Skip to main content

Mitochondria-Associated Membranes (MAMs) as Hotspot Ca2+ Signaling Units

  • Chapter
  • First Online:
Calcium Signaling

Abstract

The tight interplay between endoplasmic reticulum (ER) and mitochondria is a key determinant of cell function and survival through the control of intracellular calcium (Ca2+) signaling. The specific sites of physical association between ER and mitochondria are known as mitochondria-associated membranes (MAMs). It has recently become clear that MAMs are crucial for highly efficient transmission of Ca2+ from the ER to mitochondria, thus controlling fundamental processes involved in energy production and also determining cell fate by triggering or preventing apoptosis. In this contribution, we summarize the main features of the Ca2+-signaling toolkit, covering also the latest breakthroughs in the field, such as the identification of novel candidate proteins implicated in mitochondrial Ca2+ transport and the recent direct characterization of the high-Ca2+ microdomains between ER and mitochondria. We review the main functions of these two organelles, with special emphasis on Ca2+ handling and on the structural and molecular foundations of the signaling contacts between them. Additionally, we provide important examples of the physiopathological role of this cross-talk, briefly describing the key role played by MAMs proteins in many diseases, and shedding light on the essential role of mitochondria-ER interactions in the maintenance of cellular homeostasis and the determination of cell fate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ΔΨm :

Mitochondrial membrane potential difference

AD:

Alzheimer’s disease

ANT:

Adenine nucleotide translocase

Bap31:

(B-cell receptor-associated protein 31)

BFP:

Blue fluorescent protein

BiP:

Binding immunoglobulin Protein

Ca2+ :

Calcium ions

[Ca2+]:

Ca2+ concentration

[Ca2+]c :

Cytosolic Ca2+ concentration

[Ca2+]m :

Mitochondrial Ca2+ concentration

CABPs:

Intraluminal Ca2+-binding proteins

CaMKII:

Calmodulin-dependent protein kinase II

CCE:

Capacitative Ca2+ entry

Cyp D:

Cyclophilin D

Drp1:

Dynamin-related protein 1

ER:

Endoplasmic reticulum

ERp44:

(Endoplasmic reticulum resident protein 44)

FACL4:

Long-chain fatty acid-CoA ligase type 4

FAD:

Familial Alzheimer’s disease

Fhit:

Fragile histidine triad

Fis1:

Fission 1 homologue

FRET:

Fluorescence resonance energy transfer

GFP:

Green fluorescent protein

GM1:

GM1-ganglioside

grp75:

Glucose-regulated protein 75

HK:

Hexokinase

IMM:

Inner mitochondrial membrane

IMS:

Intermembrane space

IP3:

Inositol 1,4,5-trisphosphate

IP3R:

Inositol 1,4,5-trisphosphate receptor

Letm1:

Leucine zipper-EF-hand containing transmembrane protein 1

MAMs:

Mitochondria-associated membranes

MCU:

Mitochondrial Ca2+ uniporter

MICU1:

Mitochondrial calcium uptake 1

Mfn:

Mitofusin

mHCX:

Mitochondrial H+/Ca2+ exchanger

MMP:

Mitochondrial membrane permeabilization

mNCX:

Mitochondrial Na2+/Ca2+ exchanger

MOMP:

Mitochondrial outer membrane permeabilization

NADH:

Nicotinamide adenine dinucleotide

NCX:

Na2+/Ca2+ exchanger

NE:

nuclear envelope

OMM:

Outer mitochondrial membrane

OPA1:

Optic atrophy 1

OXPHOS:

Oxidative phosphorylation

p66shc:

66-kDa isoform of the growth factor adapter shc

PACS-2:

Phosphofurin acidic cluster sorting protein 2

PAMs:

Plasma membrane associated membranes

PDH:

Pyruvate dehydrogenase

PKA:

Protein kinase A

PKC:

Protein kinase C

PLC:

Phospholipase C

PMCA:

Plasma membrane Ca2+ ATPase

PML:

Promyelocytic leukemia protein

PP2a:

Protein phosphatase 2a

PS1:

Presenilin-1

PS2:

Presenilin-2

PSS-1:

Phosphatidylserine synthase-1

PTP:

Permeability transition pore

ROCs:

Receptor operated Ca2+ channels

ROS:

Reactive oxygen species

RyR:

Ryanodine receptor

SERCA:

Sarco-endoplasmic reticulum Ca2+ ATPase

Sig-1R:

Sigma-1 receptor

SMOCs:

Second messenger operated Ca2+ channels

SR:

Sarcoplasmic reticulum

TIRF:

Total internal reflection fluorescence

TpMs:

Trichoplein/Mitostatin

UCP:

Uncoupling protein

VDAC:

Voltage-dependent anion channel

VOCs:

Voltage operated Ca2+ channels.

References

  1. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  2. Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378

    Article  PubMed  CAS  Google Scholar 

  3. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    PubMed  CAS  Google Scholar 

  4. Bertolino M, Llinas RR (1992) The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu Rev Pharmacol Toxicol 32:399–421

    Article  PubMed  CAS  Google Scholar 

  5. McFadzean I, Gibson A (2002) The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br J Pharmacol 135:1–13

    Article  PubMed  CAS  Google Scholar 

  6. Meldolesi J, Pozzan T (1987) Pathways of Ca2+ influx at the plasma membrane: voltage-, receptor-, and second messenger-operated channels. Exp Cell Res 171:271–283

    Article  PubMed  CAS  Google Scholar 

  7. Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    Article  PubMed  CAS  Google Scholar 

  8. Sutko JL, Airey JA (1996) Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev 76:1027–1071

    PubMed  CAS  Google Scholar 

  9. Patel S, Joseph SK, Thomas AP (1999) Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25:247–264

    Article  PubMed  CAS  Google Scholar 

  10. Patterson RL, Boehning D, Snyder SH (2004) Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem 73:437–465

    Article  PubMed  CAS  Google Scholar 

  11. Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40:405–412

    Article  PubMed  CAS  Google Scholar 

  12. John LM, Lechleiter JD, Camacho P (1998) Differential modulation of SERCA2 isoforms by calreticulin. J Cell Biol 142:963–973

    Article  PubMed  CAS  Google Scholar 

  13. Carafoli E (2003) Historical review: mitochondria and calcium: ups and downs of an unusual relationship. Trends Biochem Sci 28:175–181

    Article  PubMed  CAS  Google Scholar 

  14. Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327

    Article  PubMed  CAS  Google Scholar 

  15. Nicholls DG, Crompton M (1980) Mitochondrial calcium transport. FEBS Lett 111:261–268

    Article  PubMed  CAS  Google Scholar 

  16. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    Article  PubMed  CAS  Google Scholar 

  17. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  PubMed  CAS  Google Scholar 

  18. Csordas G, Thomas AP, Hajnoczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18:96–108

    Article  PubMed  CAS  Google Scholar 

  19. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    Article  PubMed  CAS  Google Scholar 

  20. Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290

    Article  PubMed  CAS  Google Scholar 

  21. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530

    Article  PubMed  CAS  Google Scholar 

  22. Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132

    Article  PubMed  CAS  Google Scholar 

  23. Inoue T, Heo WD, Grimley JS, Wandless TJ, Meyer T (2005) An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat Methods 2:415–418

    Article  PubMed  CAS  Google Scholar 

  24. Simamura E, Shimada H, Hatta T, Hirai K (2008) Mitochondrial voltage-dependent anion channels (VDACs) as novel pharmacological targets for anti-cancer agents. J Bioenerg Biomembr 40:213–217

    Article  PubMed  CAS  Google Scholar 

  25. De Pinto V, Reina S, Guarino F, Messina A (2008) Structure of the voltage dependent anion channel: state of the art. J Bioenerg Biomembr 40:139–147

    Article  PubMed  CAS  Google Scholar 

  26. Colombini M (2009) The published 3D structure of the VDAC channel: native or not? Trends Biochem Sci 34:382–389

    Article  PubMed  CAS  Google Scholar 

  27. Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31:227–285

    Article  PubMed  CAS  Google Scholar 

  28. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467:291–296

    Article  PubMed  CAS  Google Scholar 

  29. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  PubMed  CAS  Google Scholar 

  30. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed  CAS  Google Scholar 

  31. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  PubMed  CAS  Google Scholar 

  32. Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155

    PubMed  CAS  Google Scholar 

  33. Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA 107:436–441

    Article  PubMed  CAS  Google Scholar 

  34. Baines CP (2009) The molecular composition of the mitochondrial permeability transition pore. J Mol Cell Cardiol 46:850–857

    Article  PubMed  CAS  Google Scholar 

  35. Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12:815–833

    Article  PubMed  CAS  Google Scholar 

  36. Rasola A, Sciacovelli M, Pantic B, Bernardi P (2010) Signal transduction to the permeability transition pore. FEBS Lett 584:1989–1996

    Article  PubMed  CAS  Google Scholar 

  37. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    PubMed  CAS  Google Scholar 

  38. Carafoli E (2010) The fateful encounter of mitochondria with calcium: how did it happen? Biochim Biophys Acta 1797:595–606

    Article  PubMed  CAS  Google Scholar 

  39. Maes K, Missiaen L, De Smet P, Vanlingen S, Callewaert G, Parys JB, De Smedt H (2000) Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP. Cell Calcium 27:257–267

    Article  PubMed  CAS  Google Scholar 

  40. Betzenhauser MJ, Wagner LE 2nd, Iwai M, Michikawa T, Mikoshiba K, Yule DI (2008) ATP modulation of Ca2+ release by type-2 and type-3 inositol (1, 4, 5)-triphosphate receptors. Differing ATP sensitivities and molecular determinants of action. J Biol Chem 283:21579–21587

    Article  PubMed  CAS  Google Scholar 

  41. Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A (2009) Modulation of calcium signalling by mitochondria. Biochim Biophys Acta 1787:1374–1382

    Article  PubMed  CAS  Google Scholar 

  42. Arnaudeau S, Kelley WL, Walsh JV Jr (2001) Demaurex N: mitochondria recycle Ca(2+) to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 276:29430–29439

    Article  PubMed  CAS  Google Scholar 

  43. Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, Tepikin AV, Petersen OH (1999) Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca(2+) signals. EMBO J 18:4999–5008

    Article  PubMed  CAS  Google Scholar 

  44. Goetz JG, Genty H, St-Pierre P, Dang T, Joshi B, Sauve R, Vogl W, Nabi IR (2007) Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels. J Cell Sci 120:3553–3564

    Article  PubMed  CAS  Google Scholar 

  45. Wang HJ, Guay G, Pogan L, Sauve R, Nabi IR (2000) Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol 150:1489–1498

    Article  PubMed  CAS  Google Scholar 

  46. Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167:661–672

    Article  PubMed  CAS  Google Scholar 

  47. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    Article  PubMed  CAS  Google Scholar 

  48. Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ (2003) Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci 23:7881–7888

    PubMed  CAS  Google Scholar 

  49. Germain M, Mathai JP, McBride HM, Shore GC (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 24:1546–1556

    Article  PubMed  CAS  Google Scholar 

  50. Alirol E, James D, Huber D, Marchetto A, Vergani L, Martinou JC, Scorrano L (2006) The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol Biol Cell 17:4593–4605

    Article  PubMed  CAS  Google Scholar 

  51. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2  +  -mediated apoptosis. Mol Cell 16:59–68

    Article  PubMed  CAS  Google Scholar 

  52. Lu B (2009) Mitochondrial dynamics and neurodegeneration. Curr Neurol Neurosci Rep 9:212–219

    Article  PubMed  CAS  Google Scholar 

  53. Giorgi C, Romagnoli A, Pinton P, Rizzuto R (2008) Ca2+ signaling, mitochondria and cell death. Curr Mol Med 8:119–130

    Article  PubMed  CAS  Google Scholar 

  54. Harr MW, Distelhorst CW (2010) Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol 2:a005579

    Article  PubMed  CAS  Google Scholar 

  55. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  56. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  PubMed  CAS  Google Scholar 

  57. Armstrong JS (2006) The role of the mitochondrial permeability transition in cell death. Mitochondrion 6:225–234

    Article  PubMed  CAS  Google Scholar 

  58. Rong Y, Distelhorst CW (2008) Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70:73–91

    Article  PubMed  CAS  Google Scholar 

  59. Trinei M, Berniakovich I, Beltrami E, Migliaccio E, Fassina A, Pelicci P, Giorgio M (2009) P66Shc signals to age. Aging (Albany NY) 1:503–510

    CAS  Google Scholar 

  60. Pinton P, Rimessi A, Marchi S, Orsini F, Migliaccio E, Giorgio M, Contursi C, Minucci S, Mantovani F, Wieckowski MR, Del Sal G, Pelicci PG, Rizzuto R (2007) Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315:659–663

    Article  PubMed  CAS  Google Scholar 

  61. Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124:573–586

    Article  PubMed  CAS  Google Scholar 

  62. Shibata Y, Voeltz GK, Rapoport TA (2006) Rough sheets and smooth tubules. Cell 126:435–439

    Article  PubMed  CAS  Google Scholar 

  63. English AR, Zurek N, Voeltz GK (2009) Peripheral ER structure and function. Curr Opin Cell Biol 21:596–602

    Article  PubMed  CAS  Google Scholar 

  64. Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA (2010) Mechanisms determining the morphology of the peripheral ER. Cell 143:774–788

    Article  PubMed  CAS  Google Scholar 

  65. Chevet E, Cameron PH, Pelletier MF, Thomas DY, Bergeron JJ (2001) The endoplasmic reticulum: integration of protein folding, quality control, signaling and degradation. Curr Opin Struct Biol 11:120–124

    Article  PubMed  CAS  Google Scholar 

  66. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:347–358

    Article  PubMed  CAS  Google Scholar 

  67. Bootman MD, Petersen OH, Verkhratsky A (2002) The endoplasmic reticulum is a focal point for co-ordination of cellular activity. Cell Calcium 32:231–234

    Article  PubMed  CAS  Google Scholar 

  68. Verkhratsky A, Petersen OH (2002) The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death. Eur J Pharmacol 447:141–154

    Article  PubMed  CAS  Google Scholar 

  69. Jobsis FF, O’Connor MJ (1966) Calcium release and reabsorption in the sartorius muscle of the toad. Biochem Biophys Res Commun 25:246–252

    Article  PubMed  CAS  Google Scholar 

  70. Ridgway EB, Ashley CC (1967) Calcium transients in single muscle fibers. Biochem Biophys Res Commun 29:229–234

    Article  PubMed  CAS  Google Scholar 

  71. Ashley CC, Ridgway EB (1970) On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres. J Physiol 209:105–130

    PubMed  CAS  Google Scholar 

  72. MacKrill JJ (1999) Protein-protein interactions in intracellular Ca2  +  -release channel function. Biochem J 337(Pt 3):345–361

    Article  PubMed  CAS  Google Scholar 

  73. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–1351

    Article  PubMed  CAS  Google Scholar 

  74. Iino M, Endo M (1992) Calcium-dependent immediate feedback control of inositol 1,4,5-triphosphate-induced Ca2+ release. Nature 360:76–78

    Article  PubMed  CAS  Google Scholar 

  75. Missiaen L, Taylor CW, Berridge MJ (1992) Luminal Ca2+ promoting spontaneous Ca2+ release from inositol trisphosphate-sensitive stores in rat hepatocytes. J Physiol 455:623–640

    PubMed  CAS  Google Scholar 

  76. Nunn DL, Taylor CW (1992) Luminal Ca2+ increases the sensitivity of Ca2+ stores to inositol 1,4,5-trisphosphate. Mol Pharmacol 41:115–119

    PubMed  CAS  Google Scholar 

  77. Smith JB, Smith L, Higgins BL (1985) Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells. J Biol Chem 260:14413–14416

    PubMed  CAS  Google Scholar 

  78. Bezprozvanny I, Ehrlich BE (1993) ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. Neuron 10:1175–1184

    Article  PubMed  CAS  Google Scholar 

  79. Iino M (1991) Effects of adenine nucleotides on inositol 1,4,5-trisphosphate-induced calcium release in vascular smooth muscle cells. J Gen Physiol 98:681–698

    Article  PubMed  CAS  Google Scholar 

  80. Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G, Parys JB (2009) Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta 1793:959–970

    Article  PubMed  CAS  Google Scholar 

  81. Khan MT, Wagner L 2nd, Yule DI, Bhanumathy C, Joseph SK (2006) Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 281:3731–3737

    Article  PubMed  CAS  Google Scholar 

  82. Bugrim AE (1999) Regulation of Ca2+ release by cAMP-dependent protein kinase. A mechanism for agonist-specific calcium signaling? Cell Calcium 25:219–226

    Article  PubMed  CAS  Google Scholar 

  83. Murthy KS, Zhou H (2003) Selective phosphorylation of the IP3R-I in vivo by cGMP-dependent protein kinase in smooth muscle. Am J Physiol Gastrointest Liver Physiol 284:G221–G230

    PubMed  CAS  Google Scholar 

  84. Bagni C, Mannucci L, Dotti CG, Amaldi F (2000) Chemical stimulation of synaptosomes modulates alpha -Ca2+/calmodulin-dependent protein kinase II mRNA association to polysomes. J Neurosci 20:RC76

    PubMed  CAS  Google Scholar 

  85. Vermassen E, Fissore RA, Nadif Kasri N, Vanderheyden V, Callewaert G, Missiaen L, Parys JB, De Smedt H (2004) Regulation of the phosphorylation of the inositol 1,4,5-trisphosphate receptor by protein kinase C. Biochem Biophys Res Commun 319:888–893

    Article  PubMed  CAS  Google Scholar 

  86. Jayaraman T, Ondrias K, Ondriasova E, Marks AR (1996) Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation. Science 272:1492–1494

    Article  PubMed  CAS  Google Scholar 

  87. Joseph SK, Hajnoczky G (2007) IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis 12:951–968

    Article  PubMed  CAS  Google Scholar 

  88. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418

    Article  PubMed  CAS  Google Scholar 

  89. Pinton P, Ferrari D, Magalhaes P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, Rizzuto R (2000) Reduced loading of intracellular Ca(2+) stores and downregulation of capacitative Ca(2+) influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862

    Article  PubMed  CAS  Google Scholar 

  90. Foyouzi-Youssefi R, Arnaudeau S, Borner C, Kelley WL, Tschopp J, Lew DP, Demaurex N, Krause KH (2000) Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci USA 97:5723–5728

    Article  PubMed  CAS  Google Scholar 

  91. Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci USA 101:17404–17409

    Article  PubMed  CAS  Google Scholar 

  92. White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB, Foskett JK (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 7:1021–1028

    Article  PubMed  CAS  Google Scholar 

  93. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139

    Article  PubMed  CAS  Google Scholar 

  94. Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T, Korsmeyer SJ (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 102:105–110

    Article  PubMed  CAS  Google Scholar 

  95. Pinton P, Rizzuto R (2006) Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 13:1409–1418

    Article  PubMed  CAS  Google Scholar 

  96. Copeland DE, Dalton AJ (1959) An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J Biophys Biochem Cytol 5:393–396

    Article  PubMed  CAS  Google Scholar 

  97. Lewis JA, Tata JR (1973) A rapidly sedimenting fraction of rat liver endoplasmic reticulum. J Cell Sci 13:447–459

    PubMed  CAS  Google Scholar 

  98. Morre DJ, Merritt WD, Lembi CA (1971) Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma 73:43–49

    Article  PubMed  CAS  Google Scholar 

  99. Mannella CA, Buttle K, Rath BK, Marko M (1998) Electron microscopic tomography of rat-liver mitochondria and their interaction with the endoplasmic reticulum. Biofactors 8:225–228

    Article  PubMed  CAS  Google Scholar 

  100. Soltys BJ, Gupta RS (1992) Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules–a quadruple fluorescence labeling study. Biochem Cell Biol 70:1174–1186

    Article  PubMed  CAS  Google Scholar 

  101. Mannella CA, Marko M, Penczek P, Barnard D, Frank J (1994) The internal compartmentation of rat-liver mitochondria: tomographic study using the high-voltage transmission electron microscope. Microsc Res Tech 27:278–283

    Article  PubMed  CAS  Google Scholar 

  102. Achleitner G, Gaigg B, Krasser A, Kainersdorfer E, Kohlwein SD, Perktold A, Zellnig G, Daum G (1999) Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur J Biochem 264:545–553

    Article  PubMed  CAS  Google Scholar 

  103. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921

    Article  PubMed  CAS  Google Scholar 

  104. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    Article  PubMed  CAS  Google Scholar 

  105. Dennis EA, Kennedy EP (1972) Intracellular sites of lipid synthesis and the biogenesis of mitochondria. J Lipid Res 13:263–267

    PubMed  CAS  Google Scholar 

  106. Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265:7248–7256

    PubMed  CAS  Google Scholar 

  107. Vance JE, Stone SJ, Faust JR (1997) Abnormalities in mitochondria-associated membranes and phospholipid biosynthetic enzymes in the mnd/mnd mouse model of neuronal ceroid lipofuscinosis. Biochim Biophys Acta 1344:286–299

    PubMed  CAS  Google Scholar 

  108. Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P (2009) Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 4:1582–1590

    Article  PubMed  CAS  Google Scholar 

  109. Pichler H, Gaigg B, Hrastnik C, Achleitner G, Kohlwein SD, Zellnig G, Perktold A, Daum G (2001) A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids. Eur J Biochem 268:2351–2361

    Article  PubMed  CAS  Google Scholar 

  110. Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174:803–813

    Article  PubMed  CAS  Google Scholar 

  111. Frieden M, Arnaudeau S, Castelbou C, Demaurex N (2005) Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca2  +  -ATPases. J Biol Chem 280:43198–43208

    Article  PubMed  CAS  Google Scholar 

  112. Koziel K, Lebiedzinska M, Szabadkai G, Onopiuk M, Brutkowski W, Wierzbicka K, Wilczynski G, Pinton P, Duszynski J, Zablocki K, Wieckowski MR (2009) Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry? Int J Biochem Cell Biol 41:2440–2449

    Article  PubMed  CAS  Google Scholar 

  113. Piccini M, Vitelli F, Bruttini M, Pober BR, Jonsson JJ, Villanova M, Zollo M, Borsani G, Ballabio A, Renieri A (1998) FACL4, a new gene encoding long-chain acyl-CoA synthetase 4, is deleted in a family with Alport syndrome, elliptocytosis, and mental retardation. Genomics 47:350–358

    Article  PubMed  CAS  Google Scholar 

  114. Stone SJ, Vance JE (2000) Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J Biol Chem 275:34534–34540

    Article  PubMed  CAS  Google Scholar 

  115. Lebiedzinska M, Szabadkai G, Jones AW, Duszynski J, Wieckowski MR (2009) Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. Int J Biochem Cell Biol 41:1805–1816

    Article  PubMed  CAS  Google Scholar 

  116. Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88

    Article  PubMed  CAS  Google Scholar 

  117. Giorgi C, De Stefani D, Bononi A, Rizzuto R, Pinton P (2009) Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol 41:1817–1827

    Article  PubMed  CAS  Google Scholar 

  118. Decuypere JP, Monaco G, Bultynck G, Missiaen L, De Smedt H, Parys JB (2011) The IP(3) receptor-mitochondria connection in apoptosis and autophagy. Biochim Biophys Acta 1813:1003–1013

    Article  PubMed  CAS  Google Scholar 

  119. Mendes CC, Gomes DA, Thompson M, Souto NC, Goes TS, Goes AM, Rodrigues MA, Gomez MV, Nathanson MH, Leite MF (2005) The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 280:40892–40900

    Article  PubMed  CAS  Google Scholar 

  120. Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–424

    Article  PubMed  CAS  Google Scholar 

  121. Rizzuto R, Duchen MR, Pozzan T (2004) Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE 2004:re1

    Article  PubMed  Google Scholar 

  122. Walter L, Hajnoczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37:191–206

    Article  PubMed  CAS  Google Scholar 

  123. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  124. Bernardi P, Rasola A (2007) Calcium and cell death: the mitochondrial connection. Subcell Biochem 45:481–506

    Article  PubMed  CAS  Google Scholar 

  125. Garcia-Perez C, Hajnoczky G, Csordas G (2008) Physical coupling supports the local Ca2+ transfer between sarcoplasmic reticulum subdomains and the mitochondria in heart muscle. J Biol Chem 283:32771–32780

    Article  PubMed  CAS  Google Scholar 

  126. Pacher P, Sharma K, Csordas G, Zhu Y, Hajnoczky G (2008) Uncoupling of ER-mitochondrial calcium communication by transforming growth factor-beta. Am J Physiol Renal Physiol 295:F1303–F1312

    Article  PubMed  CAS  Google Scholar 

  127. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911

    Article  PubMed  CAS  Google Scholar 

  128. Rapizzi E, Pinton P, Szabadkai G, Wieckowski MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE, Rizzuto R (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159:613–624

    Article  PubMed  CAS  Google Scholar 

  129. De Stefani D, Bononi A, Romagnoli A, Messina A, De Pinto V, Pinton P, Rizzuto R (2011) VDAC1 selectively transfers apoptotic Ca(2+) signals to mitochondria. Cell Death Differ 2011 Jul 1. doi: 10.1038/cdd.2011.92. [Epub ahead of print]

    Google Scholar 

  130. Roderick HL, Lechleiter JD, Camacho P (2000) Cytosolic phosphorylation of calnexin controls intracellular Ca(2+) oscillations via an interaction with SERCA2b. J Cell Biol 149:1235–1248

    Article  PubMed  CAS  Google Scholar 

  131. Camacho P, Lechleiter JD (1995) Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 82:765–771

    Article  PubMed  CAS  Google Scholar 

  132. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:651–666

    Article  PubMed  CAS  Google Scholar 

  133. Molinari M, Eriksson KK, Calanca V, Galli C, Cresswell P, Michalak M, Helenius A (2004) Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol Cell 13:125–135

    Article  PubMed  CAS  Google Scholar 

  134. Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM, Thomas G (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729

    Article  PubMed  CAS  Google Scholar 

  135. Kottgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A, Hopker K, Simmen KC, Tschucke CC, Sandford R, Kim E, Thomas G, Walz G (2005) Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 24:705–716

    Article  PubMed  CAS  Google Scholar 

  136. Myhill N, Lynes EM, Nanji JA, Blagoveshchenskaya AD, Fei H, Carmine Simmen K, Cooper TJ, Thomas G, Simmen T (2008) The subcellular distribution of calnexin is mediated by PACS-2. Mol Biol Cell 19:2777–2788

    Article  PubMed  CAS  Google Scholar 

  137. Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160:1115–1127

    Article  PubMed  CAS  Google Scholar 

  138. Bui M, Gilady SY, Fitzsimmons RE, Benson MD, Lynes EM, Gesson K, Alto NM, Strack S, Scott JD, Simmen T (2010) Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties. J Biol Chem 285:31590–31602

    Article  PubMed  CAS  Google Scholar 

  139. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610

    Article  PubMed  CAS  Google Scholar 

  140. Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195–206

    Article  PubMed  CAS  Google Scholar 

  141. Aydar E, Palmer CP, Djamgoz MB (2004) Sigma receptors and cancer: possible involvement of ion channels. Cancer Res 64:5029–5035

    Article  PubMed  CAS  Google Scholar 

  142. Marrazzo A, Caraci F, Salinaro ET, Su TP, Copani A, Ronsisvalle G (2005) Neuroprotective effects of sigma-1 receptor agonists against beta-amyloid-induced toxicity. Neuroreport 16:1223–1226

    Article  PubMed  CAS  Google Scholar 

  143. Vagnerova K, Hurn PD, Bhardwaj A, Kirsch JR (2006) Sigma 1 receptor agonists act as neuroprotective drugs through inhibition of inducible nitric oxide synthase. Anesth Analg 103:430–434, table of contents

    Article  PubMed  CAS  Google Scholar 

  144. Spruce BA, Campbell LA, McTavish N, Cooper MA, Appleyard MV, O’Neill M, Howie J, Samson J, Watt S, Murray K, McLean D, Leslie NR, Safrany ST, Ferguson MJ, Peters JA, Prescott AR, Box G, Hayes A, Nutley B, Raynaud F, Downes CP, Lambert JJ, Thompson AM, Eccles S (2004) Small molecule antagonists of the sigma-1 receptor cause selective release of the death program in tumor and self-reliant cells and inhibit tumor growth in vitro and in vivo. Cancer Res 64:4875–4886

    Article  PubMed  CAS  Google Scholar 

  145. Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120:85–98

    Article  PubMed  CAS  Google Scholar 

  146. Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, Tabas I (2009) Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol 186:783–792

    Article  PubMed  CAS  Google Scholar 

  147. Szalai G, Krishnamurthy R, Hajnoczky G (1999) Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J 18:6349–6361

    Article  PubMed  CAS  Google Scholar 

  148. Gilady SY, Bui M, Lynes EM, Benson MD, Watts R, Vance JE, Simmen T (2010) Ero1alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress Chaperones 15:619–629

    Article  PubMed  CAS  Google Scholar 

  149. Cartoni R, Martinou JC (2009) Role of mitofusin 2 mutations in the physiopathology of Charcot-Marie-Tooth disease type 2A. Exp Neurol 218:268–273

    Article  PubMed  CAS  Google Scholar 

  150. Guo X, Chen KH, Guo Y, Liao H, Tang J, Xiao RP (2007) Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res 101:1113–1122

    Article  PubMed  CAS  Google Scholar 

  151. Vecchione A, Fassan M, Anesti V, Morrione A, Goldoni S, Baldassarre G, Byrne D, D’Arca D, Palazzo JP, Lloyd J, Scorrano L, Gomella LG, Iozzo RV, Baffa R (2009) MITOSTATIN, a putative tumor suppressor on chromosome 12q24.1, is downregulated in human bladder and breast cancer. Oncogene 28:257–269

    Article  PubMed  CAS  Google Scholar 

  152. Cerqua C, Anesti V, Pyakurel A, Liu D, Naon D, Wiche G, Baffa R, Dimmer KS, Scorrano L (2010) Trichoplein/mitostatin regulates endoplasmic reticulum-mitochondria juxtaposition. EMBO Rep 11:854–860

    Article  PubMed  CAS  Google Scholar 

  153. Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S (2011) Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 30:556–568

    Article  PubMed  CAS  Google Scholar 

  154. Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, Rizzuto R (2009) Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. Biochim Biophys Acta 1787:335–344

    Article  PubMed  CAS  Google Scholar 

  155. Contreras L, Drago I, Zampese E, Pozzan T (2010) Mitochondria: the calcium connection. Biochim Biophys Acta 1797:607–618

    Article  PubMed  CAS  Google Scholar 

  156. Area-Gomez E, de Groof AJ, Boldogh I, Bird TD, Gibson GE, Koehler CM, Yu WH, Duff KE, Yaffe MP, Pon LA, Schon EA (2009) Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 175:1810–1816

    Article  PubMed  CAS  Google Scholar 

  157. Zampese E, Fasolato C, Kipanyula MJ, Bortolozzi M, Pozzan T, Pizzo P (2011) Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc Natl Acad Sci USA 108:2777–2782

    Article  PubMed  CAS  Google Scholar 

  158. Smith IF, Green KN, LaFerla FM (2005) Calcium dysregulation in Alzheimer’s disease: recent advances gained from genetically modified animals. Cell Calcium 38:427–437

    Article  PubMed  CAS  Google Scholar 

  159. Small DH (2009) Dysregulation of calcium homeostasis in Alzheimer’s disease. Neurochem Res 34:1824–1829

    Article  PubMed  CAS  Google Scholar 

  160. Yu JT, Chang RC, Tan L (2009) Calcium dysregulation in Alzheimer’s disease: from mechanisms to therapeutic opportunities. Prog Neurobiol 89:240–255

    Article  PubMed  CAS  Google Scholar 

  161. Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, Forte M, d’Azzo A (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell 36:500–511

    Article  PubMed  CAS  Google Scholar 

  162. d’Azzo A, Tessitore A, Sano R (2006) Gangliosides as apoptotic signals in ER stress response. Cell Death Differ 13:404–414

    Article  PubMed  CAS  Google Scholar 

  163. Wu G, Lu ZH, Obukhov AG, Nowycky MC, Ledeen RW (2007) Induction of calcium influx through TRPC5 channels by cross-linking of GM1 ganglioside associated with alpha5beta1 integrin initiates neurite outgrowth. J Neurosci 27:7447–7458

    Article  PubMed  CAS  Google Scholar 

  164. Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, Kotelevets L, Chastre E, Khan F, Landegren U, Soderberg O, Bootman MD, Roderick HL (2008) Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci USA 105:2427–2432

    Article  PubMed  CAS  Google Scholar 

  165. Marchi S, Rimessi A, Giorgi C, Baldini C, Ferroni L, Rizzuto R, Pinton P (2008) Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2  +  -dependent apoptotic stimuli. Biochem Biophys Res Commun 375:501–505

    Article  PubMed  CAS  Google Scholar 

  166. Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, Bononi A, Bonora M, Duszynski J, Bernardi R, Rizzuto R, Tacchetti C, Pinton P, Pandolfi PP (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330:1247–1251

    Article  PubMed  CAS  Google Scholar 

  167. Pinton P, Giorgi C, Pandolfi PP (2011) The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites. Cell Death Differ 18:1450–1456

    Article  PubMed  CAS  Google Scholar 

  168. Lebiedzinska M, Duszynski J, Rizzuto R, Pinton P, Wieckowski MR (2009) Age-related changes in levels of p66Shc and serine 36-phosphorylated p66Shc in organs and mouse tissues. Arch Biochem Biophys 486:73–80

    Article  PubMed  CAS  Google Scholar 

  169. Bozidis P, Williamson CD, Colberg-Poley AM (2008) Mitochondrial and secretory human cytomegwalovirus UL37 proteins traffic into mitochondrion-associated membranes of human cells. J Virol 82:2715–2726

    Article  PubMed  CAS  Google Scholar 

  170. Sheikh MY, Choi J, Qadri I, Friedman JE, Sanyal AJ (2008) Hepatitis C virus infection: molecular pathways to metabolic syndrome. Hepatology 47:2127–2133

    Article  PubMed  CAS  Google Scholar 

  171. Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, Molgo J, Diaz J, Lavandero S, Harper F, Pierron G, di Stefano D, Rizzuto R, Szabadkai G, Kroemer G (2007) Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ 14:1029–1039

    PubMed  CAS  Google Scholar 

  172. Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270–283

    Article  PubMed  CAS  Google Scholar 

  173. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A.B. was supported by a research fellowship FISM – Fondazione Italiana Sclerosi Multipla – Cod. 2010/B/1. SP was supported by a training fellowship FISMJ.M.S. was supported by a PhD fellowship from The Foundation for Polish Science (FNP), EU, European Regional Development Fund and Operational Programme “Innovative economy”. This research was supported by: the Polish Ministry of Science and Higher Education under grant NN407 075 137 to M.R.W. and by Telethon (GGP09128), local funds from the University of Ferrara, the Italian Ministry of Education, University and Research (COFIN), the Italian Cystic Fibrosis Research Foundation and Italian Ministry of Health to P.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Pinton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bononi, A. et al. (2012). Mitochondria-Associated Membranes (MAMs) as Hotspot Ca2+ Signaling Units. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_17

Download citation

Publish with us

Policies and ethics