google Scholar 

  64. Nishi M, Hinds H, Lu HP, Kawata M, Hayashi Y (2001) Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J Neurosci 21:RC185

    PubMed  CAS  Google Scholar 

  65. Matsuda K, Fletcher M, Kamiya Y, Yuzaki M (2003) Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J Neurosci 23:10064–10073

    PubMed  CAS  Google Scholar 

  66. Perez-Otano I, Ehlers MD (2004) Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses. Neurosignals 13:175–189

    Article  PubMed  CAS  Google Scholar 

  67. Lynch DR, Guttmann RP (2002) Excitotoxicity: perspectives based on N-methyl-D-aspartate receptor subtypes. J Pharmacol Exp Ther 300:717–723

    Article  PubMed  CAS  Google Scholar 

  68. Miglio G, Dianzani C, Fallarini S, Fantozzi R, Lombardi G (2007) Stimulation of N-methyl-D-aspartate receptors modulates Jurkat T cell growth and adhesion to fibronectin. Biochem Biophys Res Commun 361:404–409

    Article  PubMed  CAS  Google Scholar 

  69. Nahm WK, Philpot BD, Adams MM, Badiavas EV, Zhou LH, Butmarc J, Bear MF, Falanga V (2004) Significance of N-methyl-D-aspartate (NMDA) receptor-mediated signaling in human keratinocytes. J Cell Physiol 200:309–317

    Article  PubMed  CAS  Google Scholar 

  70. Mentaverri R, Kamel S, Wattel A, Prouillet C, Sevenet N, Petit JP, Tordjmann T, Brazier M (2003) Regulation of bone resorption and osteoclast survival by nitric oxide: possible involvement of NMDA-receptor. J Cell Biochem 88:1145–1156

    Article  PubMed  CAS  Google Scholar 

  71. Rakic P, Komuro H (1995) The role of receptor/channel activity in neuronal cell migration. J Neurobiol 26:299–315

    Article  PubMed  CAS  Google Scholar 

  72. Shorte SL (1997) N-methyl-D-aspartate evokes rapid net depolymerization of filamentous actin in cultured rat cerebellar granule cells. J Neurophysiol 78:1135–1143

    PubMed  CAS  Google Scholar 

  73. Itzstein C, Espinosa L, Delmas PD, Chenu C (2000) Specific antagonists of NMDA receptors prevent osteoclast sealing zone formation required for bone resorption. Biochem Biophys Res Commun 268:201–209

    Article  PubMed  CAS  Google Scholar 

  74. Parisi E, Almaden Y, Ibarz M, Panizo S, Cardus A, Rodriguez M, Fernandez E, Valdivielso JM (2009) N-methyl-D-aspartate receptors are expressed in rat parathyroid gland and regulate PTH secretion. Am J Physiol Renal Physiol 296:F1291–F1296

    Article  PubMed  CAS  Google Scholar 

  75. Deng A, Valdivielso JM, Munger KA, Blantz RC, Thomson SC (2002) Vasodilatory N-methyl-D-aspartate receptors are constitutively expressed in rat kidney. J Am Soc Nephrol 13: 1381–1384

    Article  PubMed  CAS  Google Scholar 

  76. Deng A, Thomson SC (2009) Renal NMDA receptors independently stimulate proximal reabsorption and glomerular filtration. Am J Physiol Renal Physiol 296:F976–F982

    Article  PubMed  CAS  Google Scholar 

  77. Anderson M, Suh JM, Kim EY, Dryer SE (2011) Functional NMDA receptors with atypical properties are expressed in podocytes. Am J Physiol Cell Physiol 300:C22–C32

    Article  PubMed  CAS  Google Scholar 

  78. Giardino L, Armelloni S, Corbelli A, Mattinzoli D, Zennaro C, Guerrot D, Tourrel F, Ikehata M, Li M, Berra S, Carraro M, Messa P, Rastaldi MP (2009) Podocyte glutamatergic signaling contributes to the function of the glomerular filtration barrier. J Am Soc Nephrol 20:1929–1940

    Article  PubMed  CAS  Google Scholar 

  79. Sproul AD, Steele SL, Thai TL, Yu SP, Klein JD, Sands JM, Bell PD (2011) N-methyl-D-aspartate receptor subunit NR3a expression and function in principal cells of the collecting duct. Am J Physiol Renal Physiol 301(1):F44–F54. doi:10.1152/ajprenal.00666.2010

    Article  PubMed  CAS  Google Scholar 

  80. Bozic M, de Rooij J, Parisi E, Ortega MR, Fernandez E, Valdivielso JM (2011) Glutamatergic signaling maintains the epithelial phenotype of proximal tubular cells. J Am Soc Nephrol 22:1099–1111

    Article  PubMed  CAS  Google Scholar 

  81. Parisi E, Bozic M, Ibarz M, Panizo S, Valcheva P, Coll B, Fernandez E, Valdivielso JM (2010) Sustained activation of renal N-methyl-D-aspartate receptors decreases vitamin D synthesis: a possible role for glutamate on the onset of secondary HPT. Am J Physiol Endocrinol Metab 299:E825–E831

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Valdivielso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bozic, M., Valdivielso, J.M. (2012). Calcium Signaling in Renal Tubular Cells. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_42

Download citation

Publish with us

Policies and ethics