Skip to main content

Regulation of Voltage-Gated Calcium Channels by Synaptic Proteins

  • Chapter
  • First Online:
Book cover Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Calcium entry through neuronal voltage-gated calcium channels into presynaptic nerve terminal is a key step in synaptic exocytosis. In order to receive the calcium signal and trigger fast, efficient and spatially delimited neurotransmitter release, the vesicle-docking/release machinery must be located near the calcium source. In many cases, this close localization is achieved by a direct interaction of several members of the vesicle release machinery with the calcium channels. In turn, the binding of synaptic proteins to presynaptic calcium channels modulates channel activity to provide fine control over calcium entry, and thus modulates synaptic strength. In this chapter we summarize our present knowledge of the molecular mechanisms by which synaptic proteins regulate presynaptic calcium channel activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards RH (2007) The neurotransmitter cycle and quantal size. Neuron 55:835–858

    Article  PubMed  CAS  Google Scholar 

  2. Schneggenburger R, Neher E (2005) Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 15:266–274

    Article  PubMed  CAS  Google Scholar 

  3. Llinas R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256:677–679

    Article  PubMed  CAS  Google Scholar 

  4. Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861–872

    Article  PubMed  CAS  Google Scholar 

  5. Weber AM, Wong FK, Tufford AR, Schlichter LC, Matveev V, Stanley EF (2010) N-type Ca2+ channels carry the largest current: implications for nanodomains and transmitter release. Nat Neurosci 13:1348–1350

    Article  PubMed  CAS  Google Scholar 

  6. Ertel EA, Campbell KP, Harpold MM et al (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535

    Article  PubMed  CAS  Google Scholar 

  7. Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 9:1099–1115

    Article  PubMed  CAS  Google Scholar 

  8. Westenbroek RE, Sakurai T, Elliott EM et al (1995) Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 15:6403–6418

    PubMed  CAS  Google Scholar 

  9. Westenbroek RE, Hoskins L, Catterall WA (1998) Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J Neurosci 18:6319–6330

    PubMed  CAS  Google Scholar 

  10. Timmermann DB, Westenbroek RE, Schousboe A, Catterall WA (2002) Distribution of high-voltage-activated calcium channels in cultured gamma-aminobutyric acidergic neurons from mouse cerebral cortex. J Neurosci Res 67:48–61

    Article  PubMed  CAS  Google Scholar 

  11. Day NC, Shaw PJ, McCormack AL et al (1996) Distribution of alpha 1A, alpha 1B and alpha 1E voltage-dependent calcium channel subunits in the human hippocampus and parahippocampal gyrus. Neuroscience 71:1013–1024

    Article  PubMed  CAS  Google Scholar 

  12. Wheeler DB, Randall A, Tsien RW (1994) Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264:107–111

    Article  PubMed  CAS  Google Scholar 

  13. Olivera BM, Miljanich GP, Ramachandran J, Adams ME (1994) Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. Annu Rev Biochem 63:823–867

    Article  PubMed  CAS  Google Scholar 

  14. Dunlap K, Luebke JI, Turner TJ (1995) Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci 18:89–98

    Article  PubMed  CAS  Google Scholar 

  15. Poncer JC, McKinney RA, Gahwiler BH, Thompson SM (1997) Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 18:463–472

    Article  PubMed  CAS  Google Scholar 

  16. Hanson JE, Smith Y (2002) Subcellular distribution of high-voltage-activated calcium channel subtypes in rat globus pallidus neurons. J Comp Neurol 442:89–98

    Article  PubMed  CAS  Google Scholar 

  17. Breustedt J, Vogt KE, Miller RJ, Nicoll RA, Schmitz D (2003) Alpha1E-containing Ca2+ channels are involved in synaptic plasticity. Proc Natl Acad Sci USA 100:12450–12455

    Article  PubMed  CAS  Google Scholar 

  18. Dietrich D, Kirschstein T, Kukley M et al (2003) Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39:483–496

    Article  PubMed  CAS  Google Scholar 

  19. Wu LG, Borst JG, Sakmann B (1998) R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc Natl Acad Sci USA 95:4720–4725

    Article  PubMed  CAS  Google Scholar 

  20. Kamp MA, Krieger A, Henry M, Hescheler J, Weiergraber M, Schneider T (2005) Presynaptic ‘Ca2.3-containing’ E-type Ca channels share dual roles during neurotransmitter release. Eur J Neurosci 21:1617–1625

    Article  PubMed  CAS  Google Scholar 

  21. Gasparini S, Kasyanov AM, Pietrobon D, Voronin LL, Cherubini E (2001) Presynaptic R-type calcium channels contribute to fast excitatory synaptic transmission in the rat hippocampus. J Neurosci 21:8715–8721

    PubMed  CAS  Google Scholar 

  22. Wu LG, Westenbroek RE, Borst JG, Catterall WA, Sakmann B (1999) Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 19:726–736

    PubMed  CAS  Google Scholar 

  23. Brenowitz SD, Regehr WG (2003) “Resistant” channels reluctantly reveal their roles. Neuron 39:391–394

    Article  PubMed  CAS  Google Scholar 

  24. Iwasaki S, Momiyama A, Uchitel OD, Takahashi T (2000) Developmental changes in calcium channel types mediating central synaptic transmission. J Neurosci 20:59–65

    PubMed  CAS  Google Scholar 

  25. Iwasaki S, Takahashi T (1998) Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J Physiol 509(Pt 2):419–423

    Article  PubMed  CAS  Google Scholar 

  26. Carabelli V, Marcantoni A, Comunanza V et al (2007) Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol 584:149–165

    Article  PubMed  CAS  Google Scholar 

  27. Ivanov AI, Calabrese RL (2000) Intracellular Ca2+ dynamics during spontaneous and evoked activity of leech heart interneurons: low-threshold Ca currents and graded synaptic transmission. J Neurosci 20:4930–4943

    PubMed  CAS  Google Scholar 

  28. Pan ZH, Hu HJ, Perring P, Andrade R (2001) T-type Ca(2+) channels mediate neurotransmitter release in retinal bipolar cells. Neuron 32:89–98

    Article  PubMed  CAS  Google Scholar 

  29. Egger V, Svoboda K, Mainen ZF (2003) Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J Neurosci 23:7551–7558

    PubMed  CAS  Google Scholar 

  30. Foehring RC, Zhang XF, Lee JC, Callaway JC (2009) Endogenous calcium buffering capacity of substantia nigral dopamine neurons. J Neurophysiol 102:2326–2333

    Article  PubMed  CAS  Google Scholar 

  31. Wadel K, Neher E, Sakaba T (2007) The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53:563–575

    Article  PubMed  CAS  Google Scholar 

  32. Sabatini BL, Regehr WG (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384:170–172

    Article  PubMed  CAS  Google Scholar 

  33. Atlas D, Wiser O, Trus M (2001) The voltage-gated Ca2+ channel is the Ca2+ sensor of fast neurotransmitter release. Cell Mol Neurobiol 21:717–731

    Article  PubMed  CAS  Google Scholar 

  34. Lerner I, Trus M, Cohen R, Yizhar O, Nussinovitch I, Atlas D (2006) Ion interaction at the pore of Lc-type Ca2+ channel is sufficient to mediate depolarization-induced exocytosis. J Neurochem 97:116–127

    Article  PubMed  CAS  Google Scholar 

  35. Marom M, Sebag A, Atlas D (2007) Cations residing at the selectivity filter of the voltage-gated Ca2  +  −channel modify fusion-pore kinetics. Channels (Austin) 1:377–386

    Google Scholar 

  36. Hagalili Y, Bachnoff N, Atlas D (2008) The voltage-gated Ca(2+) channel is the Ca(2+) sensor protein of secretion. Biochemistry 47:13822–13830

    Article  PubMed  CAS  Google Scholar 

  37. Cohen-Kutner M, Nachmanni D, Atlas D (2010) CaV2.1 (P/Q channel) interaction with synaptic proteins is essential for depolarization-evoked release. Channels (Austin) 4:266–277

    Article  CAS  Google Scholar 

  38. Atlas D (2010) Signaling role of the voltage-gated calcium channel as the molecular on/off-switch of secretion. Cell Signal 22:1597–1603

    Article  PubMed  CAS  Google Scholar 

  39. Marom M, Hagalili Y, Sebag A, Tzvier L, Atlas D (2010) Conformational changes induced in voltage-gated calcium channel Cav1.2 by BayK 8644 or FPL64176 modify the kinetics of secretion independently of Ca2+ influx. J Biol Chem 285:6996–7005

    Article  PubMed  CAS  Google Scholar 

  40. Weiss N (2010) Control of depolarization-evoked presynaptic neurotransmitter release by Cav2.1 calcium channel: old story, new insights. Channels (Austin) 4:431–433

    Article  CAS  Google Scholar 

  41. Hanson PI, Heuser JE, Jahn R (1997) Neurotransmitter release - four years of SNARE complexes. Curr Opin Neurobiol 7:310–315

    Article  PubMed  CAS  Google Scholar 

  42. Otto H, Hanson PI, Jahn R (1997) Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc Natl Acad Sci USA 94:6197–6201

    Article  PubMed  CAS  Google Scholar 

  43. Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA 95:15781–15786

    Article  PubMed  CAS  Google Scholar 

  44. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353

    Article  PubMed  CAS  Google Scholar 

  45. Cohen MW, Jones OT, Angelides KJ (1991) Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent omega-conotoxin. J Neurosci 11:1032–1039

    PubMed  CAS  Google Scholar 

  46. Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    Article  PubMed  CAS  Google Scholar 

  47. Leveque C, el Far O, Martin-Moutot N et al (1994) Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. A complex implicated in synaptic vesicle exocytosis. J Biol Chem 269:6306–6312

    PubMed  CAS  Google Scholar 

  48. Yoshida A, Oho C, Omori A, Kuwahara R, Ito T, Takahashi M (1992) HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. J Biol Chem 267:24925–24928

    PubMed  CAS  Google Scholar 

  49. Rettig J, Sheng ZH, Kim DK, Hodson CD, Snutch TP, Catterall WA (1996) Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sci USA 93:7363–7368

    Article  PubMed  CAS  Google Scholar 

  50. Sheng ZH, Rettig J, Takahashi M, Catterall WA (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13:1303–1313

    Article  PubMed  CAS  Google Scholar 

  51. Yokoyama CT, Myers SJ, Fu J, Mockus SM, Scheuer T, Catterall WA (2005) Mechanism of SNARE protein binding and regulation of Cav2 channels by phosphorylation of the synaptic protein interaction site. Mol Cell Neurosci 28:1–17

    Article  PubMed  CAS  Google Scholar 

  52. Mochida S, Sheng ZH, Baker C, Kobayashi H, Catterall WA (1996) Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron 17:781–788

    Article  PubMed  CAS  Google Scholar 

  53. Rettig J, Heinemann C, Ashery U et al (1997) Alteration of Ca2+ dependence of neurotransmitter release by disruption of Ca2+ channel/syntaxin interaction. J Neurosci 17:6647–6656

    PubMed  CAS  Google Scholar 

  54. Harkins AB, Cahill AL, Powers JF, Tischler AS, Fox AP (2004) Deletion of the synaptic protein interaction site of the N-type (CaV2.2) calcium channel inhibits secretion in mouse pheochromocytoma cells. Proc Natl Acad Sci USA 101:15219–15224

    Article  PubMed  CAS  Google Scholar 

  55. Keith RK, Poage RE, Yokoyama CT, Catterall WA, Meriney SD (2007) Bidirectional modulation of transmitter release by calcium channel/syntaxin interactions in vivo. J Neurosci 27:265–269

    Article  PubMed  CAS  Google Scholar 

  56. Bezprozvanny I, Scheller RH, Tsien RW (1995) Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378:623–626

    Article  PubMed  CAS  Google Scholar 

  57. Wiser O, Bennett MK, Atlas D (1996) Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L- and N-type Ca2+ channels. EMBO J 15:4100–4110

    PubMed  CAS  Google Scholar 

  58. Zhong H, Yokoyama CT, Scheuer T, Catterall WA (1999) Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nat Neurosci 2:939–941

    Article  PubMed  CAS  Google Scholar 

  59. Degtiar VE, Scheller RH, Tsien RW (2000) Syntaxin modulation of slow inactivation of N-type calcium channels. J Neurosci 20:4355–4367

    PubMed  CAS  Google Scholar 

  60. Stanley EF (2003) Syntaxin I modulation of presynaptic calcium channel inactivation revealed by botulinum toxin C1. Eur J Neurosci 17:1303–1305

    Article  PubMed  Google Scholar 

  61. Bergsman JB, Tsien RW (2000) Syntaxin modulation of calcium channels in cortical synaptosomes as revealed by botulinum toxin C1. J Neurosci 20:4368–4378

    PubMed  CAS  Google Scholar 

  62. Bezprozvanny I, Zhong P, Scheller RH, Tsien RW (2000) Molecular determinants of the functional interaction between syntaxin and N-type Ca2+ channel gating. Proc Natl Acad Sci USA 97:13943–13948

    Article  PubMed  CAS  Google Scholar 

  63. Jarvis SE, Barr W, Feng ZP, Hamid J, Zamponi GW (2002) Molecular determinants of syntaxin 1 modulation of N-type calcium channels. J Biol Chem 277:44399–44407

    Article  PubMed  CAS  Google Scholar 

  64. Trus M, Wiser O, Goodnough MC, Atlas D (2001) The transmembrane domain of syntaxin 1A negatively regulates voltage-sensitive Ca(2+) channels. Neuroscience 104:599–607

    Article  PubMed  CAS  Google Scholar 

  65. Davies JN, Jarvis SE, Zamponi GW (2011) Bipartite syntaxin 1A interactions mediate Ca(V)2.2 calcium channel regulation. Biochem Biophys Res Commun 411:562–568

    Article  PubMed  CAS  Google Scholar 

  66. Dulubova I, Sugita S, Hill S et al (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18:4372–4382

    Article  PubMed  CAS  Google Scholar 

  67. Brunger AT (2001) Structure of proteins involved in synaptic vesicle fusion in neurons. Annu Rev Biophys Biomol Struct 30:157–171

    Article  PubMed  CAS  Google Scholar 

  68. Fiebig KM, Rice LM, Pollock E, Brunger AT (1999) Folding intermediates of SNARE complex assembly. Nat Struct Biol 6:117–123

    Article  PubMed  CAS  Google Scholar 

  69. Richmond JE, Weimer RM, Jorgensen EM (2001) An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412:338–341

    Article  PubMed  CAS  Google Scholar 

  70. Serra SA, Cuenca-Leon E, Llobet A et al (2010) A mutation in the first intracellular loop of CACNA1A prevents P/Q channel modulation by SNARE proteins and lowers exocytosis. Proc Natl Acad Sci USA 107:1672–1677

    Article  PubMed  CAS  Google Scholar 

  71. Wiser O, Cohen R, Atlas D (2002) Ionic dependence of Ca2+ channel modulation by syntaxin 1A. Proc Natl Acad Sci USA 99:3968–3973

    Article  PubMed  CAS  Google Scholar 

  72. Cohen R, Atlas D (2004) R-type voltage-gated Ca(2+) channel interacts with synaptic proteins and recruits synaptotagmin to the plasma membrane of Xenopus oocytes. Neuroscience 128:831–841

    Article  PubMed  CAS  Google Scholar 

  73. Condliffe SB, Corradini I, Pozzi D, Verderio C, Matteoli M (2010) Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons. J Biol Chem 285:24968–24976

    Article  PubMed  CAS  Google Scholar 

  74. Condliffe SB, Matteoli M (2011) Inactivation kinetics of voltage-gated calcium channels in glutamatergic neurons are influenced by SNAP-25. Channels (Austin) 5:304–307

    Article  CAS  Google Scholar 

  75. Jarvis SE, Zamponi GW (2001) Distinct molecular determinants govern syntaxin 1A-mediated inactivation and G-protein inhibition of N-type calcium channels. J Neurosci 21:2939–2948

    PubMed  CAS  Google Scholar 

  76. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  CAS  Google Scholar 

  77. Corradini I, Verderio C, Sala M, Wilson MC, Matteoli M (2009) SNAP-25 in neuropsychiatric disorders. Ann N Y Acad Sci 1152:93–99

    Article  PubMed  CAS  Google Scholar 

  78. Tucker WC, Chapman ER (2002) Role of synaptotagmin in Ca2  +  −triggered exocytosis. Biochem J 366:1–13

    PubMed  CAS  Google Scholar 

  79. Koh TW, Bellen HJ (2003) Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends Neurosci 26:413–422

    Article  PubMed  CAS  Google Scholar 

  80. DeBello WM, Betz H, Augustine GJ (1993) Synaptotagmin and neurotransmitter release. Cell 74:947–950

    Article  PubMed  CAS  Google Scholar 

  81. Nishiki TI, Augustine GJ (2001) Calcium-dependent neurotransmitter release: synaptotagmin to the rescue. J Comp Neurol 436:1–3

    Article  PubMed  CAS  Google Scholar 

  82. Augustine GJ (2001) How does calcium trigger neurotransmitter release? Curr Opin Neurobiol 11:320–326

    Article  PubMed  CAS  Google Scholar 

  83. Fernandez-Chacon R, Konigstorfer A, Gerber SH et al (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49

    Article  PubMed  CAS  Google Scholar 

  84. Geppert M, Goda Y, Hammer RE et al (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727

    Article  PubMed  CAS  Google Scholar 

  85. Xu J, Mashimo T, Sudhof TC (2007) Synaptotagmin-1, -2, and −9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54:567–581

    Article  PubMed  CAS  Google Scholar 

  86. Sheng ZH, Yokoyama CT, Catterall WA (1997) Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. Proc Natl Acad Sci USA 94:5405–5410

    Article  PubMed  CAS  Google Scholar 

  87. Wiser O, Tobi D, Trus M, Atlas D (1997) Synaptotagmin restores kinetic properties of a syntaxin-associated N-type voltage sensitive calcium channel. FEBS Lett 404:203–207

    Article  PubMed  CAS  Google Scholar 

  88. Atlas D (2001) Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J Neurochem 77:972–985

    Article  PubMed  CAS  Google Scholar 

  89. Sheng ZH, Rettig J, Cook T, Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379:451–454

    Article  PubMed  CAS  Google Scholar 

  90. Vendel AC, Terry MD, Striegel AR et al (2006) Alternative splicing of the voltage-gated Ca2+ channel beta4 subunit creates a uniquely folded N-terminal protein binding domain with cell-specific expression in the cerebellar cortex. J Neurosci 26:2635–2644

    Article  PubMed  CAS  Google Scholar 

  91. Weiss N (2006) The calcium channel beta4a subunit: a scaffolding protein between voltage-gated calcium channel and presynaptic vesicle-release machinery? J Neurosci 26:6117–6118

    Article  PubMed  CAS  Google Scholar 

  92. Chamberlain LH, Burgoyne RD (2000) Cysteine-string protein: the chaperone at the synapse. J Neurochem 74:1781–1789

    Article  PubMed  CAS  Google Scholar 

  93. Mastrogiacomo A, Parsons SM, Zampighi GA, Jenden DJ, Umbach JA, Gundersen CB (1994) Cysteine string proteins: a potential link between synaptic vesicles and presynaptic Ca2+ channels. Science 263:981–982

    Article  PubMed  CAS  Google Scholar 

  94. Leveque C, Pupier S, Marqueze B et al (1998) Interaction of cysteine string proteins with the alpha1A subunit of the P/Q-type calcium channel. J Biol Chem 273:13488–13492

    Article  PubMed  CAS  Google Scholar 

  95. Seagar M, Leveque C, Charvin N et al (1999) Interactions between proteins implicated in exocytosis and voltage-gated calcium channels. Philos Trans R Soc Lond B Biol Sci 354:289–297

    Article  PubMed  CAS  Google Scholar 

  96. Magga JM, Jarvis SE, Arnot MI, Zamponi GW, Braun JE (2000) Cysteine string protein regulates G protein modulation of N-type calcium channels. Neuron 28:195–204

    Article  PubMed  CAS  Google Scholar 

  97. Chen S, Zheng X, Schulze KL, Morris T, Bellen H, Stanley EF (2002) Enhancement of presynaptic calcium current by cysteine string protein. J Physiol 538:383–389

    Article  PubMed  CAS  Google Scholar 

  98. Nie Z, Ranjan R, Wenniger JJ, Hong SN, Bronk P, Zinsmaier KE (1999) Overexpression of cysteine-string proteins in Drosophila reveals interactions with syntaxin. J Neurosci 19:10270–10279

    PubMed  CAS  Google Scholar 

  99. Wu MN, Fergestad T, Lloyd TE, He Y, Broadie K, Bellen HJ (1999) Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron 23:593–605

    Article  PubMed  CAS  Google Scholar 

  100. Toonen RF, Verhage M (2007) Munc18-1 in secretion: lonely Munc joins SNARE team and takes control. Trends Neurosci 30:564–572

    Article  PubMed  CAS  Google Scholar 

  101. Gulyas-Kovacs A, de Wit H, Milosevic I et al (2007) Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming. J Neurosci 27:8676–8686

    Article  PubMed  CAS  Google Scholar 

  102. Verhage M, Maia AS, Plomp JJ et al (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–869

    Article  PubMed  CAS  Google Scholar 

  103. Chan AW, Khanna R, Li Q, Stanley EF (2007) Munc18: a presynaptic transmitter release site N type (CaV2.2) calcium channel interacting protein. Channels (Austin) 1:11–20

    Google Scholar 

  104. Gladycheva SE, Ho CS, Lee YY, Stuenkel EL (2004) Regulation of syntaxin1A-munc18 complex for SNARE pairing in HEK293 cells. J Physiol 558:857–871

    Article  PubMed  CAS  Google Scholar 

  105. Wang Y, Sugita S, Sudhof TC (2000) The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins. J Biol Chem 275:20033–20044

    Article  PubMed  CAS  Google Scholar 

  106. Betz A, Thakur P, Junge HJ et al (2001) Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30:183–196

    Article  PubMed  CAS  Google Scholar 

  107. Ohtsuka T, Takao-Rikitsu E, Inoue E et al (2002) Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1. J Cell Biol 158:577–590

    Article  PubMed  CAS  Google Scholar 

  108. Schoch S, Castillo PE, Jo T et al (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415:321–326

    Article  PubMed  CAS  Google Scholar 

  109. Coppola T, Magnin-Luthi S, Perret-Menoud V, Gattesco S, Schiavo G, Regazzi R (2001) Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and synaptotagmin. J Biol Chem 276:32756–32762

    Article  PubMed  CAS  Google Scholar 

  110. Kaeser PS, Deng L, Wang Y et al (2011) RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144:282–295

    Article  PubMed  CAS  Google Scholar 

  111. Castillo PE, Schoch S, Schmitz F, Sudhof TC, Malenka RC (2002) RIM1alpha is required for presynaptic long-term potentiation. Nature 415:327–330

    Article  PubMed  CAS  Google Scholar 

  112. Blundell J, Kaeser PS, Sudhof TC, Powell CM (2010) RIM1alpha and interacting proteins involved in presynaptic plasticity mediate prepulse inhibition and additional behaviors linked to schizophrenia. J Neurosci 30:5326–5333

    Article  PubMed  CAS  Google Scholar 

  113. Han Y, Kaeser PS, Sudhof TC, Schneggenburger R (2011) RIM determines Ca(2)  +  channel density and vesicle docking at the presynaptic active zone. Neuron 69:304–316

    Article  PubMed  CAS  Google Scholar 

  114. Deng L, Kaeser PS, Xu W, Sudhof TC (2011) RIM proteins activate vesicle priming by reversing autoinhibitory homodimerization of Munc13. Neuron 69:317–331

    Article  PubMed  CAS  Google Scholar 

  115. Schoch S, Mittelstaedt T, Kaeser PS et al (2006) Redundant functions of RIM1alpha and RIM2alpha in Ca(2+)-triggered neurotransmitter release. EMBO J 25:5852–5863

    Article  PubMed  CAS  Google Scholar 

  116. Hibino H, Pironkova R, Onwumere O, Vologodskaia M, Hudspeth AJ, Lesage F (2002) RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca(2+) channels. Neuron 34:411–423

    Article  PubMed  CAS  Google Scholar 

  117. Wong FK, Stanley EF (2010) Rab3a interacting molecule (RIM) and the tethering of pre-synaptic transmitter release site-associated CaV2.2 calcium channels. J Neurochem 112:463–473

    Article  PubMed  CAS  Google Scholar 

  118. Kiyonaka S, Wakamori M, Miki T et al (2007) RIM1 cEonfers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat Neurosci 10:691–701

    Article  PubMed  CAS  Google Scholar 

  119. Miki T, Kiyonaka S, Uriu Y et al (2007) Mutation associated with an autosomal dominant cone-rod dystrophy CORD7 modifies RIM1-mediated modulation of voltage-dependent Ca2+ channels. Channels (Austin) 1:144–147

    Google Scholar 

  120. Barragan I, Marcos I, Borrego S, Antinolo G (2005) Molecular analysis of RIM1 in autosomal recessive Retinitis pigmentosa. Ophthalmic Res 37:89–93

    Article  PubMed  CAS  Google Scholar 

  121. Michaelides M, Holder GE, Hunt DM, Fitzke FW, Bird AC, Moore AT (2005) A detailed study of the phenotype of an autosomal dominant cone-rod dystrophy (CORD7) associated with mutation in the gene for RIM1. Br J Ophthalmol 89:198–206

    Article  PubMed  CAS  Google Scholar 

  122. Jarvis SE, Zamponi GW (2001) Interactions between presynaptic Ca2+ channels, cytoplasmic messengers and proteins of the synaptic vesicle release complex. Trends Pharmacol Sci 22:519–525

    Article  PubMed  CAS  Google Scholar 

  123. Brown DA, Sihra TS (2008) Presynaptic signaling by heterotrimeric G-proteins. Handb Exp Pharmacol 184:207–260

    Article  Google Scholar 

  124. Forscher P, Oxford GS, Schulz D (1986) Noradrenaline modulates calcium channels in avian dorsal root ganglion cells through tight receptor-channel coupling. J Physiol 379:131–144

    PubMed  CAS  Google Scholar 

  125. Ikeda SR (1996) Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature 380:255–258

    Article  PubMed  CAS  Google Scholar 

  126. Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380:258–262

    Article  PubMed  CAS  Google Scholar 

  127. De Waard M, Liu H, Walker D, Scott VE, Gurnett CA, Campbell KP (1997) Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 385:446–450

    Article  PubMed  Google Scholar 

  128. Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature 385:442–446

    Article  PubMed  CAS  Google Scholar 

  129. Tedford HW, Zamponi GW (2006) Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev 58:837–862

    Article  PubMed  CAS  Google Scholar 

  130. De Waard M, Hering J, Weiss N, Feltz A (2005) How do G proteins directly control neuronal Ca(2+) channel function? Trends Pharmacol Sci 26:427–436

    Article  PubMed  CAS  Google Scholar 

  131. Stanley EF, Mirotznik RR (1997) Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels. Nature 385:340–343

    Article  PubMed  CAS  Google Scholar 

  132. Silinsky EM (2005) Modulation of calcium currents is eliminated after cleavage of a strategic component of the mammalian secretory apparatus. J Physiol 566:681–688

    Article  PubMed  CAS  Google Scholar 

  133. Jarvis SE, Magga JM, Beedle AM, Braun JE, Zamponi GW (2000) G protein modulation of N-type calcium channels is facilitated by physical interactions between syntaxin 1A and Gbetagamma. J Biol Chem 275:6388–6394

    Article  PubMed  CAS  Google Scholar 

  134. Lu Q, AtKisson MS, Jarvis SE, Feng ZP, Zamponi GW, Dunlap K (2001) Syntaxin 1A supports voltage-dependent inhibition of alpha1B Ca2+ channels by Gbetagamma in chick sensory neurons. J Neurosci 21:2949–2957

    PubMed  CAS  Google Scholar 

  135. Gerachshenko T, Blackmer T, Yoon EJ, Bartleson C, Hamm HE, Alford S (2005) Gbetagamma acts at the C terminus of SNAP-25 to mediate presynaptic inhibition. Nat Neurosci 8:597–605

    Article  PubMed  CAS  Google Scholar 

  136. Yoon EJ, Gerachshenko T, Spiegelberg BD, Alford S, Hamm HE (2007) Gbetagamma interferes with Ca2  +  −dependent binding of synaptotagmin to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Mol Pharmacol 72:1210–1219

    Article  PubMed  CAS  Google Scholar 

  137. Weiss N, Sandoval A, Kyonaka S, Felix R, Mori Y, De Waard M (2011) Rim1 modulates direct G-protein regulation of Ca(v)2.2 channels. Pflugers Arch 461:447–459

    Article  PubMed  CAS  Google Scholar 

  138. Yokoyama CT, Sheng ZH, Catterall WA (1997) Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J Neurosci 17:6929–6938

    PubMed  CAS  Google Scholar 

  139. Pozzi D, Condliffe S, Bozzi Y et al (2008) Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proc Natl Acad Sci USA 105:323–328

    Article  PubMed  CAS  Google Scholar 

  140. Zhu LQ, Liu D, Hu J et al (2010) GSK-3 beta inhibits presynaptic vesicle exocytosis by phosphorylating P/Q-type calcium channel and interrupting SNARE complex formation. J Neurosci 30:3624–3633

    Article  PubMed  CAS  Google Scholar 

  141. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98

    Article  PubMed  CAS  Google Scholar 

  142. Swayne LA, Chen L, Hameed S et al (2005) Crosstalk between huntingtin and syntaxin 1A regulates N-type calcium channels. Mol Cell Neurosci 30:339–351

    Article  PubMed  CAS  Google Scholar 

  143. Swayne LA, Beck KE, Braun JE (2006) The cysteine string protein multimeric complex. Biochem Biophys Res Commun 348:83–91

    Article  PubMed  CAS  Google Scholar 

  144. Sutton KG, McRory JE, Guthrie H, Murphy TH, Snutch TP (1999) P/Q-type calcium channels mediate the activity-dependent feedback of syntaxin-1A. Nature 401:800–804

    Article  PubMed  CAS  Google Scholar 

  145. Restituito S, Cens T, Barrere C et al (2000) The [beta]2a subunit is a molecular groom for the Ca2+ channel inactivation gate. J Neurosci 20:9046–9052

    PubMed  CAS  Google Scholar 

  146. Geib S, Sandoz G, Cornet V et al (2002) The interaction between the I-II loop and the III-IV loop of Cav2.1 contributes to voltage-dependent inactivation in a beta -dependent manner. J Biol Chem 277:10003–10013

    Article  PubMed  CAS  Google Scholar 

  147. Sandoz G, Lopez-Gonzalez I, Stamboulian S, Weiss N, Arnoult C, De Waard M (2004) Repositioning of charged I-II loop amino acid residues within the electric field by beta subunit as a novel working hypothesis for the control of fast P/Q calcium channel inactivation. Eur J Neurosci 19:1759–1772

    Article  PubMed  Google Scholar 

  148. Agler HL, Evans J, Tay LH, Anderson MJ, Colecraft HM, Yue DT (2005) G protein-gated inhibitory module of N-type (ca(v)2.2) Ca2+ channels. Neuron 46:891–904

    Article  PubMed  CAS  Google Scholar 

  149. Raghib A, Bertaso F, Davies A et al (2001) Dominant-negative synthesis suppression of voltage-gated calcium channel Cav2.2 induced by truncated constructs. J Neurosci 21:8495–8504

    PubMed  CAS  Google Scholar 

  150. Page KM, Heblich F, Davies A et al (2004) Dominant-negative calcium channel suppression by truncated constructs involves a kinase implicated in the unfolded protein response. J Neurosci 24:5400–5409

    Article  PubMed  CAS  Google Scholar 

  151. Page KM, Heblich F, Margas W et al (2010) N terminus is key to the dominant negative suppression of Ca(V)2 calcium channels: implications for episodic ataxia type 2. J Biol Chem 285:835–844

    Article  PubMed  CAS  Google Scholar 

  152. Bucci G, Mochida S, Stephens GJ (2011) Inhibition of synaptic transmission and G protein modulation by synthetic CaV2.2 Ca2+ channel peptides. J Physiol 589:3085–3101

    Article  PubMed  CAS  Google Scholar 

  153. Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Norbert Weiss is supported by fellowships from Alberta Heritage Foundation for Medical Research (AHFMR) and from Hotchkiss Brain Institute. Gerald W. Zamponi is funded by the Canadian Institutes of Health Research, is a Canada Research Chair and Scientist of the Alberta Heritage Foundation for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Weiss, N., Zamponi, G.W. (2012). Regulation of Voltage-Gated Calcium Channels by Synaptic Proteins. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_33

Download citation

Publish with us

Policies and ethics