Skip to main content

Calcium Signaling: From Single Channels to Pathways

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Ca2+ is not only one of the most versatile and ubiquitous second messengers but also a well-established representative example of cell signaling. The identification of most key elements involved in Ca2+ signaling enables a mechanistic and quantitative understanding of this particular pathway. Cellular behavior relies in general on the orchestration of molecular behavior leading to reliable cellular responses that allow for regulation and adaptation. Ca2+ signaling uses a hierarchical organization to transform single molecule behavior into cell wide signals. We have recently shown experimentally that this organization carries single channel signatures onto the whole cell level and renders Ca2+ oscillations stochastic. Here, we briefly review the co-evolution of experimental and theoretical studies in Ca2+ ­signaling and show how dynamic bottom-up modeling can be used to address ­biological questions and illuminate biological principles of cell signaling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berridge MJ, Bootman MD, Lipp P (1998) Calcium – a life and death signal. Nature 395:645–648

    Article  PubMed  CAS  Google Scholar 

  2. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  3. Taylor CW (2002) Controlling calcium entry. Cell 111:767–769

    Article  PubMed  CAS  Google Scholar 

  4. Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A (2007) Molecular cell biology. Palgrave Macmillan, Basingstoke

    Google Scholar 

  5. Taylor CW, Tovey SC (2010) IP3 receptors: toward understanding their activation. Cold Spring Harb Perspect Biol 2:a004010

    Article  PubMed  CAS  Google Scholar 

  6. Taylor CW, Laude AJ (2002) IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium 32:321–334

    Article  PubMed  CAS  Google Scholar 

  7. Falcke M (2004) Reading the patterns in living cells – the physics of Ca2+ signaling. Adv Phys 53:255–440

    Article  CAS  Google Scholar 

  8. Schuster S, Marhl M, Hofer T (2002) Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem 269:1333–1355

    Article  PubMed  CAS  Google Scholar 

  9. De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci USA 89:9895–9899

    Article  PubMed  Google Scholar 

  10. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    Article  PubMed  CAS  Google Scholar 

  11. Yao Y, Choi J, Parker I (1995) Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J Physiol 482(Pt 3):533–553

    PubMed  CAS  Google Scholar 

  12. Marchant JS, Callamaras N, Parker I (1999) Initiation of IP3-mediated Ca2+ waves in Xenopus oocytes. EMBO J 18:5285–5299

    Article  PubMed  CAS  Google Scholar 

  13. Smith IF, Wiltgen SM, Parker I (2009) Localization of puff sites adjacent to the plasma membrane: functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP3. Cell Calcium 45:65–76

    Article  PubMed  CAS  Google Scholar 

  14. Bootman MD, Berridge MJ, Lipp P (1997) Cooking with calcium: the recipes for composing global signals from elementary events. Cell 91:367–373

    Article  PubMed  CAS  Google Scholar 

  15. Tovey SC, de Smet P, Lipp P, Thomas D, Young KW, Missiaen L, De Smedt H, Parys JB, Berridge MJ, Thuring J, Holmes A, Bootman MD (2001) Calcium puffs are generic InsP(3)-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J Cell Sci 114:3979–3989

    PubMed  CAS  Google Scholar 

  16. Taufiq Ur R, Skupin A, Falcke M, Taylor CW (2009) Clustering of InsP3 receptors by InsP3 retunes their regulation by InsP3 and Ca2+. Nature 458:655–659

    Article  Google Scholar 

  17. Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman & Hall, New York

    Book  Google Scholar 

  18. Woods NM, Cuthbertson KS, Cobbold PH (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319:600–602

    Article  PubMed  CAS  Google Scholar 

  19. Meyer T, Stryer L (1988) Molecular model for receptor-stimulated calcium spiking. Proc Natl Acad Sci USA 85:5051–5055

    Article  PubMed  CAS  Google Scholar 

  20. Goldbeter A, Dupont G, Berridge MJ (1990) Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci USA 87:1461–1465

    Article  PubMed  CAS  Google Scholar 

  21. Cornell-Bell AH, Finkbeiner SM (1991) Ca2+ waves in astrocytes. Cell Calcium 12:185–204

    Article  PubMed  CAS  Google Scholar 

  22. Lechleiter J, Girard S, Peralta E, Clapham D (1991) Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252:123–126

    Article  PubMed  CAS  Google Scholar 

  23. Jaffe LF (1991) The path of calcium in cytosolic calcium oscillations: a unifying hypothesis. Proc Natl Acad Sci USA 88:9883–9887

    Article  PubMed  CAS  Google Scholar 

  24. Taylor CW, da Fonseca PC, Morris EP (2004) IP(3) receptors: the search for structure. Trends Biochem Sci 29:210–219

    Article  PubMed  CAS  Google Scholar 

  25. Suhara W, Kobayashi M, Sagara H, Hamada K, Goto T, Fujimoto I, Torimitsu K, Mikoshiba K (2006) Visualization of inositol 1,4,5-trisphosphate receptor by atomic force microscopy. Neurosci Lett 391:102–107

    Article  PubMed  CAS  Google Scholar 

  26. Tateishi Y, Hattori M, Nakayama T, Iwai M, Bannai H, Nakamura T, Michikawa T, Inoue T, Mikoshiba K (2005) Cluster formation of inositol 1,4,5-trisphosphate receptor requires its transition to open state. J Biol Chem 280:6816–6822

    Article  PubMed  CAS  Google Scholar 

  27. Marchant JS, Parker I (2001) Role of elementary Ca2+ puffs in generating repetitive Ca2+ oscillations. EMBO J 20:65–76

    Article  PubMed  CAS  Google Scholar 

  28. Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793:933–940

    Article  PubMed  CAS  Google Scholar 

  29. Skupin A, Kettenmann H, Falcke M (2010) Calcium signals driven by single channel noise. PLoS Comput Biol 6:e1000870

    Article  PubMed  Google Scholar 

  30. Rudiger S, Shuai JW, Huisinga W, Nagaiah C, Warnecke G, Parker I, Falcke M (2007) Hybrid stochastic and deterministic simulations of calcium blips. Biophys J 93:1847–1857

    Article  PubMed  CAS  Google Scholar 

  31. Perc M, Green AK, Dixon CJ, Marhl M (2008) Establishing the stochastic nature of intracellular calcium oscillations from experimental data. Biophys Chem 132:33–38

    Article  PubMed  CAS  Google Scholar 

  32. Skupin A, Kettenmann H, Winkler U, Wartenberg M, Sauer H, Tovey SC, Taylor CW, Falcke M (2008) How does intracellular Ca2+ oscillate: by chance or by the clock? Biophys J 94:2404–2411

    Article  PubMed  CAS  Google Scholar 

  33. Skupin A, Falcke M (2009) From puffs to global Ca2+ signals: how molecular properties shape global signals. Chaos 19:037111

    Article  PubMed  Google Scholar 

  34. Dupont G, Abou-Lovergne A, Combettes L (2008) Stochastic aspects of oscillatory Ca2+ dynamics in hepatocytes. Biophys J 95:2193–2202

    Article  PubMed  CAS  Google Scholar 

  35. Dupont G, Combettes L (2009) What can we learn from the irregularity of Ca2+ oscillations? Chaos 19:037112

    Article  PubMed  Google Scholar 

  36. Dupont G, Erneux C (1997) Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations. Cell Calcium 22:321–331

    Article  PubMed  CAS  Google Scholar 

  37. Solovey G, Fraiman D, Pando B, Ponce Dawson S (2008) Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+ -release channels. Phys Rev E Stat Nonlin Soft Matter Phys 78:041915

    Article  PubMed  CAS  Google Scholar 

  38. Bentele K, Falcke M (2007) Quasi-steady approximation for ion channel currents. Biophys J 93:2597–2608

    Article  PubMed  CAS  Google Scholar 

  39. Thurley K, Falcke M (2011) Derivation of Ca2+ signals from puff properties reveals that pathway function is robust against cell variability but sensitive for control. Proc Natl Acad Sci USA 108:427–432

    Article  PubMed  CAS  Google Scholar 

  40. Penzlin H (2009) The riddle of “life,” a biologist’s critical view. Naturwissenschaften 96:1–23

    Article  PubMed  CAS  Google Scholar 

  41. Laughlin RB, Pines D (2000) The theory of everything. Proc Natl Acad Sci USA 97:28–31

    Article  PubMed  CAS  Google Scholar 

  42. Van Kampen NG (2002) Stochastic processes in physics and chemistry. Elsevier Science B.V., Amsterdam

    Google Scholar 

  43. Thul R, Thurley K, Falcke M (2009) Toward a predictive model of Ca2+ puffs. Chaos 19:037108

    Article  PubMed  CAS  Google Scholar 

  44. Smith IF, Parker I (2009) Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells. Proc Natl Acad Sci USA 106:6404–6409

    Article  PubMed  CAS  Google Scholar 

  45. Thurley K, Smith IF, Tovey SC, Taylor CW, Parker I, Falcke M (2011) Timescales of IP3-evoked Ca2+ spikes emerge from Ca2+ puffs only at the cellular level. Biophys J 101:2638–2644

    Google Scholar 

  46. Wagner A (2005) Robustness and evolvability in living systems. Princeton University Press, Princeton

    Google Scholar 

  47. Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    Article  PubMed  CAS  Google Scholar 

  48. Stelling J, Sauer U, Szallasi Z, Doyle FJ 3rd, Doyle J (2004) Robustness of cellular functions. Cell 118:675–685

    Article  PubMed  CAS  Google Scholar 

  49. Taylor CW, Thorn P (2001) Calcium signalling: IP3 rises again…and again. Curr Biol 11:R352–R355

    Article  PubMed  CAS  Google Scholar 

  50. Dekel E, Alon U (2005) Optimality and evolutionary tuning of the expression level of a ­protein. Nature 436:588–592

    Article  PubMed  CAS  Google Scholar 

  51. Kashtan N, Noor E, Alon U (2007) Varying environments can speed up evolution. Proc Natl Acad Sci USA 104:13711–13716

    Article  PubMed  CAS  Google Scholar 

  52. Gerhart J, Kirschner M (2007) The theory of facilitated variation. Proc Natl Acad Sci USA 104(Suppl 1):8582–8589

    Article  PubMed  CAS  Google Scholar 

  53. Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation and tolerance of intracellular noise. Nature 420:231–237

    Article  PubMed  CAS  Google Scholar 

  54. Delbruck M (1945) The burst size distribution in the growth of bacterial viruses (bacteriophages). J Bacteriol 50:131–135

    Google Scholar 

  55. Lestas I, Vinnicombe G, Paulsson J (2010) Fundamental limits on the suppression of molecular fluctuations. Nature 467:174–178

    Article  PubMed  CAS  Google Scholar 

  56. Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95:8420–8427

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Rüdiger Thul for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Skupin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Skupin, A., Thurley, K. (2012). Calcium Signaling: From Single Channels to Pathways. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_24

Download citation

Publish with us

Policies and ethics