Skip to main content

The Biology of Protein Kinase C

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

This review gives a basic introduction to the biology of protein kinase C, one of the first calcium-dependent kinases to be discovered. We review the structure and function of protein kinase C, along with some of the substrates of individual isoforms. We then review strategies for inhibiting PKC in experimental systems and finally discuss the therapeutic potential of targeting PKC. Each aspect is covered in summary, with links to detailed resources where appropriate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Johnson LN, Barford D (1993) The effects of phosphorylation on the structure and function of proteins. Annu Rev Biophys Biomol Struct 22:199–232

    Article  PubMed  CAS  Google Scholar 

  2. Inoue M, Kishimoto A, Takai Y, Nishizuka Y (1977) Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem 252:7610–7616

    PubMed  CAS  Google Scholar 

  3. Coussens L, Rhee L, Parker PJ, Ullrich A (1987) Alternative splicing increases the diversity of the human protein kinase C family. DNA 6:389–394

    Article  PubMed  CAS  Google Scholar 

  4. Hernandez AI, Blace N, Crary JF, Serrano PA, Leitges M, Libien JM, Weinstein G, Tcherapanov A, Sacktor TC (2003) Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory. J Biol Chem 278:40305–40316

    Article  PubMed  CAS  Google Scholar 

  5. Rozengurt E (2011) Protein kinase D signaling: multiple biological functions in health and disease. Physiology (Bethesda) 26:23–33

    Article  CAS  Google Scholar 

  6. Krauss G (1999) Biochemistry of signal transduction and regulation. Wiley-VCH Verlag GmbH & Co. KgaA

    Google Scholar 

  7. Liu WS, Heckman CA (1998) The sevenfold way of PKC regulation. Cell Signal 10:529–542

    Article  PubMed  CAS  Google Scholar 

  8. Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665

    Article  PubMed  CAS  Google Scholar 

  9. Mochly-Rosen D, Kauvar LM (2000) Pharmacological regulation of network kinetics by protein kinase C localization. Semin Immunol 12:55–61

    Article  PubMed  CAS  Google Scholar 

  10. Steinberg SF (2008) Structural basis of protein kinase C isoform function. Physiol Rev 88:1341–1378

    Article  PubMed  CAS  Google Scholar 

  11. House C, Kemp BE (1987) Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science 238:1726–1728

    Article  PubMed  CAS  Google Scholar 

  12. Colon-Gonzalez F, Kazanietz MG (2006) C1 domains exposed: from diacylglycerol binding to protein-protein interactions. Biochim Biophys Acta 1761:827–837

    PubMed  CAS  Google Scholar 

  13. Kazanietz MG, Bustelo XR, Barbacid M, Kolch W, Mischak H, Wong G, Pettit GR, Bruns JD, Blumberg PM (1994) Zinc finger domains and phorbol ester pharmacophore. Analysis of binding to mutated form of protein kinase C zeta and the vav and c-raf proto-oncogene products. J Biol Chem 269:11590–11594

    PubMed  CAS  Google Scholar 

  14. Pu Y, Peach ML, Garfield SH, Wincovitch S, Marquez VE, Blumberg PM (2006) Effects on ligand interaction and membrane translocation of the positively charged arginine residues situated along the C1 domain binding cleft in the atypical protein kinase C isoforms. J Biol Chem 281:33773–33788

    Article  PubMed  CAS  Google Scholar 

  15. Johnson JE, Giorgione J, Newton AC (2000) The C1 and C2 domains of protein kinase C are independent membrane targeting modules, with specificity for phosphatidylserine conferred by the C1 domain. Biochemistry 39:11360–11369

    Article  PubMed  CAS  Google Scholar 

  16. Slater SJ, Milano SK, Stagliano BA, Gergich KJ, Curry JP, Taddeo FJ, Stubbs CD (2000) Interaction of protein kinase C with filamentous actin: isozyme specificity resulting from divergent phorbol ester and calcium dependencies. Biochemistry 39:271–280

    Article  PubMed  CAS  Google Scholar 

  17. Giorgione JR, Lin JH, McCammon JA, Newton AC (2006) Increased membrane affinity of the C1 domain of protein kinase C delta compensates for the lack of involvement of its C2 domain in membrane recruitment. J Biol Chem 281:1660–1669

    Article  PubMed  CAS  Google Scholar 

  18. Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270:28495–28498

    Article  PubMed  CAS  Google Scholar 

  19. Moscat J, Diaz-Meco MT, Wooten MW (2009) Of the atypical PKCs, Par-4 and p62: recent understandings of the biology and pathology of a PB1-dominated complex. Cell Death Differ 16:1426–1437

    Article  PubMed  CAS  Google Scholar 

  20. Quittau-Prevostel C, Delaunay N, Collazos A, Vallentin A, Joubert D (2004) Targeting of PKCalpha and epsilon in the pituitary: a highly regulated mechanism involving a GD(E)E motif of the V3 region. J Cell Sci 117:63–72

    Article  PubMed  CAS  Google Scholar 

  21. Mellor H, Parker PJ (1998) The extended protein kinase C superfamily. Biochem J 332:281–292

    PubMed  CAS  Google Scholar 

  22. Newton AC (2003) Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 370:361–371

    Article  PubMed  CAS  Google Scholar 

  23. Parker PJ, Parkinson SJ (2001) AGC protein kinase phosphorylation and protein kinase C. Biochem Soc Trans 29:860–863

    Article  PubMed  CAS  Google Scholar 

  24. Keranen LM, Dutil EM, Newton AC (1995) Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Curr Biol 5:1394–1403

    Article  PubMed  CAS  Google Scholar 

  25. Newton AC (2001) Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev 101:2353–2364

    Article  PubMed  CAS  Google Scholar 

  26. Dutil EM, Newton AC (2000) Dual role of pseudosubstrate in the coordinated regulation of protein kinase C by phosphorylation and diacylglycerol. J Biol Chem 275:10697–10701

    Article  PubMed  CAS  Google Scholar 

  27. Dutil EM, Toker A, Newton AC (1998) Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Curr Biol 8:1366–1375

    Article  PubMed  CAS  Google Scholar 

  28. Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ (1998) Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 281:2042–2045

    Article  PubMed  Google Scholar 

  29. Chou MM, Hou W, Johnson J, Graham LK, Lee MH, Chen CS, Newton AC, Schaffhausen BS, Toker A (1998) Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr Biol 8:1069–1077

    Article  PubMed  CAS  Google Scholar 

  30. Balendran A, Hare GR, Kieloch A, Williams MR, Alessi DR (2000) Further evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is required for the stability and phosphorylation of protein kinase C (PKC) isoforms. FEBS Lett 484:217–223

    Article  PubMed  CAS  Google Scholar 

  31. Bornancin F, Parker PJ (1996) Phosphorylation of threonine 638 critically controls the dephosphorylation and inactivation of protein kinase Calpha. Curr Biol 6:1114–1123

    Article  PubMed  CAS  Google Scholar 

  32. Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, Sessa WC, Qin J, Zhang P, Su B, Jacinto E (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27:1932–1943

    Article  PubMed  CAS  Google Scholar 

  33. Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL (2008) Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27:1919–1931

    Article  PubMed  CAS  Google Scholar 

  34. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11:859–871

    Article  PubMed  CAS  Google Scholar 

  35. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  PubMed  CAS  Google Scholar 

  36. Edwards AS, Faux MC, Scott JD, Newton AC (1999) Carboxyl-terminal phosphorylation regulates the function and subcellular localization of protein kinase C betaII. J Biol Chem 274:6461–6468

    Article  PubMed  CAS  Google Scholar 

  37. Carrasco S, Merida I (2004) Diacylglycerol-dependent binding recruits PKCtheta and RasGRP1 C1 domains to specific subcellular localizations in living T lymphocytes. Mol Biol Cell 15:2932–2942

    Article  PubMed  CAS  Google Scholar 

  38. Ron D, Mochly-Rosen D (1995) An autoregulatory region in protein kinase C: the pseudoanchoring site. Proc Natl Acad Sci USA 92:492–496

    Article  PubMed  CAS  Google Scholar 

  39. Mochly-Rosen D, Gordon AS (1998) Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J 12:35–42

    PubMed  CAS  Google Scholar 

  40. Churchill EN, Qvit N, Mochly-Rosen D (2009) Rationally designed peptide regulators of protein kinase C. Trends Endocrinol Metab 20:25–33

    Article  PubMed  CAS  Google Scholar 

  41. Nishikawa K, Toker A, Johannes FJ, Songyang Z, Cantley LC (1997) Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem 272:952–960

    Article  PubMed  CAS  Google Scholar 

  42. Hardie D, Hanks S (1995) The Protein kinase FactsBook, vol 2. Academic, London p 246

    Google Scholar 

  43. Luo B, Prescott SM, Topham MK (2003) Protein kinase C alpha phosphorylates and negatively regulates diacylglycerol kinase zeta. J Biol Chem 278:39542–39547

    Article  PubMed  CAS  Google Scholar 

  44. Tigges U, Koch B, Wissing J, Jockusch BM, Ziegler WH (2003) The F-actin cross-linking and focal adhesion protein filamin A is a ligand and in vivo substrate for protein kinase C alpha. J Biol Chem 278:23561–23569

    Article  PubMed  CAS  Google Scholar 

  45. Feng Y, Walsh CA (2004) The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat Cell Biol 6:1034–1038

    Article  PubMed  CAS  Google Scholar 

  46. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D, Rapp UR (1993) Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 364:249–252

    Article  PubMed  CAS  Google Scholar 

  47. Strack V, Krutzfeldt J, Kellerer M, Ullrich A, Lammers R, Haring HU (2002) The Protein-tyrosine-phosphatase SHP2 is phosphorylated on serine residues 576 and 591 by protein kinase C isoforms alpha, beta 1, beta 2, and eta. Biochemistry 41:603–608

    Article  PubMed  CAS  Google Scholar 

  48. Grossmann KS, Rosario M, Birchmeier C, Birchmeier W (2010) The tyrosine phosphatase Shp2 in development and cancer. Adv Cancer Res 106:53–89

    Article  PubMed  CAS  Google Scholar 

  49. Bu Y, Shi T, Meng M, Kong G, Tian Y, Chen Q, Yao X, Feng G, Chen H, Lu Z (2011) A novel screening model for the molecular drug for diabetes and obesity based on tyrosine phosphatase Shp2. Bioorg Med Chem Lett 21:874–878

    Article  PubMed  CAS  Google Scholar 

  50. Nguyen L, He Q, Meiri KF (2009) Regulation of GAP-43 at serine 41 acts as a switch to modulate both intrinsic and extrinsic behaviors of growing neurons, via altered membrane distribution. Mol Cell Neurosci 41:62–73

    Article  PubMed  CAS  Google Scholar 

  51. Sheu FS, Marais RM, Parker PJ, Bazan NG, Routtenberg A (1990) Neuron-specific protein F1/GAP-43 shows substrate specificity for the beta subtype of protein kinase C. Biochem Biophys Res Commun 171:1236–1243

    Article  PubMed  CAS  Google Scholar 

  52. Park HY, Perez JM, Laursen R, Hara M, Gilchrest BA (1999) Protein kinase C-beta activates tyrosinase by phosphorylating serine residues in its cytoplasmic domain. J Biol Chem 274:16470–16478

    Article  PubMed  CAS  Google Scholar 

  53. Becker KP, Hannun YA (2004) Isoenzyme-specific translocation of protein kinase C (PKC)betaII and not PKCbetaI to a juxtanuclear subset of recycling endosomes: involvement of phospholipase D. J Biol Chem 279:28251–28256

    Article  PubMed  CAS  Google Scholar 

  54. Ramakers GM, Gerendasy DD, de Graan PN (1999) Substrate phosphorylation in the protein kinase C gamma knockout mouse. J Biol Chem 274:1873–1874

    Article  PubMed  CAS  Google Scholar 

  55. Asai H, Hirano M, Shimada K, Kiriyama T, Furiya Y, Ikeda M, Iwamoto T, Mori T, Nishinaka K, Konishi N, Udaka F, Ueno S (2009) Protein kinase C gamma, a protein causative for dominant ataxia, negatively regulates nuclear import of recessive-ataxia-related aprataxin. Hum Mol Genet 18:3533–3543

    Article  PubMed  CAS  Google Scholar 

  56. Uddin S, Sassano A, Deb DK, Verma A, Majchrzak B, Rahman A, Malik AB, Fish EN, Platanias LC (2002) Protein kinase C-delta (PKC-delta) is activated by type I interferons and mediates phosphorylation of Stat1 on serine 727. J Biol Chem 277:14408–14416

    Article  PubMed  CAS  Google Scholar 

  57. Jain N, Zhang T, Kee WH, Li W, Cao X (1999) Protein kinase C delta associates with and phosphorylates Stat3 in an interleukin-6-dependent manner. J Biol Chem 274:24392–24400

    Article  PubMed  CAS  Google Scholar 

  58. Lee YJ, Lee DH, Cho CK, Bae S, Jhon GJ, Lee SJ, Soh JW, Lee YS (2005) HSP25 inhibits protein kinase C delta-mediated cell death through direct interaction. J Biol Chem 280:18108–18119

    Article  PubMed  CAS  Google Scholar 

  59. Kim EH, Lee HJ, Lee DH, Bae S, Soh JW, Jeoung D, Kim J, Cho CK, Lee YJ, Lee YS (2007) Inhibition of heat shock protein 27-mediated resistance to DNA damaging agents by a novel PKC delta-V5 heptapeptide. Cancer Res 67:6333–6341

    Article  PubMed  CAS  Google Scholar 

  60. Bey EA, Xu B, Bhattacharjee A, Oldfield CM, Zhao X, Li Q, Subbulakshmi V, Feldman GM, Wientjes FB, Cathcart MK (2004) Protein kinase C delta is required for p47phox phosphorylation and translocation in activated human monocytes. J Immunol 173:5730–5738

    PubMed  CAS  Google Scholar 

  61. Kilpatrick LE, Song YH, Rossi MW, Korchak HM (2000) Serine phosphorylation of p60 tumor necrosis factor receptor by PKC-delta in TNF-alpha-activated neutrophils. Am J Physiol Cell Physiol 279:C2011–C2018

    PubMed  CAS  Google Scholar 

  62. Baier G, Telford D, Giampa L, Coggeshall KM, Baier-Bitterlich G, Isakov N, Altman A (1993) Molecular cloning and characterization of PKC theta, a novel member of the protein kinase C (PKC) gene family expressed predominantly in hematopoietic cells. J Biol Chem 268:4997–5004

    PubMed  CAS  Google Scholar 

  63. Tsukita S, Furuse M (1999) Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 9:268–273

    Article  PubMed  CAS  Google Scholar 

  64. Suzuki T, Elias BC, Seth A, Shen L, Turner JR, Giorgianni F, Desiderio D, Guntaka R, Rao R (2009) PKC eta regulates occludin phosphorylation and epithelial tight junction integrity. Proc Natl Acad Sci USA 106:61–66

    Article  PubMed  CAS  Google Scholar 

  65. Osada S, Mizuno K, Saido TC, Suzuki K, Kuroki T, Ohno S (1992) A new member of the protein kinase C family, nPKC theta, predominantly expressed in skeletal muscle. Mol Cell Biol 12:3930–3938

    PubMed  CAS  Google Scholar 

  66. Chang JD, Xu Y, Raychowdhury MK, Ware JA (1994) Molecular cloning and expression of a cDNA encoding a novel isoenzyme of protein kinase C (nPKC). A new member of the nPKC family expressed in skeletal muscle, megakaryoblastic cells, and platelets. J Biol Chem 269:31322

    PubMed  CAS  Google Scholar 

  67. Marsland BJ, Kopf M (2008) T-cell fate and function: PKC-theta and beyond. Trends Immunol 29:179–185

    Article  PubMed  CAS  Google Scholar 

  68. Hayashi K, Altman A (2007) Protein kinase C theta (PKCtheta): a key player in T cell life and death. Pharmacol Res 55:537–544

    Article  PubMed  CAS  Google Scholar 

  69. Mamidipudi V, Li X, Wooten MW (2002) Identification of interleukin 1 receptor-associated kinase as a conserved component in the p75-neurotrophin receptor activation of nuclear factor-kappa B. J Biol Chem 277:28010–28018

    Article  PubMed  CAS  Google Scholar 

  70. Mamidipudi V, Lin C, Seibenhener ML, Wooten MW (2004) Regulation of interleukin receptor-associated kinase (IRAK) phosphorylation and signaling by iota protein kinase C. J Biol Chem 279:4161–4165

    Article  PubMed  CAS  Google Scholar 

  71. Suzuki A, Akimoto K, Ohno S (2003) Protein kinase C lambda/iota (PKClambda/iota): a PKC isotype essential for the development of multicellular organisms. J Biochem 133:9–16

    Article  PubMed  CAS  Google Scholar 

  72. Sugiyama Y, Akimoto K, Robinson ML, Ohno S, Quinlan RA (2009) A cell polarity protein aPKClambda is required for eye lens formation and growth. Dev Biol 336:246–256

    Article  PubMed  CAS  Google Scholar 

  73. Hirai T, Chida K (2003) Protein kinase Czeta (PKCzeta): activation mechanisms and cellular functions. J Biochem 133:1–7

    Article  PubMed  CAS  Google Scholar 

  74. Oubaha M, Gratton JP (2009) Phosphorylation of endothelial nitric oxide synthase by atypical PKC zeta contributes to angiopoietin-1-dependent inhibition of VEGF-induced endothelial permeability in vitro. Blood 114:3343–3351

    Article  PubMed  CAS  Google Scholar 

  75. Hirata Y, Hosaka T, Iwata T, Le CT, Jambaldorj B, Teshigawara K, Harada N, Sakaue H, Sakai T, Yoshimoto K, Nakaya Y (2011) Vimentin binds IRAP and is involved in GLUT4 vesicle trafficking. Biochem Biophys Res Commun 405:96–101

    Article  PubMed  CAS  Google Scholar 

  76. Ryu J, Hah JS, Park JS, Lee W, Rampal AL, Jung CY (2002) Protein kinase C-zeta phosphorylates insulin-responsive aminopeptidase in vitro at Ser-80 and Ser-91. Arch Biochem Biophys 403:71–82

    Article  PubMed  CAS  Google Scholar 

  77. Dang PM, Fontayne A, Hakim J, El Benna J, Perianin A (2001) Protein kinase C zeta phosphorylates a subset of selective sites of the NADPH oxidase component p47phox and participates in formyl peptide-mediated neutrophil respiratory burst. J Immunol 166:1206–1213

    PubMed  CAS  Google Scholar 

  78. Roffey J, Rosse C, Linch M, Hibbert A, McDonald NQ, Parker PJ (2009) Protein kinase C intervention: the state of play. Curr Opin Cell Biol 21:268–279

    Article  PubMed  CAS  Google Scholar 

  79. Alessi DR (1997) The protein kinase C inhibitors Ro 318220 and GF 109203X are equally potent inhibitors of MAPKAP kinase-1beta (Rsk-2) and p70 S6 kinase. FEBS Lett 402:121–123

    Article  PubMed  CAS  Google Scholar 

  80. Herbert JM, Augereau JM, Gleye J, Maffrand JP (1990) Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 172:993–999

    Article  PubMed  CAS  Google Scholar 

  81. Smith JB, Smith L, Pettit GR (1985) Bryostatins: potent, new mitogens that mimic phorbol ester tumor promoters. Biochem Biophys Res Commun 132:939–945

    Article  PubMed  CAS  Google Scholar 

  82. Kobayashi E, Nakano H, Morimoto M, Tamaoki T (1989) Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 159:548–553

    Article  PubMed  CAS  Google Scholar 

  83. Ponting CP, Ito T, Moscat J, Diaz-Meco MT, Inagaki F, Sumimoto H (2002) OPR, PC and AID: all in the PB1 family. Trends Biochem Sci 27(1):10

    Article  PubMed  CAS  Google Scholar 

  84. Stallings-Mann M, Jamieson L, Regala RP, Weems C, Murray NR, Fields AP (2006) A novel small-molecule inhibitor of protein kinase Ciota blocks transformed growth of non-small-cell lung cancer cells. Cancer Res 66:1767–1774

    Article  PubMed  CAS  Google Scholar 

  85. Regala RP, Thompson EA, Fields AP (2008) Atypical protein kinase C iota expression and aurothiomalate sensitivity in human lung cancer cells. Cancer Res 68:5888–5895

    Article  PubMed  CAS  Google Scholar 

  86. Lahn MM, Sundell KL (2004) The role of protein kinase C-alpha (PKC-alpha) in melanoma. Melanoma Res 14:85–89

    Article  PubMed  CAS  Google Scholar 

  87. Lahn M, Sundell K, Moore S (2003) Targeting protein kinase C-alpha (PKC-alpha) in cancer with the phosphorothioate antisense oligonucleotide aprinocarsen. Ann NY Acad Sci 1002:263–270

    Article  PubMed  CAS  Google Scholar 

  88. Davies AM, Gandara DR, Lara PNJ, Mack PC, Lau DH, Gumerlock PH (2003) Antisense oligonucleotides in the treatment of non-small-cell lung cancer. Clin Lung Cancer 4(Suppl 2):S68–S73

    Article  PubMed  Google Scholar 

  89. Newton PM, Kim JA, McGeehan AJ, Paredes JP, Chu K, Wallace MJ, Roberts AJ, Hodge CW, Messing RO (2007) Increased response to morphine in mice lacking protein kinase C epsilon. Genes Brain Behav 6:329–338

    Article  PubMed  CAS  Google Scholar 

  90. Wallace MJ, Newton PM, McMahon T, Connolly J, Huibers A, Whistler J, Messing RO (2009) PKCepsilon regulates behavioral sensitivity, binding and tolerance to the CB1 receptor agonist WIN55,212-2. Neuropsychopharmacology 34:1733–1742

    Article  PubMed  CAS  Google Scholar 

  91. Wallace MJ, Newton PM, Oyasu M, McMahon T, Chou WH, Connolly J, Messing RO (2007) Acute functional tolerance to ethanol mediated by protein kinase Cepsilon. Neuropsychopharmacology 32:127–136

    Article  PubMed  CAS  Google Scholar 

  92. Hodge CW, Mehmert KK, Kelley SP, McMahon T, Haywood A, Olive MF, Wang D, Sanchez-Perez AM, Messing RO (1999) Supersensitivity to allosteric GABA(A) receptor modulators and alcohol in mice lacking PKCepsilon. Nat Neurosci 2:997–1002

    Article  PubMed  CAS  Google Scholar 

  93. Newton PM, Messing RO (2007) Increased sensitivity to the aversive effects of ethanol in PKCepsilon null mice revealed by place conditioning. Behav Neurosci 121:439–442

    Article  PubMed  CAS  Google Scholar 

  94. Lesscher HM, Wallace MJ, Zeng L, Wang V, Deitchman JK, McMahon T, Messing RO, Newton PM (2009) Amygdala protein kinase C epsilon controls alcohol consumption. Genes Brain Behav 8:493–499

    Article  PubMed  CAS  Google Scholar 

  95. Qi ZH, Song M, Wallace MJ, Wang D, Newton PM, McMahon T, Chou WH, Zhang C, Shokat KM, Messing RO (2007) Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits. J Biol Chem 282:33052–33063

    Article  PubMed  CAS  Google Scholar 

  96. Bowers BJ, Owen EH, Collins AC, Abeliovich A, Tonegawa S, Wehner JM (1999) Decreased ethanol sensitivity and tolerance development in gamma-protein kinase C null mutant mice is dependent on genetic background. Alcohol Clin Exp Res 23:387–397

    Article  PubMed  CAS  Google Scholar 

  97. Werner DF, Kumar S, Criswell HE, Suryanarayanan A, Fetzer JA, Comerford CE, Morrow AL (2011) PKCgamma is required for ethanol-induced increases in GABA(A) receptor alpha4 subunit expression in cultured cerebral cortical neurons. J Neurochem 116:554–563

    Article  PubMed  CAS  Google Scholar 

  98. Kumar S, Suryanarayanan A, Boyd KN, Comerford CE, Lai MA, Ren Q, Morrow AL (2010) Ethanol reduces GABAA alpha1 subunit receptor surface expression by a protein kinase C gamma-dependent mechanism in cultured cerebral cortical neurons. Mol Pharmacol 77:793–803

    Article  PubMed  CAS  Google Scholar 

  99. Proctor WR, Poelchen W, Bowers BJ, Wehner JM, Messing RO, Dunwiddie TV (2003) Ethanol differentially enhances hippocampal GABA A receptor-mediated responses in protein kinase C gamma (PKC gamma) and PKC epsilon null mice. J Pharmacol Exp Ther 305:264–270

    Article  PubMed  CAS  Google Scholar 

  100. Choi DS, Wei W, Deitchman JK, Kharazia VN, Lesscher HM, McMahon T, Wang D, Qi ZH, Sieghart W, Zhang C, Shokat KM, Mody I, Messing RO (2008) Protein kinase Cdelta regulates ethanol intoxication and enhancement of GABA-stimulated tonic current. J Neurosci 28:11890–11899

    Article  PubMed  CAS  Google Scholar 

  101. Olive MF, Newton PM (2010) Protein kinase C isozymes as regulators of sensitivity to and self-administration of drugs of abuse-studies with genetically modified mice. Behav Pharmacol 21:493–499

    Article  PubMed  CAS  Google Scholar 

  102. Hongpaisan J, Alkon DL (2007) A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proc Natl Acad Sci USA 104:19571–19576

    Article  PubMed  CAS  Google Scholar 

  103. Choi DS, Wang D, Yu GQ, Zhu G, Kharazia VN, Paredes JP, Chang WS, Deitchman JK, Mucke L, Messing RO (2006) PKCepsilon increases endothelin converting enzyme activity and reduces amyloid plaque pathology in transgenic mice. Proc Natl Acad Sci USA 103:8215–8220

    Article  PubMed  CAS  Google Scholar 

  104. Buxbaum JD, Liu KN, Luo Y, Slack JL, Stocking KL, Peschon JJ, Johnson RS, Castner BJ, Cerretti DP, Black RA (1998) Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 273:27765–27767

    Article  PubMed  CAS  Google Scholar 

  105. Etcheberrigaray R, Tan M, Dewachter I, Kuiperi C, Van der Auwera I, Wera S, Qiao L, Bank B, Nelson TJ, Kozikowski AP, Van Leuven F, Alkon DL (2004) Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice. Proc Natl Acad Sci USA 101:11141–11146

    Article  PubMed  CAS  Google Scholar 

  106. Yang HQ, Pan J, Ba MW, Sun ZK, Ma GZ, Lu GQ, Xiao Q, Chen SD (2007) New protein kinase C activator regulates amyloid precursor protein processing in vitro by increasing alpha-secretase activity. Eur J Neurosci 26:381–391

    Article  PubMed  Google Scholar 

  107. Favit A, Grimaldi M, Nelson TJ, Alkon DL (1998) Alzheimer’s-specific effects of soluble beta-amyloid on protein kinase C-alpha and -gamma degradation in human fibroblasts. Proc Natl Acad Sci USA 95:5562–5567

    Article  PubMed  CAS  Google Scholar 

  108. Hongpaisan J, Sun MK, Alkon DL (2011) PKC epsilon activation prevents synaptic loss, Abeta elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J Neurosci 31:630–643

    Article  PubMed  CAS  Google Scholar 

  109. Sun MK, Hongpaisan J, Nelson TJ, Alkon DL (2008) Poststroke neuronal rescue and synaptogenesis mediated in vivo by protein kinase C in adult brains. Proc Natl Acad Sci USA 105:13620–13625

    Article  PubMed  CAS  Google Scholar 

  110. Della-Morte D, Raval AP, Dave KR, Lin HW, Perez-Pinzon MA (2011) Post-ischemic activation of protein kinase C epsilon protects the hippocampus from cerebral ischemic injury via alterations in cerebral blood flow. Neurosci Lett 487:158–162

    Article  PubMed  CAS  Google Scholar 

  111. Jiang X, Tian Q, Wang Y, Zhou XW, Xie JZ, Wang JZ, Zhu LQ (2011) Acetyl-L-carnitine ameliorates spatial memory deficits induced by inhibition of phosphoinositol-3 kinase and protein kinase C. J Neurochem 118(5):864–878

    Article  PubMed  CAS  Google Scholar 

  112. Bonini JS, Da Silva WC, Bevilaqua LR, Medina JH, Izquierdo I, Cammarota M (2007) On the participation of hippocampal PKC in acquisition, consolidation and reconsolidation of spatial memory. Neuroscience 147:37–45

    Article  PubMed  CAS  Google Scholar 

  113. Alkon DL, Sun MK, Nelson TJ (2007) PKC signaling deficits: a mechanistic hypothesis for the origins of Alzheimer’s disease. Trends Pharmacol Sci 28:51–60

    Article  PubMed  CAS  Google Scholar 

  114. Sacktor TC (2011) How does PKMzeta maintain long-term memory? Nat Rev Neurosci 12:9–15

    Article  PubMed  CAS  Google Scholar 

  115. Liu JY, Lin SJ, Lin JK (1993) Inhibitory effects of curcumin on protein kinase C activity induced by 12-O-tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells. Carcinogenesis 14:857–861

    Article  PubMed  CAS  Google Scholar 

  116. Mahmmoud YA (2007) Modulation of protein kinase C by curcumin; inhibition and activation switched by calcium ions. Br J Pharmacol 150:200–208

    Article  PubMed  CAS  Google Scholar 

  117. Bharti AC, Donato N, Aggarwal BB (2003) Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 171:3863–3871

    PubMed  CAS  Google Scholar 

  118. Bharti AC, Donato N, Singh S, Aggarwal BB (2003) Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101:1053–1062

    Article  PubMed  CAS  Google Scholar 

  119. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  PubMed  CAS  Google Scholar 

  120. Singh S, Khar A (2006) Biological effects of curcumin and its role in cancer chemoprevention and therapy. Anticancer Agents Med Chem 6:259–270

    Article  PubMed  CAS  Google Scholar 

  121. Sharma RA, Steward WP, Gescher AJ (2007) Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol 595:453–470

    Article  PubMed  Google Scholar 

  122. Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111

    Article  PubMed  CAS  Google Scholar 

  123. Neri A, Marmiroli S, Tassone P, Lombardi L, Nobili L, Verdelli D, Civallero M, Cosenza M, Bertacchini J, Federico M, De Pol A, Deliliers GL, Sacchi S (2008) The oral protein-kinase C beta inhibitor enzastaurin (LY317615) suppresses signalling through the AKT pathway, inhibits proliferation and induces apoptosis in multiple myeloma cell lines. Leuk Lymphoma 49:1374–1383

    Article  PubMed  CAS  Google Scholar 

  124. Green LJ, Marder P, Ray C, Cook CA, Jaken S, Musib LC, Herbst RS, Carducci M, Britten CD, Basche M, Eckhardt SG, Thornton D (2006) Development and validation of a drug activity biomarker that shows target inhibition in cancer patients receiving enzastaurin, a novel protein kinase C-beta inhibitor. Clin Cancer Res 12:3408–3415

    Article  PubMed  CAS  Google Scholar 

  125. Robertson MJ, Kahl BS, Vose JM, de Vos S, Laughlin M, Flynn PJ, Rowland K, Cruz JC, Goldberg SL, Musib L, Darstein C, Enas N, Kutok JL, Aster JC, Neuberg D, Savage KJ, LaCasce A, Thornton D, Slapak CA, Shipp MA (2007) Phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol 25:1741–1746

    Article  PubMed  CAS  Google Scholar 

  126. Ghobrial IM, Munshi NC, Harris BN, Shi P, Porter NM, Schlossman RL, Laubach JP, Anderson KC, Desaiah D, Myrand SP, Wooldridge JE, Richardson PG, Abonour R (2011) A phase I safety study of enzastaurin plus bortezomib in the treatment of relapsed or refractory multiple myeloma. Am J Hematol 86:573–578

    Article  PubMed  CAS  Google Scholar 

  127. Moreau AS, Jia X, Ngo HT, Leleu X, O’Sullivan G, Alsayed Y, Leontovich A, Podar K, Kutok J, Daley J, Lazo-Kallanian S, Hatjiharissi E, Raab MS, Xu L, Treon SP, Hideshima T, Anderson KC, Ghobrial IM (2007) Protein kinase C inhibitor enzastaurin induces in vitro and in vivo antitumor activity in Waldenstrom macroglobulinemia. Blood 109:4964–4972

    Article  PubMed  CAS  Google Scholar 

  128. Varterasian ML, Mohammad RM, Eilender DS, Hulburd K, Rodriguez DH, Pemberton PA, Pluda JM, Dan MD, Pettit GR, Chen BD, Al-Katib AM (1998) Phase I study of bryostatin 1 in patients with relapsed non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. J Clin Oncol 16:56–62

    PubMed  CAS  Google Scholar 

  129. Cragg LH, Andreeff M, Feldman E, Roberts J, Murgo A, Winning M, Tombes MB, Roboz G, Kramer L, Grant S (2002) Phase I trial and correlative laboratory studies of bryostatin 1 (NSC 339555) and high-dose 1-B-D-arabinofuranosylcytosine in patients with refractory acute leukemia. Clin Cancer Res 8:2123–2133

    PubMed  CAS  Google Scholar 

  130. Varterasian ML, Mohammad RM, Shurafa MS, Hulburd K, Pemberton PA, Rodriguez DH, Spadoni V, Eilender DS, Murgo A, Wall N, Dan M, Al-Katib AM (2000) Phase II trial of bryostatin 1 in patients with relapsed low-grade non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. Clin Cancer Res 6:825–828

    PubMed  CAS  Google Scholar 

  131. Zauli G, Secchiero P (2006) The role of the TRAIL/TRAIL receptors system in hematopoiesis and endothelial cell biology. Cytokine Growth Factor Rev 17:245–257

    Article  PubMed  CAS  Google Scholar 

  132. Hayun M, Okun E, Hayun R, Gafter U, Albeck M, Longo DL, Sredni B (2007) Synergistic effect of AS101 and Bryostatin-1 on myeloid leukemia cell differentiation in vitro and in an animal model. Leukemia 21:1504–1513

    Article  PubMed  CAS  Google Scholar 

  133. Wojciechowski W, Li H, Marshall S, Dell’Agnola C, Espinoza-Delgado I (2005) Enhanced expression of CD20 in human tumor B cells is controlled through ERK-dependent mechanisms. J Immunol 174:7859–7868

    PubMed  CAS  Google Scholar 

  134. Mischiati C, Melloni E, Corallini F, Milani D, Bergamini C, Vaccarezza M (2008) Potential role of PKC inhibitors in the treatment of hematological malignancies. Curr Pharm Des 14:2075–2084

    Article  PubMed  CAS  Google Scholar 

  135. Budas GR, Churchill EN, Mochly-Rosen D (2007) Cardioprotective mechanisms of PKC isozyme-selective activators and inhibitors in the treatment of ischemia-reperfusion injury. Pharmacol Res 55:523–536

    Article  PubMed  CAS  Google Scholar 

  136. Dorn GW 2nd, Souroujon MC, Liron T, Chen CH, Gray MO, Zhou HZ, Csukai M, Wu G, Lorenz JN, Mochly-Rosen D (1999) Sustained in vivo cardiac protection by a rationally designed peptide that causes epsilon protein kinase C translocation. Proc Natl Acad Sci USA 96:12798–12803

    Article  PubMed  CAS  Google Scholar 

  137. Chen L, Hahn H, Wu G, Chen CH, Liron T, Schechtman D, Cavallaro G, Banci L, Guo Y, Bolli R, Dorn GW 2nd, Mochly-Rosen D (2001) Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci USA 98:11114–11119

    Article  PubMed  CAS  Google Scholar 

  138. Inagaki K, Begley R, Ikeno F, Mochly-Rosen D (2005) Cardioprotection by epsilon-protein kinase C activation from ischemia: continuous delivery and antiarrhythmic effect of an epsilon-protein kinase C-activating peptide. Circulation 111:44–50

    Article  PubMed  CAS  Google Scholar 

  139. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  PubMed  CAS  Google Scholar 

  140. Inagaki K, Chen L, Ikeno F, Lee FH, Imahashi K, Bouley DM, Rezaee M, Yock PG, Murphy E, Mochly-Rosen D (2003) Inhibition of delta-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation 108:2304–2307

    Article  PubMed  CAS  Google Scholar 

  141. Hlavackova M, Kozichova K, Neckar J, Kolar F, Musters RJ, Novak F, Novakova O (2010) Up-regulation and redistribution of protein kinase C-delta in chronically hypoxic heart. Mol Cell Biochem 345:271–282

    Article  PubMed  CAS  Google Scholar 

  142. Bu X, Zhang N, Yang X, Liu Y, Du J, Liang J, Xu Q, Li J (2011) Proteomic analysis of cPKCbetaII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice. J Neurochem 117:346–356

    Article  PubMed  CAS  Google Scholar 

  143. Salek-Ardakani S, So T, Halteman BS, Altman A, Croft M (2004) Differential regulation of Th2 and Th1 lung inflammatory responses by protein kinase C theta. J Immunol 173:6440–6447

    PubMed  CAS  Google Scholar 

  144. Marsland BJ, Soos TJ, Spath G, Littman DR, Kopf M (2004) Protein kinase C theta is critical for the development of in vivo T helper (Th)2 cell but not Th1 cell responses. J Exp Med 200:181–189

    Article  PubMed  CAS  Google Scholar 

  145. Healy AM, Izmailova E, Fitzgerald M, Walker R, Hattersley M, Silva M, Siebert E, Terkelsen J, Picarella D, Pickard MD, LeClair B, Chandra S, Jaffee B (2006) PKC-theta-deficient mice are protected from Th1-dependent antigen-induced arthritis. J Immunol 177:1886–1893

    PubMed  CAS  Google Scholar 

  146. Manicassamy S, Yin D, Zhang Z, Molinero LL, Alegre ML, Sun Z (2008) A critical role for protein kinase C-theta-mediated T cell survival in cardiac allograft rejection. J Immunol 181:513–520

    PubMed  CAS  Google Scholar 

  147. Wang L, Xiang Z, Ma LL, Chen Z, Gao X, Sun Z, Williams P, Chari RS, Yin DP (2009) Deficiency of protein kinase C-theta facilitates tolerance induction. Transplantation 87:507–516

    Article  PubMed  CAS  Google Scholar 

  148. Geraldes P, King GL (2010) Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 106:1319–1331

    Article  PubMed  CAS  Google Scholar 

  149. Nawaratne R, Gray A, Jorgensen CH, Downes CP, Siddle K, Sethi JK (2006) Regulation of insulin receptor substrate 1 pleckstrin homology domain by protein kinase C: role of serine 24 phosphorylation. Mol Endocrinol 20:1838–1852

    Article  PubMed  CAS  Google Scholar 

  150. Mima A, Ohshiro Y, Kitada M, Matsumoto M, Geraldes P, Li C, Li Q, White GS, Cahill C, Rask-Madsen C, King GL (2011) Glomerular-specific protein kinase C-beta-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. Kidney Int 79:883–896

    Article  PubMed  CAS  Google Scholar 

  151. Waraich RS, Weigert C, Kalbacher H, Hennige AM, Lutz SZ, Haring HU, Schleicher ED, Voelter W, Lehmann R (2008) Phosphorylation of Ser357 of rat insulin receptor substrate-1 mediates adverse effects of protein kinase C-delta on insulin action in skeletal muscle cells. J Biol Chem 283:11226–11233

    Article  PubMed  CAS  Google Scholar 

  152. Lee S, Lynn EG, Kim JA, Quon MJ (2008) Protein kinase C-zeta phosphorylates insulin receptor substrate-1, -3, and -4 but not -2: isoform specific determinants of specificity in insulin signaling. Endocrinology 149:2451–2458

    Article  PubMed  CAS  Google Scholar 

  153. Oriente F, Andreozzi F, Romano C, Perruolo G, Perfetti A, Fiory F, Miele C, Beguinot F, Formisano P (2005) Protein kinase C-alpha regulates insulin action and degradation by interacting with insulin receptor substrate-1 and 14-3-3 epsilon. J Biol Chem 280:40642–40649

    Article  PubMed  CAS  Google Scholar 

  154. Chappell DS, Patel NA, Jiang K, Li P, Watson JE, Byers DM, Cooper DR (2009) Functional involvement of protein kinase C-betaII and its substrate, myristoylated alanine-rich C-kinase substrate (MARCKS), in insulin-stimulated glucose transport in L6 rat skeletal muscle cells. Diabetologia 52:901–911

    Article  PubMed  CAS  Google Scholar 

  155. Jacob AI, Horovitz-Fried M, Aga-Mizrachi S, Brutman-Barazani T, Okhrimenko H, Zick Y, Brodie C, Sampson SR (2010) The regulatory domain of protein kinase C delta positively regulates insulin receptor signaling. J Mol Endocrinol 44:155–169

    Article  PubMed  CAS  Google Scholar 

  156. Narita M, Mizoguchi H, Suzuki T, Narita M, Dun NJ, Imai S, Yajima Y, Nagase H, Suzuki T, Tseng LF (2001) Enhanced mu-opioid responses in the spinal cord of mice lacking protein kinase C gamma isoform. J Biol Chem 276:15409–15414

    Article  PubMed  CAS  Google Scholar 

  157. Reichling DB, Levine JD (2009) Critical role of nociceptor plasticity in chronic pain. Trends Neurosci 32:611–618

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Richard van Rijn for providing helpful suggestions and thorough review of our manuscript. This chapter was supported in part by the Department of Defense PH/TBI program under award number W81XWH-08-1-0620 (to PMN) and National Institutes of Health Award DA027948 (to PMN). Views and opinions of, and endorsements by the author(s) do not reflect those of the US Army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Newton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zeng, L., Webster, S.V., Newton, P.M. (2012). The Biology of Protein Kinase C. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_28

Download citation

Publish with us

Policies and ethics