Skip to main content

Conclusion of Part I

  • Chapter
  • First Online:
Probability and Social Science

Part of the book series: Methodos Series ((METH,volume 10))

  • 1210 Accesses

Abstract

After the detailed examination of the main approaches to probability, the statistical inference that they imply, and their application to social science, we can now try to provide more detailed and better-informed answers to questions to which we have so far offered only partial answers: What is probability? What type of inference does it allow, particularly for social science? Can the three approaches be combined to any extent?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gradus certitudinis.

  2. 2.

    Leibniz is referring to the logic of probability that Aristotle links to the art of rhetoric in Rhetoric.

  3. 3.

    In fact, Gödel (1931) showed that the theories intended to provide a foundation for mathematics, such as Peano’s arithmetic and set theory, contain at least one proposition that can be neither proven nor rejected as false by the theory.

  4. 4.

    (1) die gleichen elektrodynamischen und optischen Gesetze gelten, wie diese für die Größen erster Ordnung bereits erwiesen ist, (2) das Licht im leeren Raume stets mit einer bestimmten, von Bewegungszustande des emittierenden Körpers unabhängigen Geschwindigkeit V fortpflanze.

  5. 5.

    Die Messungsergebnisse sind mit der lorentz-einsteinschen Grundannahme nicht vereinbar.

  6. 6.

    Quando-quidem calculus dicet, sortem Pauli infintum esse, nec tamen ullus sanae mentis, ut dicit, futurus sit, qui non libentissime spem suam vendiderit pro summa viginti ducatorum.

  7. 7.

    At the end of his presentation, given in 1731 but published in 1738, he notes that Cramer, the famous Swiss mathematician (1704–1752), had already described a similar theory in a letter to his cousin Nicolas in 1728, which Daniel Bernoulli quotes.

  8. 8.

    Cramer and Laplace still refer to this notion as moral expectation.

  9. 9.

    aestimari posse emolumentum lucri valde parvi summae bonorum reciproce proportionale.

  10. 10.

    Si decem habuerit ducatos, proxime tres valebit expectatio, and quatuor cum triente praeter propter si centum habuerit, ac denique sex cum mille habuerit. Facile hinc indicatu is quam immensas quis divitas possidere debeat, ut cum ratione viginti ducatis sortem Pauli emere possit.

  11. 11.

    Exponentiation relies on generating new lattice elements from old by grouping the old elements into sets called downsets. Downsets are constructed so that they contain their lower bound. That is, given any element in the downset, all elements included by this element are also members of the set (Knuth 2008).

  12. 12.

    Here we use the notations that we have adopted for the present book and not Knuth’s (2010a), which are slightly different.

References

  • Abel, N. H. (1826). Untersuchung der Functionen zweier unabhängig veränderlichen Gröszen x und y, wie f(x, y), welche die Eigenschaft haben, dasz f[z, f(x,y)] eine symmetrische Function von z, x und y ist. Journal Reine u. angew. Math. (Crelle’s Journal), 1, 11–15.

    Google Scholar 

  • Aczèl, J., Forte, B., & Ng, C. T. (1974). Why the Shannon and Hartley entropies are ‘natural’. Advanced Applied Probabilities, 6, 131–146.

    Google Scholar 

  • Arnauld, A., & Nicole, P. (1662). La logique ou l’Art de penser. Paris: Chez Charles Savreux.

    Google Scholar 

  • Arnborg, S. (2006). Robust Bayesianism: Relation to evidence theory. Journal of Advances in Information Fusion, 1(1), 75–90.

    Google Scholar 

  • Arnborg, S., & Sjödin, G. (2000). Bayes rules in finite models. Proceedings of the European Conference on Artificial Intelligence, Berlin, pp. 571–575.

    Google Scholar 

  • Arnborg, S., & Sjödin, G. (2001). On the foundations of Bayesianism. In Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 20th International Workshop, American Institute of Physics, Gif-sur-Yvette, pp. 61–71.

    Google Scholar 

  • Bacon, F. (1620). Novum Organum. London: J. Bill.

    Google Scholar 

  • Barbin, E., & Marec, Y. (1987). Les recherches sur la probabilité des jugements de Simon-Denis Poisson. Histoire & Mesure, 11(2), 39–58.

    Google Scholar 

  • Barbut, M. (1968). Les treillis des partitions d’un ensemble fini et leur représentation géométrique. Mathématiques et Sciences Humaines, 22, 5–22.

    Google Scholar 

  • Barbut, M., & Monjardet, B. (1970). Ordre et classification. Algèbre et combinatoire (Vol. Tomes 1, 2). Paris: Librairie Hachette.

    Google Scholar 

  • Bateman, B. W. (1987). Keynes changing conception of probability. Economics and Philosophy, 3(1), 97–120.

    Google Scholar 

  • Bayes, T. R. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370–418.

    Google Scholar 

  • Bentham, J. (1823). Traité des preuves judiciaires. Paris: Etienne Dumont.

    Google Scholar 

  • Berger, J. O., Bernardo, J. M., & Sun, D. (2009). The formal definition of reference priors. The Annals of Statistics, 37(2), 905–938.

    Google Scholar 

  • Bernardo, J. M. (2011). Integrated objective Bayesian estimation and hypothesis testing (with discussion). In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, & M. West (Eds.), Bayesian statistics 9 (pp. 1–68). Oxford: Oxford University Press.

    Google Scholar 

  • Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian theory. Chichester: Wiley.

    Google Scholar 

  • Bernoulli, J. I. (1713). Ars conjectandi. Bâle: Impensis Thurnisiorum fratrum.

    Google Scholar 

  • Bernoulli, D. (1738). Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae, V, 175–192.

    Google Scholar 

  • Bertrand, J. (1889). Calcul des probabilités. Paris: Gauthier-Villard et Fils.

    Google Scholar 

  • Birkhoff, G. (1935). Abstract-linear dependence and lattices. American Journal of Mathematics, 57(4), 800–804.

    Google Scholar 

  • Boltzmann, L. (1871). Einige allgemeine Sätze über wärmegleichgewicht. Sitzungberichte, K. Akademie der Wissenshaften, Wien, Mathematisch-Naturwissenchaftlichte Klasse, 63, 679–711.

    Google Scholar 

  • Boole, G. (1854). An investigation of the laws of thought: On which are founded the mathematical theories of logic and probability. London: Walton and Maberly.

    Google Scholar 

  • Braithwaite, R. B. (1941). Book review of Jeffreys’ Theory of probability. Mind, 50, 198–201.

    Google Scholar 

  • Brian, E. (2006). Les phénomènes sociaux que saisissait Jakob Bernoulli, aperçus de Condorcet à Auguste Comte. Journal Electronique d’Histoire des Probabilités et de la Statistique, 2(1b), 1–15.

    Google Scholar 

  • Carnap, R. (1928). Der logische Aufbau der Welt. Leipzig: Felix Meiner Verlag (English translation 1967. The logical structure of the world. Pseudo problems in philosophy. Berkeley: University of California Press).

    Google Scholar 

  • Carnap, R. (1933). L’ancienne et la nouvelle logique. Paris: Hermann.

    Google Scholar 

  • Carnap, R. (1950). The logical foundations of probability. Chicago: University of Chicago Press.

    Google Scholar 

  • Carnap, R. (1952). The continuum of inductive methods. Chicago: University of Chicago Press.

    Google Scholar 

  • Carnot, S. (1824). Réflexions sur la puissance motrice du feu et les machines propres à développer cette puissance. Paris: Bachelier.

    Google Scholar 

  • Caticha, A. (2004). Relative entropy and inductive inference. In G. Erickson & Y. Zhai (Eds.), Bayesian inference and maximum entropy methods in science and engineering (Vol. 107, pp. 75–96). Melville: AIP.

    Google Scholar 

  • Clausius, R. (1865). Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik und Chemie, CXXV, 353–400.

    Google Scholar 

  • Colyvan, M. (2004). The philosophical significance of Cox’s theorem. International Journal of Approximate Reasoning, 37(1), 71–85.

    Google Scholar 

  • Colyvan, M. (2008). Is probability the only coherent approach to uncertainty? Risk Analysis, 28(3), 645–652.

    Google Scholar 

  • Comte, A. (1830–1842). Cours de philosophie positive. Paris: Bachelier.

    Google Scholar 

  • Condorcet. (1778). Sur les probabilités. Histoire de l’Académie Royale de Sciences, 1781, 43–46.

    Google Scholar 

  • Condorcet. (1785). Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Paris: Imprimerie Nationale.

    Google Scholar 

  • Coumet, E. (2003). Auguste Comte, le calcul des chances. Aberration radicale de l’esprit mathématique. Mathématiques et Sciences Humaines, 41(162), 9–17.

    Google Scholar 

  • Council of the Statistical Society of London. (1838). Introduction. Journal of the Statistical Society of London, 1(1), 1–5.

    Google Scholar 

  • Cournot, A.-A. (1843). Exposition de la théorie des chances et des probabilités. Paris: Hachette.

    Google Scholar 

  • Cox, R. (1946). Probability, frequency, and reasonable expectation. American Journal of Physics, 14, 1–13.

    Google Scholar 

  • Cox, R. (1961). The algebra of probable inference. Baltimore: The John Hopkins Press.

    Google Scholar 

  • Cox, R. (1979). On inference and inquiry. In R. D. Levine & M. Tribus (Eds.), The maximum entropy formalism (pp. 119–167). Cambridge: MIT Press.

    Google Scholar 

  • Davis, J. (2003). The relationship between Keynes‘s early and later philosophical thinking. In J. Runde & S. Mizuhara (Eds.), The philosophy of Keynes’s economics: Probability, uncertainty, and convention (pp. 100–110). London/New York: Routledge.

    Google Scholar 

  • Dawid, A. P., & Mortera, J. (1996). Coherent analysis of forensic identification evidence. Journal of the Royal Statistical Society, 58(2), 425–453.

    Google Scholar 

  • de Finetti, B. (1931a). Sul significato soggettivo della probabilità. Fundamenta Mathematicae, 17, 298–329.

    Google Scholar 

  • de Finetti, B. (1931b). Sul concetto di media. Giornale dell’Instituto Italiano degli Attuari, 2, 367–396.

    Google Scholar 

  • de Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré, 7, 1–68 (Paris).

    Google Scholar 

  • de Finetti, B. (1964). Foresight: Its logical laws, its subjective sources. In H. E. Kyburg & H. E. Smokler (Eds.), Studies in subjective probability (pp. 95–158). New York: Wiley.

    Google Scholar 

  • de Finetti, B. (1985). Cambridge probability theorists. The Manchester School, 53, 348–363.

    Google Scholar 

  • Dempster, A. P. (1967). Upper and lower probabilities induced by a multilevel mapping. Annals of Mathematical Statistics, 38, 325–339.

    Google Scholar 

  • Destutt de Tracy, A. L. C. (1801). Elémens d’idéologie (Vol. 4). Paris: Pierre Firmin Didot, An IX (Seconde édition, (1804–1818)).

    Google Scholar 

  • Dubois, D., & Prade, H. (1988). An introduction to possibilistic and fuzzy logics. In P. Smets, A. Mandani, D. Dubois, & H. Prade (Eds.), Non standard logics for automated reasoning (pp. 287–326). New York: Academic Press.

    Google Scholar 

  • Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 332(10), 891–921.

    Google Scholar 

  • Ellsberg, D. (1961). Risk, ambiguity and the Savage axioms. Quarterly Journal of Economics, 75(4), 643–669.

    Google Scholar 

  • Ellsberg, D. (2001). Risk, ambiguity and decision. New York/London: Garland Publishing Inc.

    Google Scholar 

  • Fisher, R. A. (1922a). The mathematical theory of probability. London: Macmillan.

    Google Scholar 

  • Fisher, R. A. (1922b). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society Series A, 222, 309–368.

    Google Scholar 

  • Fisher, R. A. (1925a). Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society, 22, 700–725.

    Google Scholar 

  • Fisher, R. A. (1933). The concepts of inverse probability and fiducial probability referring to unknown parameters. Proceedings of the Royal Society Series A, 139, 343–348.

    Google Scholar 

  • Fisher, R. A. (1934). Probability likelihood and quantity of information in the logic of uncertain inference. Proceedings of the Royal Society Series A, 140, 1–8.

    Google Scholar 

  • Fisher, R. A. (1956). Statistical methods and scientific inference. Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Franck, R. (Ed.). (2002). The explanatory power of models. Bridging the gap between empirical and theoretical research in the social sciences. Boston/Dordrecht/London: Kluwer Academic Publishers.

    Google Scholar 

  • Franklin, J. (2001). Resurrecting logical probability. Erkenntnis, 55, 277–305.

    Google Scholar 

  • Gelfand, A. E., & Solomon, H. (1973). A study of Poisson’s model for jury verdicts in criminal and civil trials. Journal of the American Statistical Association, 68(342), 271–278.

    Google Scholar 

  • Gergonne, J.-D. (1818–1819). Examen critique de quelques dispositions de notre code d’instruction criminelle. Annales de Mathématiques Pures et Appliquées (Annales de Gergonne), 9, 306–319.

    Google Scholar 

  • Gerrard, B. (2003). Keynesian uncertainty: What do we know? In J. Runde & S. Mizuhara (Eds.), The philosophy of Keynes’s economics: Probability, uncertainty, and convention (pp. 239–251). London/New York: Routledge.

    Google Scholar 

  • Gibbs, J. W. (1902). Elementary principles in statistical mechanics. New Haven: Yale University Press.

    Google Scholar 

  • Gillies, D. (2003). Probability and uncertainty in Keynes’s economics. In J. Runde & S. Mizuhara (Eds.), The philosophy of Keynes’s economics: Probability, uncertainty, and convention (pp. 111–129). London/New York: Routledge.

    Google Scholar 

  • Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik, 38, 173–198.

    Google Scholar 

  • Good, I. J. (1962). Subjective probability as the measure of a non-measurable set. In E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, methodology and philosophy of science (pp. 319–329). Stanford: Stanford University Press.

    Google Scholar 

  • Hacking, I. (1975). The emergence of probability. Cambridge: Cambridge University Press.

    Google Scholar 

  • Halpern, J. Y. (1999a). A counterexample of to theorems of Cox and Fine. The Journal of Artificial Intelligence Research, 10, 67–85.

    Google Scholar 

  • Halpern, J. Y. (1999b). Technical addendum, Cox’s theorem revisited. The Journal of Artificial Intelligence Research, 11, 429–435.

    Google Scholar 

  • Halpern, J. Y., & Koller, D. (1995). Representation dependence in probabilistic inference. Proceedings of the fourteenth international joint conference on artificial intelligence (IJCAI’95), Montreal, Quebec, Canada, pp. 1853–1860.

    Google Scholar 

  • Halpern, J. Y., & Koller, D. (2004). Representation dependence in probabilistic inference. The Journal of Artificial Intelligence Research, 21, 319–356.

    Google Scholar 

  • Harr, A. (1933). Der massbegrieff in der Theorie der kontinuierlichen Gruppen. Annals of Mathematical Statistics, 34, 147–169.

    Google Scholar 

  • Hunter, D. (1989). Causality and maximum entropy updating. International Journal of Approximate Reasoning, 3, 87–114.

    Google Scholar 

  • Irwin, J. O. (1941). Book review of Jeffreys’ Theory of probability. Journal of the Royal Statistical Society, 104, 59–64.

    Google Scholar 

  • Jacob, P. (1980). L’empirisme logique: ses antécédents, ses critiques. Paris: Editions de Minuit.

    Google Scholar 

  • Jaynes, E. T. (1956). Probability theory in science and engineering. Dallas: Socony-Mobil Oil Co.

    Google Scholar 

  • Jaynes, E.T. (1957). How does brain do plausible reasoning? Report 421, Microwave Laboratory, Stanford University (published 1988, In G.J. Erickson & C. R. Smith (Eds.), Maximum entropy and Bayesian methods in science and engineering (Vol. 1, pp. 1–24). Dordrecht: Kluwer Academic Publishers).

    Google Scholar 

  • Jaynes, E. T. (1963). Information theory and statistical mechanics. In K. Ford (Ed.), Statistical physics (pp. 181–218). New York: Benjamin.

    Google Scholar 

  • Jaynes, E. T. (1976). Confidence intervals vs. Bayesian intervals. In R. G. Harper & G. Hooker (Eds.), Foundations of probability theory, statistical inference, and statistical theories of science (Vol. II, pp. 175–257). Dordrecht-Holland: D. Reidel Publishing Company.

    Google Scholar 

  • Jaynes, E. T. (1979). Where do we stand on maximum entropy? In R. D. Levine & M. Tribus (Eds.), The maximum entropy formalism (pp. 15–118). Cambridge: MIT Press.

    Google Scholar 

  • Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jeffreys, H. (1931). Scientific inference. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jeffreys, H. (1932). On the theory of errors and least squares. Proceedings of the Royal Society Series A, 138, 48–55.

    Google Scholar 

  • Jeffreys, H. (1933a). Probability, statistics, and the theory of errors. Proceedings of the Royal Society Series A, 140, 523–535.

    Google Scholar 

  • Jeffreys, H. (1933b). On the prior probability in the theory of sampling. Proceedings of the Cambridge Philosophical Society, 29, 83–87.

    Google Scholar 

  • Jeffreys, H. (1934). Probability and scientific method. Proceedings of the Royal Society Series A, 146, 9–16.

    Google Scholar 

  • Jeffreys, H. (1937). On the relation between direct and inverse methods in statistics. Proceedings of the Royal Society Series A, 160, 325–348.

    Google Scholar 

  • Jeffreys, H. (1939). Theory of probability. New York: Clarendon Press.

    Google Scholar 

  • Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London Series A, 186, 453–461.

    Google Scholar 

  • Jeffreys, H. (1955). The present position in probability theory. The British Journal for the Philosophy of Science, 5, 275–289.

    Google Scholar 

  • Kardaun, O. J. W. F., Salomé, D., Schaafsma, W., Steerneman, A. G. M., Willems, J. C., & Cox, D. R. (2003). Reflections on fourteen cryptic issues concerning the nature of statistical inference. International Statistical Review, 71(2), 277–318.

    Google Scholar 

  • Kass, R. E., & Wassetman, L. (1996). The selection of prior distribution by formal rules. Journal of the American Statistical Association, 91, 1343–1369.

    Google Scholar 

  • Kaufmann, W. (1906). Über die Konstitution des Elektrons. Annalen der Physik, 324(3), 487–553.

    Google Scholar 

  • Keynes, J. M. (1921). A treatise on probability. London: Macmillan.

    Google Scholar 

  • Keynes, J. M. (1971). Essay in biography. In The collected writings of John Maynard Keynes (Vol. X). London: Macmillan.

    Google Scholar 

  • Knuth, K. H. (2002). What is a question? In C. Williams (Ed.), Bayesian inference and maximum entropy methods in science and engineering, Moscow ID, 2002 (AIP Conference proceedings, Vol. 659, pp. 227–242). Melville: American Institute of Physics.

    Google Scholar 

  • Knuth, K. H. (2003a). Intelligent machines in the twenty-first century: Foundations of inference and inquiry. Philosophical transactions of the Royal Society of London Series A, 361, 2859–2873.

    Google Scholar 

  • Knuth, K. H. (2003b). Deriving laws from ordering relations. In G. J. Erickson & Y. Zhai (Eds.), Bayesian inference and maximum entropy methods in science and engineering, Jackson Hole WY, USA, 2003 (AIP Conference proceedings, Vol. 707, pp. 204–235). Melville: American Institute of Physics.

    Google Scholar 

  • Knuth, K. H. (2005). Lattice duality: The origin of probability and entropy. Neurocomputing, 67, 245–274.

    Google Scholar 

  • Knuth, K. H. (2007). Lattice theory, measures, and probability. In K. H. Knuth, A. Caticha, J. L. Center, A. Giffin, & C. C. Rodríguez (Eds.), Bayesian inference and maximum entropy methods in science and engineering, Saratoga Springs, NY, USA, 2007 (AIP Conference proceedings, Vol. 954, pp. 23–36). Melville: American Institute of Physics.

    Google Scholar 

  • Knuth, K. H. (2008). The origin of probability and entropy. In M. de Souza Lauretto, C. A. I. de Bragança Pereira, & J. M. Stern (Eds.), Bayesian inference and maximum entropy methods in science and engineering, Saõ Paulo, Brazil 2008 (AIP Conference proceedings, Vol. 1073, pp. 35–48). Melville: American Institute of Physics.

    Google Scholar 

  • Knuth, K. H. (2009). Measuring on lattices. Arxiv preprint: arXiv0909.3684v1 (math..GM). Accessed July 11, 2011.

    Google Scholar 

  • Knuth, K. H. (2010a). Foundations of inference. Arxiv preprint: arXiv1008.4831v1 (math..PR). Accessed July 11, 2011.

    Google Scholar 

  • Knuth, K. H. (2010b). Information physics: The new frontier. Arxiv preprint: arXiv1009. 5161v1 (math.ph). Accessed July 11, 2011.

    Google Scholar 

  • Kolmogorov, A. (1933). Grundbegriffe der wahrscheinlichkeitsrenung. In Ergebisne der Mathematik, (Vol. 2) Berlin: Springer (English translation, Morrison, N. (1950). Foundations of the theory of probability New York: Chelsea).

    Google Scholar 

  • Koopman, B. O. (1940). The axioms and algebra of intuitive probability. Annals of Mathematics, 41(2), 269–292.

    Google Scholar 

  • Koopman, B. O. (1941). Intuitive probabilities and sequences. Annals of Mathematics, 42(1), 169–187.

    Google Scholar 

  • Kuhn, T. (1962). The structure of scientific revolutions. Chicago/London: The University of Chicago Press.

    Google Scholar 

  • Kullbach, S., & Leiber, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86.

    Google Scholar 

  • La Harpe, J.-F. (1799). Lycée, ou cours de littérature ancienne et moderne (Vol. 14). Paris: Chez H. Agasse (An VII).

    Google Scholar 

  • Laplace, P. S. (1774). Mémoire sur la probabilité des causes par les événements. Mémoires de l’Académie Royale des Sciences de Paris, Tome VI, 621–656.

    Google Scholar 

  • Laplace, P. S. (1778). Mémoire sur les probabilités. Mémoires de l’Académie Royale des sciences de Paris, 1781, 227–332.

    Google Scholar 

  • Laplace, P. S. (1812). Théorie analytique des Probabilités (Vols. 2). Paris: Courcier Imprimeur.

    Google Scholar 

  • Laplace, P. S. (1814). Essai philosophique sur les probabilités. Paris: Courcier Imprimeur.

    Google Scholar 

  • Laplace, P. S. (1816). Premier supplément sur l’application du calcul des probabilités à la philosophie naturelle. In Œuvres complètes (Vol. 13, pp. 497–530). Paris: Gauthier-Villars.

    Google Scholar 

  • Leibniz, G. W. (1765). Nouveaux essais sur l’entendement humain. Paris: GF-Flammarion.

    Google Scholar 

  • Lindley, D. V. (1962). Book review of the third edition of Jeffreys’ Theory of probability. Journal of the American Statistical Association, 57, 922–924.

    Google Scholar 

  • Lindley, D. V. (1977). A problem in forensic science. Biometrika, 64(2), 207–213.

    Google Scholar 

  • March, L. (1908). Remarques sur la terminologie en statistique, in Congrès de mathématiques de Rome, JSSP, pp. 290–296.

    Google Scholar 

  • Matalon, B. (1967). Epistémologie des probabilités. In J. Piaget (Ed.), Logique et connaissance scientifique (pp. 526–553). Paris: Gallimard.

    Google Scholar 

  • Maxwell, J. C. (1859). Illustration of the dynamical theory of gases. In Niven, W. D (ed) Collected works (Vol I). London (1890) pp. 377–409.

    Google Scholar 

  • Mosteller, F., & Wallace, D. L. (1964). Applied Bayesian and classical inference: The case of the federalist papers. New York: Springer.

    Google Scholar 

  • Nagel, E. (1940). Book review of Jeffreys’ Theory of probability. The Journal of Philosophy, 37, 524–528.

    Google Scholar 

  • Neyman, J. (1937). Outline of the theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society of London Series A, 236, 333–380.

    Google Scholar 

  • Neyman, J. (1940). Book review of Jeffreys’ Theory of probability. Journal of the American Statistical Association, 35, 558–559.

    Google Scholar 

  • Neyman, J., & Pearson, E. S. (1933a). On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society of London Series A, 231, 289–337.

    Google Scholar 

  • Neyman, J., & Pearson, E. S. (1933b). The testing of statistical hypotheses in relation to probabilities a priori. Proceedings of the Cambridge Philosophical Society, 26, 492–510.

    Google Scholar 

  • O’Donnel, R. (2003). The thick and the think of controversy. In J. Runde & S. Mizuhara (Eds.), The philosophy of Keynes’s economics: Probability, uncertainty, and convention (pp. 85–99). London/New York: Routledge.

    Google Scholar 

  • Paris, J. B. (1994). The uncertain reasoner’s companion. A mathematical perspective. Cambridge: Cambridge University Press.

    Google Scholar 

  • Paris, J., & Vencovská, A. (1997). In defence of maximum entropy inference process. International Journal of Approximate Reasoning, 17(1), 77–103.

    Google Scholar 

  • Pearl, J. (1988). Probabilistic reasoning and intelligent systems: Networks of plausible inference. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Peirce, C. S. (1883). A theory of probable inference. In Studies in logic: Members of the John Hopkins University (pp. 126–203). Boston: Little, Brown and Company.

    Google Scholar 

  • Poincaré, H. (1912). Calcul des probabilités. Paris: Gauthier-Villars.

    Google Scholar 

  • Poinsot, L., & Dupin, C. (1836). Discussion de la « Note sur le calcul des probabilités » de Poisson. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 2, 398–399.

    Google Scholar 

  • Poisson, S. D. (1835). Recherches sur la probabilité des jugements. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 1, 473–474.

    Google Scholar 

  • Poisson, S. D. (1836a). Note sur la loi des grands nombres. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 2, 377–382.

    Google Scholar 

  • Poisson, S. D. (1836b). Note sur le calcul des probabilités. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 2, 395–399.

    Google Scholar 

  • Poisson, S.-D. (1837). Recherches sur la probabilité des jugements en matière criminelle et en matière civile. Paris: Bachelier.

    Google Scholar 

  • Polya, G. (1954). Mathematics and plausible reasoning (Vols. 2). Princeton: Princeton University Press.

    Google Scholar 

  • Porter, T. M. (1986). The rise of statistical thinking 1820–1900. Princeton: Princeton University Press.

    Google Scholar 

  • Quetelet, A. (1827). Recherches sur la population, les naissances, les décès, les prisons, les dépôts de mendicité, etc., dans le royaume des Pays-Bas. Nouveaux mémoires de l’académie royale des sciences et des belles-lettres de Bruxelles, 4, 117–192.

    Google Scholar 

  • Quetelet, A. (1835). Sur l’homme et le développement de ses facultés, ou Essai de physique sociale. Tome premier et Tome second. Paris: Bachelier.

    Google Scholar 

  • Ramsey, F. P. (1926). Truth and probability. In Ramsey, F.P. (1931), The foundations of mathematics and other logical essays, R.B. Braithwaite ed, Ch. VII, pp. 156–198. London: Kegan, Trubner & Co., New York: Harcourt, Brace and Company.

    Google Scholar 

  • Reungoat, S. (2004). William Petty. Observateur des Îles Britanniques. Classiques de l’économie et de la population. Paris: Ined.

    Google Scholar 

  • Robert, C. P. (2006). Le choix bayésien. Paris: Springer-Verlag France.

    Google Scholar 

  • Robert, C. P., Chopin, N., & Rousseau, J. (2009). Harold Jeffreys’s theory of probability revisited. Statistical Science, 24(2), 141–172.

    Google Scholar 

  • Robertson, B., & Vignaux, G. A. (1991). Inferring beyond reasonable doubt. Oxford Journal of Legal Studies, 11(3), 431–438.

    Google Scholar 

  • Robertson, B., & Vignaux, G. A. (1993). Probability – The logic of the law. Oxford Journal of Legal Studies, 13(4), 457–478.

    Google Scholar 

  • Robertson, B., & Vignaux, G. A. (1995). Interpreting evidence: Evaluation forensic science in the courtroom. New York/Chichester/Brisbane/Toronto: Wiley.

    Google Scholar 

  • Salmon, W. C. (1961). Vindication of induction. In H. Feigl & G. Maxwell (Eds.), Current issues in the philosophy of science (pp. 245–264). New York: Holt, Reinhart, and Winston.

    Google Scholar 

  • Sarkar, S. (Ed.). (1996). Decline and obsolescence of logical empirism: Carnap vs. Quine and the critics. New York/London: Garland Publishing, Inc.

    Google Scholar 

  • Savage, L. J. (1954). The foundations of statistics. New York: Wiley.

    Google Scholar 

  • Savage, L. J. (1962). The foundations of statistical inference. New York: Wiley.

    Google Scholar 

  • Seidenfeld, T. (1987). Entropy and uncertainty. In I. B. MacNeill & G. J. Umphrey (Eds.), Foundations of statistical inference (pp. 259–287). Boston: Reidel.

    Google Scholar 

  • Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press.

    Google Scholar 

  • Shafer, G. (1985). Conditional probability. International Statistical Review, 53(3), 261–277.

    Google Scholar 

  • Shafer, G. (1990a). The unity and diversity of probability (with comments). Statistical Science, 5(4), 435–462.

    Google Scholar 

  • Shafer, G. (1990b). The unity of probability. In G. M. von Furstenberg (Ed.), Acting under uncertainty: Multidisciplinary conceptions (pp. 95–126). New York: Kluwer.

    Google Scholar 

  • Shafer, G. (1992). What is probability? In D. C. Hoaglin & D. S. Moore (Eds.), Perspectives on contemporary statistics (pp. 93–106). New York: Mathematical Association of America.

    Google Scholar 

  • Shafer, G. (1996). The art of causal conjecture. Cambridge: MIT press.

    Google Scholar 

  • Shafer, G. (2001). The notion of event in probability and causality. Situating myself relative to Bruno de Finetti. Unpublished paper, presented in Pisa and in Bologna march 2001, 14 p.

    Google Scholar 

  • Shafer, G. (2004). Comments on “Constructing a logic of plausible inference: a guide to Cox’s theorem”, by Kevin S. Van Horn. International Journal of Approximate Reasoning, 35, 97–105.

    Google Scholar 

  • Shafer, G. (2010). A betting interpretation for probabilities and Dempster-Shafer degrees of belief. Working paper 31, Project website: http://probabilityandfinance.com, 18 p. Accessed July 11, 2011.

  • Shafer, G., & Vovk, V. (2001). Probability and finance: It’s only a game! New York: Wiley.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–656.

    Google Scholar 

  • Shore, J. E., & Johnson, R. W. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Transactions on Information Theory, IT-26, 26.

    Google Scholar 

  • Skilling, J. (1988). The axioms of maximum entropy. In G. J. Erickson & C. R. Smith (Eds.), Maximum entropy and Bayesian methods in science and engineering (Vol. 1, pp. 173–188). Boston/Dordrecht/London: Kluwer.

    Google Scholar 

  • Skilling, J. (1998). Probabilistic data analysis; An introductory guide. Journal of Microscopy, 190(1–2), 28–36.

    Google Scholar 

  • Smets, P. (1988). Belief functions. In P. Smets, A. Mandani, P. Dubois, & H. Prade (Eds.), Non standard logics for automated reasoning (pp. 253–286). London: Academic Press.

    Google Scholar 

  • Smets, P. (1990). Constructing pignistic probability function in a context of uncertainty. In M. Henrion, R. D. Shachter, L. N. Kanal, & J. F. Lemmer (Eds.), Uncertainty in artificial intelligence (Vol. 5, pp. 29–40). Amsterdam: North Holland.

    Google Scholar 

  • Smets, P. (1997). The normative representation of quantified beliefs by belief functions. Artificial Intelligence, 92, 229–242.

    Google Scholar 

  • Snow, P. (1998). On the correctness and reasonableness of Cox’s theorem for finite domains. Computational Intelligence, 14(3), 452–459.

    Google Scholar 

  • Stigler, S. M. (1986). The history of statistics: the measurement of uncertainty before 1900. Cambridge: Belknap Press of Harvard University Press.

    Google Scholar 

  • Suppes, P. (1974). The measurement of belief. Journal of the Royal Statistical Society Series B (Methodological), 36(2), 160–191.

    Google Scholar 

  • Suppes, P. (2002a). Representation and invariance of scientific structures. Stanford: CSLI Publications.

    Google Scholar 

  • Van Horn, K. S. (2003). Constructing a logic of plausible inference: A guide to Cox’s theorem. International Journal of Approximate Reasoning, 34(1), 3–24.

    Google Scholar 

  • Venn, J. (1866). The logic of chance. London: Macmillan.

    Google Scholar 

  • Vignaux, G. A., & Robertson, B. (1996). Lessons for the new evidence scholarship. In G. R. Heidbreder (Ed.), Maximum entropy and Bayesian methods, Proceedings of the 13th International Workshop, Santa Barbara, California, August 1–5 1993 (pp. 391–401). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • von Mises, R. (1919). Grundlagen der wahrscheinlichkeitesrechnung. Mathematische Zeitschrift, 5, 52–99.

    Google Scholar 

  • von Mises, R. (1928). Wahrscheinlichkeit, Statistik und Wahrheit. Wien: Springer (English translation: (1957). Probability, statistics and truth. London: George Allen & Unwin Ltd).

    Google Scholar 

  • von Mises, R. (1932). Théorie des probabilités. Fondements et applications. Annales de l’Institut Henri Poincaré, 3(2), 137–190.

    Google Scholar 

  • von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behaviour. Princeton: Princeton University Press.

    Google Scholar 

  • Wald, A. (1947a). Foundations of a general theory of sequential decision functions. Econometrica, 15(4), 279–313.

    Google Scholar 

  • Wald, A. (1947b). Sequential analysis. New York: Wiley.

    Google Scholar 

  • Wald, A. (1949). Statistical decision functions. Annals of Mathematical Statistics, 20(2), 165–205.

    Google Scholar 

  • Wald, A. (1950). Statistical decision functions. New York: Wiley.

    Google Scholar 

  • Wilks, S. S. (1941). Book review of Jeffreys’ Theory of probability. Biometrika, 32, 192–194.

    Google Scholar 

  • Williamson, J. (2005). Bayesian nets and causality: Philosophical and computational foundations. Oxford: Oxford University Press.

    Google Scholar 

  • Williamson, J. (2009). Philosophies of probability. In A. Irvine (Ed.), Handbook of the philosophy of mathematics (Handbook of the philosophy of science, Vol. 4, pp. 1–40). Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  • Wilson, M. C. (2007). Uncertainty and probability in institutional economics. Journal of Economic Issues, 41(4), 1087–1108.

    Google Scholar 

  • Wrinch, D., & Jeffreys, H. (1919). On some aspects of the theory of probability. Philosophical Magazine, 38, 715–731.

    Google Scholar 

  • Wrinch, D., & Jeffreys, H. (1921). On certain fundamental principles of scientific inquiry. Philosophical Magazine, 42, 369–390.

    Google Scholar 

  • Wrinch, D., & Jeffreys, H. (1923). On certain fundamental principles of scientific inquiry. Philosophical Magazine, 45, 368–374.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Google Scholar 

  • Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Courgeau, D. (2012). Conclusion of Part I. In: Probability and Social Science. Methodos Series, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2879-0_4

Download citation

Publish with us

Policies and ethics